diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn.h index 544a83990..0a8674893 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn.h +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn.h @@ -176,9 +176,10 @@ static inline void volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn_u_avx(lv_32fc_ const float* aPtr = (float*)in_common; const float* bPtr[ num_a_vectors]; - for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ){ - bPtr[vec_ind] = in_a[vec_ind]; - } + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + bPtr[vec_ind] = in_a[vec_ind]; + } lv_32fc_t _phase = (*phase); lv_32fc_t wo; @@ -193,20 +194,22 @@ static inline void volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn_u_avx(lv_32fc_ __m256 dotProdVal2[num_a_vectors]; __m256 dotProdVal3[num_a_vectors]; - for( vec_ind = 0; vec_ind < num_a_vectors; vec_ind++ ){ - dotProdVal0[vec_ind] = _mm256_setzero_ps(); - dotProdVal1[vec_ind] = _mm256_setzero_ps(); - dotProdVal2[vec_ind] = _mm256_setzero_ps(); - dotProdVal3[vec_ind] = _mm256_setzero_ps(); - } + for( vec_ind = 0; vec_ind < num_a_vectors; vec_ind++ ) + { + dotProdVal0[vec_ind] = _mm256_setzero_ps(); + dotProdVal1[vec_ind] = _mm256_setzero_ps(); + dotProdVal2[vec_ind] = _mm256_setzero_ps(); + dotProdVal3[vec_ind] = _mm256_setzero_ps(); + } // Set up the complex rotator __m256 z0, z1, z2, z3; - __attribute__((aligned(32))) lv_32fc_t phase_vec[16]; - for( vec_ind = 0; vec_ind < 16; ++vec_ind ){ - phase_vec[vec_ind] = _phase; - _phase *= phase_inc; - } + __VOLK_ATTR_ALIGNED(32) lv_32fc_t phase_vec[16]; + for( vec_ind = 0; vec_ind < 16; ++vec_ind ) + { + phase_vec[vec_ind] = _phase; + _phase *= phase_inc; + } z0 = _mm256_load_ps( (float *)phase_vec ); z1 = _mm256_load_ps( (float *)(phase_vec + 4) ); @@ -215,104 +218,267 @@ static inline void volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn_u_avx(lv_32fc_ lv_32fc_t dz = phase_inc; dz *= dz; dz *= dz; dz *= dz; dz *= dz; // dz = phase_inc^16; - for( vec_ind = 0; vec_ind < 4; ++vec_ind ){ - phase_vec[vec_ind] = dz; - } + for( vec_ind = 0; vec_ind < 4; ++vec_ind ) + { + phase_vec[vec_ind] = dz; + } __m256 dz_reg = _mm256_load_ps( (float *)phase_vec ); dz_reg = _mm256_complexnormalise_ps( dz_reg ); - for(;number < sixteenthPoints; number++){ - - a0Val = _mm256_loadu_ps(aPtr); - a1Val = _mm256_loadu_ps(aPtr+8); - a2Val = _mm256_loadu_ps(aPtr+16); - a3Val = _mm256_loadu_ps(aPtr+24); - - a0Val = _mm256_complexmul_ps( a0Val, z0 ); - a1Val = _mm256_complexmul_ps( a1Val, z1 ); - a2Val = _mm256_complexmul_ps( a2Val, z2 ); - a3Val = _mm256_complexmul_ps( a3Val, z3 ); - - z0 = _mm256_complexmul_ps( z0, dz_reg ); - z1 = _mm256_complexmul_ps( z1, dz_reg ); - z2 = _mm256_complexmul_ps( z2, dz_reg ); - z3 = _mm256_complexmul_ps( z3, dz_reg ); - - - for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ){ - x0Val[vec_ind] = _mm256_loadu_ps(bPtr[vec_ind]); // t0|t1|t2|t3|t4|t5|t6|t7 - x1Val[vec_ind] = _mm256_loadu_ps(bPtr[vec_ind]+8); - x0loVal[vec_ind] = _mm256_unpacklo_ps(x0Val[vec_ind], x0Val[vec_ind]); // t0|t0|t1|t1|t4|t4|t5|t5 - x0hiVal[vec_ind] = _mm256_unpackhi_ps(x0Val[vec_ind], x0Val[vec_ind]); // t2|t2|t3|t3|t6|t6|t7|t7 - x1loVal[vec_ind] = _mm256_unpacklo_ps(x1Val[vec_ind], x1Val[vec_ind]); - x1hiVal[vec_ind] = _mm256_unpackhi_ps(x1Val[vec_ind], x1Val[vec_ind]); - - // TODO: it may be possible to rearrange swizzling to better pipeline data - b0Val[vec_ind] = _mm256_permute2f128_ps(x0loVal[vec_ind], x0hiVal[vec_ind], 0x20); // t0|t0|t1|t1|t2|t2|t3|t3 - b1Val[vec_ind] = _mm256_permute2f128_ps(x0loVal[vec_ind], x0hiVal[vec_ind], 0x31); // t4|t4|t5|t5|t6|t6|t7|t7 - b2Val[vec_ind] = _mm256_permute2f128_ps(x1loVal[vec_ind], x1hiVal[vec_ind], 0x20); - b3Val[vec_ind] = _mm256_permute2f128_ps(x1loVal[vec_ind], x1hiVal[vec_ind], 0x31); - - c0Val[vec_ind] = _mm256_mul_ps(a0Val, b0Val[vec_ind]); - c1Val[vec_ind] = _mm256_mul_ps(a1Val, b1Val[vec_ind]); - c2Val[vec_ind] = _mm256_mul_ps(a2Val, b2Val[vec_ind]); - c3Val[vec_ind] = _mm256_mul_ps(a3Val, b3Val[vec_ind]); - - dotProdVal0[vec_ind] = _mm256_add_ps(c0Val[vec_ind], dotProdVal0[vec_ind]); - dotProdVal1[vec_ind] = _mm256_add_ps(c1Val[vec_ind], dotProdVal1[vec_ind]); - dotProdVal2[vec_ind] = _mm256_add_ps(c2Val[vec_ind], dotProdVal2[vec_ind]); - dotProdVal3[vec_ind] = _mm256_add_ps(c3Val[vec_ind], dotProdVal3[vec_ind]); - - bPtr[vec_ind] += 16; - } - - // Force the rotators back onto the unit circle - if ((number % 64) == 0) + for(;number < sixteenthPoints; number++) { - z0 = _mm256_complexnormalise_ps( z0 ); - z1 = _mm256_complexnormalise_ps( z1 ); - z2 = _mm256_complexnormalise_ps( z2 ); - z3 = _mm256_complexnormalise_ps( z3 ); - } + a0Val = _mm256_loadu_ps(aPtr); + a1Val = _mm256_loadu_ps(aPtr+8); + a2Val = _mm256_loadu_ps(aPtr+16); + a3Val = _mm256_loadu_ps(aPtr+24); - aPtr += 32; - } + a0Val = _mm256_complexmul_ps( a0Val, z0 ); + a1Val = _mm256_complexmul_ps( a1Val, z1 ); + a2Val = _mm256_complexmul_ps( a2Val, z2 ); + a3Val = _mm256_complexmul_ps( a3Val, z3 ); + + z0 = _mm256_complexmul_ps( z0, dz_reg ); + z1 = _mm256_complexmul_ps( z1, dz_reg ); + z2 = _mm256_complexmul_ps( z2, dz_reg ); + z3 = _mm256_complexmul_ps( z3, dz_reg ); + + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + x0Val[vec_ind] = _mm256_loadu_ps(bPtr[vec_ind]); // t0|t1|t2|t3|t4|t5|t6|t7 + x1Val[vec_ind] = _mm256_loadu_ps(bPtr[vec_ind]+8); + x0loVal[vec_ind] = _mm256_unpacklo_ps(x0Val[vec_ind], x0Val[vec_ind]); // t0|t0|t1|t1|t4|t4|t5|t5 + x0hiVal[vec_ind] = _mm256_unpackhi_ps(x0Val[vec_ind], x0Val[vec_ind]); // t2|t2|t3|t3|t6|t6|t7|t7 + x1loVal[vec_ind] = _mm256_unpacklo_ps(x1Val[vec_ind], x1Val[vec_ind]); + x1hiVal[vec_ind] = _mm256_unpackhi_ps(x1Val[vec_ind], x1Val[vec_ind]); + + // TODO: it may be possible to rearrange swizzling to better pipeline data + b0Val[vec_ind] = _mm256_permute2f128_ps(x0loVal[vec_ind], x0hiVal[vec_ind], 0x20); // t0|t0|t1|t1|t2|t2|t3|t3 + b1Val[vec_ind] = _mm256_permute2f128_ps(x0loVal[vec_ind], x0hiVal[vec_ind], 0x31); // t4|t4|t5|t5|t6|t6|t7|t7 + b2Val[vec_ind] = _mm256_permute2f128_ps(x1loVal[vec_ind], x1hiVal[vec_ind], 0x20); + b3Val[vec_ind] = _mm256_permute2f128_ps(x1loVal[vec_ind], x1hiVal[vec_ind], 