1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-16 04:05:46 +00:00

adding AVX2 protokernels (aligned and unaligned)

This commit is contained in:
Carles Fernandez 2016-03-28 09:42:55 +02:00
parent 7c1f5723e6
commit 26e68e89f2
2 changed files with 356 additions and 0 deletions

View File

@ -433,6 +433,342 @@ static inline void volk_gnsssdr_s32f_sincos_32fc_generic_fxpt(lv_32fc_t* out, co
#endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_AVX2
#include <immintrin.h>
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/
* Adapted to AVX2 by Carles Fernandez, based on original SSE2 code by Julien Pommier*/
static inline void volk_gnsssdr_s32f_sincos_32fc_a_avx2(lv_32fc_t* out, const float phase_inc, float* phase, unsigned int num_points)
{
lv_32fc_t* bPtr = out;
const unsigned int avx_iters = num_points / 8;
unsigned int number = 0;
float _phase = (*phase);
__m256 sine, cosine, x, eight_phases_reg;
__m256 xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
__m256i emm0, emm2, emm4;
__m128 aux, c1, s1;
/* declare some AXX2 constants */
static const int _ps_inv_sign_mask[8] __attribute__((aligned(32))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
static const int _ps_sign_mask[8] __attribute__((aligned(32))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
static const float _ps_cephes_FOPI[8] __attribute__((aligned(32))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
static const int _pi32_1[8] __attribute__((aligned(32))) = { 1, 1, 1, 1, 1, 1, 1, 1 };
static const int _pi32_inv1[8] __attribute__((aligned(32))) = { ~1, ~1, ~1, ~1, ~1, ~1, ~1, ~1 };
static const int _pi32_2[8] __attribute__((aligned(32))) = { 2, 2, 2, 2, 2, 2, 2, 2 };
static const int _pi32_4[8] __attribute__((aligned(32))) = { 4, 4, 4, 4, 4, 4, 4, 4 };
static const float _ps_minus_cephes_DP1[8] __attribute__((aligned(32))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
static const float _ps_minus_cephes_DP2[8] __attribute__((aligned(32))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
static const float _ps_minus_cephes_DP3[8] __attribute__((aligned(32))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
static const float _ps_coscof_p0[8] __attribute__((aligned(32))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
static const float _ps_coscof_p1[8] __attribute__((aligned(32))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
static const float _ps_coscof_p2[8] __attribute__((aligned(32))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
static const float _ps_sincof_p0[8] __attribute__((aligned(32))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
static const float _ps_sincof_p1[8] __attribute__((aligned(32))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
static const float _ps_sincof_p2[8] __attribute__((aligned(32))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
static const float _ps_0p5[8] __attribute__((aligned(32))) = { 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f };
static const float _ps_1[8] __attribute__((aligned(32))) = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f };
float eight_phases[8] __attribute__((aligned(32))) = { _phase, _phase + phase_inc, _phase + 2 * phase_inc, _phase + 3 * phase_inc, _phase + 4 * phase_inc, _phase + 5 * phase_inc, _phase + 6 * phase_inc, _phase + 7 * phase_inc };
float eight_phases_inc[8] __attribute__((aligned(32))) = { 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc };
eight_phases_reg = _mm256_load_ps(eight_phases);
const __m256 eight_phases_inc_reg = _mm256_load_ps(eight_phases_inc);
for(;number < avx_iters; number++)
{
x = eight_phases_reg;
sign_bit_sin = x;
/* take the absolute value */
x = _mm256_and_ps(x, *(__m256*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(__m256*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(__m256*)_ps_cephes_FOPI);
/* store the integer part of y in emm2 */
emm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm256_add_epi32(emm2, *(__m256i *)_pi32_1);
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_inv1);
y = _mm256_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm256_and_si256(emm2, *(__m256i *)_pi32_4);
emm0 = _mm256_slli_epi32(emm0, 29);
__m256 swap_sign_bit_sin = _mm256_castsi256_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_2);
emm2 = _mm256_cmpeq_epi32(emm2, _mm256_setzero_si256());
__m256 poly_mask = _mm256_castsi256_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic”
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(__m256*)_ps_minus_cephes_DP1;
xmm2 = *(__m256*)_ps_minus_cephes_DP2;
xmm3 = *(__m256*)_ps_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
emm4 = _mm256_sub_epi32(emm4, *(__m256i *)_pi32_2);
emm4 = _mm256_andnot_si256(emm4, *(__m256i *)_pi32_4);
emm4 = _mm256_slli_epi32(emm4, 29);
__m256 sign_bit_cos = _mm256_castsi256_ps(emm4);
sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
__m256 z = _mm256_mul_ps(x, x);
y = *(__m256*)_ps_coscof_p0;
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
__m256 tmp = _mm256_mul_ps(z, *(__m256*)_ps_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(__m256*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
__m256 y2 = *(__m256*)_ps_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
__m256 ysin2 = _mm256_and_ps(xmm3, y2);
__m256 ysin1 = _mm256_andnot_ps(xmm3, y);
y2 = _mm256_sub_ps(y2, ysin2);
y = _mm256_sub_ps(y, ysin1);
xmm1 = _mm256_add_ps(ysin1, ysin2);
xmm2 = _mm256_add_ps(y, y2);
/* update the sign */
sine = _mm256_xor_ps(xmm1, sign_bit_sin);
cosine = _mm256_xor_ps(xmm2, sign_bit_cos);
/* write the output */
s1 = _mm256_extractf128_ps(sine, 0);
c1 = _mm256_extractf128_ps(cosine, 0);
aux = _mm_unpacklo_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
s1 = _mm256_extractf128_ps(sine, 1);
c1 = _mm256_extractf128_ps(cosine, 1);
aux = _mm_unpacklo_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
eight_phases_reg = _mm256_add_ps(eight_phases_reg, eight_phases_inc_reg);
}
_phase = _phase + phase_inc * (avx_iters * 8);
for(number = avx_iters * 8; number < num_points; number++)
{
out[number] = lv_cmake((float)cos(_phase), (float)sin(_phase) );
_phase += phase_inc;
}
(*phase) = _phase;
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_AVX2
#include <immintrin.h>
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/
* Adapted to AVX2 by Carles Fernandez, based on original SSE2 code by Julien Pommier*/
static inline void volk_gnsssdr_s32f_sincos_32fc_u_avx2(lv_32fc_t* out, const float phase_inc, float* phase, unsigned int num_points)
{
lv_32fc_t* bPtr = out;
const unsigned int avx_iters = num_points / 8;
unsigned int number = 0;
float _phase = (*phase);
__m256 sine, cosine, x, eight_phases_reg;
__m256 xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
__m256i emm0, emm2, emm4;
__m128 aux, c1, s1;
/* declare some AXX2 constants */
static const int _ps_inv_sign_mask[8] __attribute__((aligned(32))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
static const int _ps_sign_mask[8] __attribute__((aligned(32))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
static const float _ps_cephes_FOPI[8] __attribute__((aligned(32))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
static const int _pi32_1[8] __attribute__((aligned(32))) = { 1, 1, 1, 1, 1, 1, 1, 1 };
static const int _pi32_inv1[8] __attribute__((aligned(32))) = { ~1, ~1, ~1, ~1, ~1, ~1, ~1, ~1 };
static const int _pi32_2[8] __attribute__((aligned(32))) = { 2, 2, 2, 2, 2, 2, 2, 2 };
static const int _pi32_4[8] __attribute__((aligned(32))) = { 4, 4, 4, 4, 4, 4, 4, 4 };
static const float _ps_minus_cephes_DP1[8] __attribute__((aligned(32))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
static const float _ps_minus_cephes_DP2[8] __attribute__((aligned(32))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
static const float _ps_minus_cephes_DP3[8] __attribute__((aligned(32))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
static const float _ps_coscof_p0[8] __attribute__((aligned(32))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
static const float _ps_coscof_p1[8] __attribute__((aligned(32))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
static const float _ps_coscof_p2[8] __attribute__((aligned(32))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
static const float _ps_sincof_p0[8] __attribute__((aligned(32))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
static const float _ps_sincof_p1[8] __attribute__((aligned(32))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
static const float _ps_sincof_p2[8] __attribute__((aligned(32))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