0x31); + + c0Val[vec_ind] = _mm256_mul_ps(a0Val, b0Val[vec_ind]); + c1Val[vec_ind] = _mm256_mul_ps(a1Val, b1Val[vec_ind]); + c2Val[vec_ind] = _mm256_mul_ps(a2Val, b2Val[vec_ind]); + c3Val[vec_ind] = _mm256_mul_ps(a3Val, b3Val[vec_ind]); + + dotProdVal0[vec_ind] = _mm256_add_ps(c0Val[vec_ind], dotProdVal0[vec_ind]); + dotProdVal1[vec_ind] = _mm256_add_ps(c1Val[vec_ind], dotProdVal1[vec_ind]); + dotProdVal2[vec_ind] = _mm256_add_ps(c2Val[vec_ind], dotProdVal2[vec_ind]); + dotProdVal3[vec_ind] = _mm256_add_ps(c3Val[vec_ind], dotProdVal3[vec_ind]); + + bPtr[vec_ind] += 16; + } + + // Force the rotators back onto the unit circle + if ((number % 64) == 0) + { + z0 = _mm256_complexnormalise_ps( z0 ); + z1 = _mm256_complexnormalise_ps( z1 ); + z2 = _mm256_complexnormalise_ps( z2 ); + z3 = _mm256_complexnormalise_ps( z3 ); + } + + aPtr += 32; + } __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4]; - for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ){ - dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal1[vec_ind]); - dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal2[vec_ind]); - dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal3[vec_ind]); + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal1[vec_ind]); + dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal2[vec_ind]); + dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal3[vec_ind]); - _mm256_store_ps((float *)dotProductVector,dotProdVal0[vec_ind]); // Store the results back into the dot product vector + _mm256_store_ps((float *)dotProductVector, dotProdVal0[vec_ind]); // Store the results back into the dot product vector - result[ vec_ind ] = lv_cmake( 0, 0 ); - for( i = 0; i < 4; ++i ){ - result[vec_ind] += dotProductVector[i]; + result[ vec_ind ] = lv_cmake( 0, 0 ); + for( i = 0; i < 4; ++i ) + { + result[vec_ind] += dotProductVector[i]; + } } - } z0 = _mm256_complexnormalise_ps( z0 ); _mm256_store_ps((float*)phase_vec, z0); - _phase = phase_vec[0]; + _phase = phase_vec[0]; _mm256_zeroupper(); - number = sixteenthPoints*16; - for(;number < num_points; number++){ - wo = (*aPtr++)*_phase; - _phase *= phase_inc; + for(;number < num_points; number++) + { + wo = (*aPtr++)*_phase; + _phase *= phase_inc; - for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ){ - result[vec_ind] += wo * in_a[vec_ind][number]; + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + result[vec_ind] += wo * in_a[vec_ind][number]; + } } - } *phase = _phase; - } +#endif /* LV_HAVE_AVX */ + + +#ifdef LV_HAVE_AVX +#include +#include +static inline void volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn_a_avx(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const float** in_a, int num_a_vectors, unsigned int num_points) +{ + unsigned int number = 0; + unsigned int vec_ind = 0; + unsigned int i = 0; + const unsigned int sixteenthPoints = num_points / 16; + + const float* aPtr = (float*)in_common; + const float* bPtr[ num_a_vectors]; + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + bPtr[vec_ind] = in_a[vec_ind]; + } + + lv_32fc_t _phase = (*phase); + lv_32fc_t wo; + + __m256 a0Val, a1Val, a2Val, a3Val; + __m256 b0Val[num_a_vectors], b1Val[num_a_vectors], b2Val[num_a_vectors], b3Val[num_a_vectors]; + __m256 