static const float _ps_0p5[8] __attribute__((aligned(32))) = { 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f };
static const float _ps_1[8] __attribute__((aligned(32))) = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f };
float eight_phases[8] __attribute__((aligned(32))) = { _phase, _phase + phase_inc, _phase + 2 * phase_inc, _phase + 3 * phase_inc, _phase + 4 * phase_inc, _phase + 5 * phase_inc, _phase + 6 * phase_inc, _phase + 7 * phase_inc };
float eight_phases_inc[8] __attribute__((aligned(32))) = { 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc };
eight_phases_reg = _mm256_load_ps(eight_phases);
const __m256 eight_phases_inc_reg = _mm256_load_ps(eight_phases_inc);
for(;number < avx_iters; number++)
{
x = eight_phases_reg;
sign_bit_sin = x;
/* take the absolute value */
x = _mm256_and_ps(x, *(__m256*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(__m256*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(__m256*)_ps_cephes_FOPI);
/* store the integer part of y in emm2 */
emm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm256_add_epi32(emm2, *(__m256i *)_pi32_1);
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_inv1);
y = _mm256_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm256_and_si256(emm2, *(__m256i *)_pi32_4);
emm0 = _mm256_slli_epi32(emm0, 29);
__m256 swap_sign_bit_sin = _mm256_castsi256_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_2);
emm2 = _mm256_cmpeq_epi32(emm2, _mm256_setzero_si256());
__m256 poly_mask = _mm256_castsi256_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic”
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(__m256*)_ps_minus_cephes_DP1;
xmm2 = *(__m256*)_ps_minus_cephes_DP2;
xmm3 = *(__m256*)_ps_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
emm4 = _mm256_sub_epi32(emm4, *(__m256i *)_pi32_2);
emm4 = _mm256_andnot_si256(emm4, *(__m256i *)_pi32_4);
emm4 = _mm256_slli_epi32(emm4, 29);
__m256 sign_bit_cos = _mm256_castsi256_ps(emm4);
sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
__m256 z = _mm256_mul_ps(x, x);
y = *(__m256*)_ps_coscof_p0;
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
__m256 tmp = _mm256_mul_ps(z, *(__m256*)_ps_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(__m256*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
__m256 y2 = *(__m256*)_ps_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
__m256 ysin2 = _mm256_and_ps(xmm3, y2);
__m256 ysin1 = _mm256_andnot_ps(xmm3, y);
y2 = _mm256_sub_ps(y2, ysin2);
y = _mm256_sub_ps(y, ysin1);
xmm1 = _mm256_add_ps(ysin1, ysin2);
xmm2 = _mm256_add_ps(y, y2);
/* update the sign */
sine = _mm256_xor_ps(xmm1, sign_bit_sin);
cosine = _mm256_xor_ps(xmm2, sign_bit_cos);
/* write the output */
s1 = _mm256_extractf128_ps(sine, 0);
c1 = _mm256_extractf128_ps(cosine, 0);
aux = _mm_unpacklo_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
s1 = _mm256_extractf128_ps(sine, 1);
c1 = _mm256_extractf128_ps(cosine, 1);
aux = _mm_unpacklo_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
eight_phases_reg = _mm256_add_ps(eight_phases_reg, eight_phases_inc_reg);
}
_phase = _phase + phase_inc * (avx_iters * 8);
for(number = avx_iters * 8; number < num_points; number++)
{
out[number] = lv_cmake((float)cos(_phase), (float)sin(_phase) );
_phase += phase_inc;
}
(*phase) = _phase;
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
/* Adapted from http://gruntthepeon.free.fr/ssemath/neon_mathfun.h, original code from Julien Pommier */

View File

@ -83,6 +83,26 @@ static inline void volk_gnsssdr_s32f_sincospuppet_32fc_u_sse2(lv_32fc_t* out, co
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_s32f_sincospuppet_32fc_a_avx2(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
{
float phase[1];
phase[0] = 0.1;
volk_gnsssdr_s32f_sincos_32fc_a_avx2(out, phase_inc, phase, num_points);
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_s32f_sincospuppet_32fc_u_avx2(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
{
float phase[1];
phase[0] = 0.1;
volk_gnsssdr_s32f_sincos_32fc_u_avx2(out, phase_inc, phase, num_points);
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_NEON
static inline void volk_gnsssdr_s32f_sincospuppet_32fc_neon(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
{