x0Val[num_a_vectors], x1Val[num_a_vectors], x0loVal[num_a_vectors], x0hiVal[num_a_vectors], x1loVal[num_a_vectors], x1hiVal[num_a_vectors]; + __m256 c0Val[num_a_vectors], c1Val[num_a_vectors], c2Val[num_a_vectors], c3Val[num_a_vectors]; + + __m256 dotProdVal0[num_a_vectors]; + __m256 dotProdVal1[num_a_vectors]; + __m256 dotProdVal2[num_a_vectors]; + __m256 dotProdVal3[num_a_vectors]; + + for( vec_ind = 0; vec_ind < num_a_vectors; vec_ind++ ) + { + dotProdVal0[vec_ind] = _mm256_setzero_ps(); + dotProdVal1[vec_ind] = _mm256_setzero_ps(); + dotProdVal2[vec_ind] = _mm256_setzero_ps(); + dotProdVal3[vec_ind] = _mm256_setzero_ps(); + } + + // Set up the complex rotator + __m256 z0, z1, z2, z3; + __VOLK_ATTR_ALIGNED(32) lv_32fc_t phase_vec[16]; + for( vec_ind = 0; vec_ind < 16; ++vec_ind ) + { + phase_vec[vec_ind] = _phase; + _phase *= phase_inc; + } + + z0 = _mm256_load_ps( (float *)phase_vec ); + z1 = _mm256_load_ps( (float *)(phase_vec + 4) ); + z2 = _mm256_load_ps( (float *)(phase_vec + 8) ); + z3 = _mm256_load_ps( (float *)(phase_vec + 12) ); + + lv_32fc_t dz = phase_inc; dz *= dz; dz *= dz; dz *= dz; dz *= dz; // dz = phase_inc^16; + + for( vec_ind = 0; vec_ind < 4; ++vec_ind ) + { + phase_vec[vec_ind] = dz; + } + + __m256 dz_reg = _mm256_load_ps( (float *)phase_vec ); + dz_reg = _mm256_complexnormalise_ps( dz_reg ); + + for(;number < sixteenthPoints; number++) + { + + a0Val = _mm256_load_ps(aPtr); + a1Val = _mm256_load_ps(aPtr+8); + a2Val = _mm256_load_ps(aPtr+16); + a3Val = _mm256_load_ps(aPtr+24); + + a0Val = _mm256_complexmul_ps( a0Val, z0 ); + a1Val = _mm256_complexmul_ps( a1Val, z1 ); + a2Val = _mm256_complexmul_ps( a2Val, z2 ); + a3Val = _mm256_complexmul_ps( a3Val, z3 ); + + z0 = _mm256_complexmul_ps( z0, dz_reg ); + z1 = _mm256_complexmul_ps( z1, dz_reg ); + z2 = _mm256_complexmul_ps( z2, dz_reg ); + z3 = _mm256_complexmul_ps( z3, dz_reg ); + + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + x0Val[vec_ind] = _mm256_loadu_ps(bPtr[vec_ind]); // t0|t1|t2|t3|t4|t5|t6|t7 + x1Val[vec_ind] = _mm256_loadu_ps(bPtr[vec_ind]+8); + x0loVal[vec_ind] = _mm256_unpacklo_ps(x0Val[vec_ind], x0Val[vec_ind]); // t0|t0|t1|t1|t4|t4|t5|t5 + x0hiVal[vec_ind] = _mm256_unpackhi_ps(x0Val[vec_ind], x0Val[vec_ind]); // t2|t2|t3|t3|t6|t6|t7|t7 + x1loVal[vec_ind] = _mm256_unpacklo_ps(x1Val[vec_ind], x1Val[vec_ind]); + x1hiVal[vec_ind] = _mm256_unpackhi_ps(x1Val[vec_ind], x1Val[vec_ind]); + + // TODO: it may be possible to rearrange swizzling to better pipeline data + b0Val[vec_ind] = _mm256_permute2f128_ps(x0loVal[vec_ind], x0hiVal[vec_ind], 0x20); // t0|t0|t1|t1|t2|t2|t3|t3 + b1Val[vec_ind] = _mm256_permute2f128_ps(x0loVal[vec_ind], x0hiVal[vec_ind], 0x31); // t4|t4|t5|t5|t6|t6|t7|t7 + b2Val[vec_ind] = _mm256_permute2f128_ps(x1loVal[vec_ind], x1hiVal[vec_ind], 0x20); + b3Val[vec_ind] = _mm256_permute2f128_ps(x1loVal[vec_ind], x1hiVal[vec_ind], 0x31); + + c0Val[vec_ind] = _mm256_mul_ps(a0Val, b0Val[vec_ind]); + c1Val[vec_ind] = _mm256_mul_ps(a1Val, b1Val[vec_ind]); + c2Val[vec_ind] = _mm256_mul_ps(a2Val, b2Val[vec_ind]); + c3Val[vec_ind] = _mm256_mul_ps(a3Val, b3Val[vec_ind]); + + dotProdVal0[vec_ind] = _mm256_add_ps(c0Val[vec_ind], dotProdVal0[vec_ind]); + dotProdVal1[vec_ind] = _mm256_add_ps(c1Val[vec_ind], dotProdVal1[vec_ind]); + dotProdVal2[vec_ind] = _mm256_add_ps(c2Val[vec_ind], dotProdVal2[vec_ind]); + dotProdVal3[vec_ind] = _mm256_add_ps(c3Val[vec_ind], dotProdVal3[vec_ind]); + + bPtr[vec_ind] += 16; + } + + // Force the rotators back onto the unit circle + if ((number % 64) == 0) + { + z0 = _mm256_complexnormalise_ps( z0 ); + z1 = _mm256_complexnormalise_ps( z1 ); + z2 = _mm256_complexnormalise_ps( z2 ); + z3 = _mm256_complexnormalise_ps( z3 ); + } + + aPtr += 32; + } + __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4]; + + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal1[vec_ind]); + dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal2[vec_ind]); + dotProdVal0[vec_ind] = _mm256_add_ps(dotProdVal0[vec_ind], dotProdVal3[vec_ind]); + + _mm256_store_ps((float *)dotProductVector, dotProdVal0[vec_ind]); // Store the results back into the dot product vector + + result[ vec_ind ] = lv_cmake( 0, 0 ); + for( i = 0; i < 4; ++i ) + { + result[vec_ind] += dotProductVector[i]; + } + } + + z0 = _mm256_complexnormalise_ps( z0 ); + _mm256_store_ps((float*)phase_vec, z0); + _phase = phase_vec[0]; + _mm256_zeroupper(); + + number = sixteenthPoints*16; + for(;number < num_points; number++) + { + wo = (*aPtr++)*_phase; + _phase *= phase_inc; + + for( vec_ind = 0; vec_ind < num_a_vectors; ++vec_ind ) + { + result[vec_ind] += wo * in_a[vec_ind][number]; + } + } + + *phase = _phase; +} + + #endif /* LV_HAVE_AVX */ #endif /* INCLUDED_volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn_H */ diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc.h index a0284f65d..ca684e30b 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc.h +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc.h @@ -128,5 +128,35 @@ static inline void volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc_u_avx(lv_3 #endif // AVX + +#ifdef LV_HAVE_AVX +static inline void volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc_a_avx(lv_32fc_t* result, const lv_32fc_t* local_code, const float* in, unsigned int num_points) +{ + // phases must be normalized. Phase rotator expects a complex exponential input! + float rem_carrier_phase_in_rad = 0.25; + float phase_step_rad = 0.1; + lv_32fc_t phase[1]; + phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad)); + lv_32fc_t phase_inc[1]; + phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad)); + unsigned int n; + int num_a_vectors = 3; + float ** in_a = (float **)volk_gnsssdr_malloc(sizeof(float *) * num_a_vectors, volk_gnsssdr_get_alignment()); + for(n = 0; n < num_a_vectors; n++) + { + in_a[n] = (float *)volk_gnsssdr_malloc(sizeof(float ) * num_points, volk_gnsssdr_get_alignment()); + memcpy((float*)in_a[n], (float*)in, sizeof(float) * num_points); + } + volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn_a_avx(result, local_code, phase_inc[0], phase, (const float**) in_a, num_a_vectors, num_points); + + for(n = 0; n < num_a_vectors; n++) + { + volk_gnsssdr_free(in_a[n]); + } + volk_gnsssdr_free(in_a); +} + +#endif // AVX + #endif // INCLUDED_volk_gnsssdr_32fc_32f_rotator_dotprodxnpuppet_32fc_H