1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-05 23:10:34 +00:00

Added hybrid TOW (expressed in GPS reference time) and time debug output in PVT block

This commit is contained in:
marabra 2014-06-18 11:04:26 +02:00
parent 6a507d9ce2
commit 25934c477e
7 changed files with 927 additions and 11 deletions

View File

@ -49,6 +49,10 @@ extern concurrent_map<Galileo_Ephemeris> global_galileo_ephemeris_map;
extern concurrent_map<Galileo_Iono> global_galileo_iono_map; extern concurrent_map<Galileo_Iono> global_galileo_iono_map;
extern concurrent_map<Galileo_Utc_Model> global_galileo_utc_model_map; extern concurrent_map<Galileo_Utc_Model> global_galileo_utc_model_map;
extern concurrent_map<Gps_Ephemeris> global_gps_ephemeris_map;
extern concurrent_map<Gps_Iono> global_gps_iono_map;
extern concurrent_map<Gps_Utc_Model> global_gps_utc_model_map;
hybrid_pvt_cc_sptr hybrid_pvt_cc_sptr
hybrid_make_pvt_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int averaging_depth, bool flag_averaging, int output_rate_ms, int display_rate_ms, bool flag_nmea_tty_port, std::string nmea_dump_filename, std::string nmea_dump_devname) hybrid_make_pvt_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int averaging_depth, bool flag_averaging, int output_rate_ms, int display_rate_ms, bool flag_nmea_tty_port, std::string nmea_dump_filename, std::string nmea_dump_devname)
{ {
@ -83,13 +87,13 @@ hybrid_pvt_cc::hybrid_pvt_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_q
d_averaging_depth = averaging_depth; d_averaging_depth = averaging_depth;
d_flag_averaging = flag_averaging; d_flag_averaging = flag_averaging;
d_ls_pvt = new galileo_e1_ls_pvt(nchannels, dump_ls_pvt_filename, d_dump); d_ls_pvt = new hybrid_ls_pvt(nchannels, dump_ls_pvt_filename, d_dump);
d_ls_pvt->set_averaging_depth(d_averaging_depth); d_ls_pvt->set_averaging_depth(d_averaging_depth);
d_sample_counter = 0; d_sample_counter = 0;
d_last_sample_nav_output = 0; d_last_sample_nav_output = 0;
d_rx_time = 0.0; d_rx_time = 0.0;
d_TOW_at_curr_symbol_constellation = 0.0;
b_rinex_header_writen = false; b_rinex_header_writen = false;
rp = new Rinex_Printer(); rp = new Rinex_Printer();
@ -145,11 +149,15 @@ int hybrid_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
if (in[i][0].Flag_valid_pseudorange == true) if (in[i][0].Flag_valid_pseudorange == true)
{ {
gnss_pseudoranges_map.insert(std::pair<int,Gnss_Synchro>(in[i][0].PRN, in[i][0])); // store valid pseudoranges in a map gnss_pseudoranges_map.insert(std::pair<int,Gnss_Synchro>(in[i][0].PRN, in[i][0])); // store valid pseudoranges in a map
d_rx_time = in[i][0].d_TOW_at_current_symbol; // all the channels have the same RX timestamp (common RX time pseudoranges) //d_rx_time = in[i][0].d_TOW_at_current_symbol; // all the channels have the same RX timestamp (common RX time pseudoranges)
d_TOW_at_curr_symbol_constellation=in[i][0].d_TOW_at_current_symbol; // d_TOW_at_current_symbol not corrected by delta t (just for debug)
d_rx_time = in[i][0].d_TOW_hybrid_at_current_symbol; // hybrid rx time, all the channels have the same RX timestamp (common RX time pseudoranges)
std::cout<<"Ch PVT = "<< i << ", d_TOW = " << d_TOW_at_curr_symbol_constellation<<", rx_time_hybrid_PVT = " << d_rx_time << " same RX timestamp (common RX time pseudoranges)"<< std::endl;
} }
} }
// ############ 1. READ EPHEMERIS/UTC_MODE/IONO FROM GLOBAL MAPS #### // ############ 1. READ GALILEO EPHEMERIS/UTC_MODE/IONO FROM GLOBAL MAPS ####
if (global_galileo_ephemeris_map.size() > 0) if (global_galileo_ephemeris_map.size() > 0)
{ {
@ -168,9 +176,30 @@ int hybrid_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
global_galileo_iono_map.read(0, d_ls_pvt->galileo_iono); global_galileo_iono_map.read(0, d_ls_pvt->galileo_iono);
} }
// ############ 2 COMPUTE THE PVT ################################ // ############ 1. READ GPS EPHEMERIS/UTC_MODE/IONO FROM GLOBAL MAPS ####
if (gnss_pseudoranges_map.size() > 0 and d_ls_pvt->galileo_ephemeris_map.size() > 0)
if (global_gps_ephemeris_map.size() > 0)
{ {
d_ls_pvt->gps_ephemeris_map = global_gps_ephemeris_map.get_map_copy();
}
if (global_gps_utc_model_map.size() > 0)
{
// UTC MODEL data is shared for all the Galileo satellites. Read always at ID=0
global_gps_utc_model_map.read(0, d_ls_pvt->gps_utc_model);
}
if (global_gps_iono_map.size() > 0)
{
// IONO data is shared for all the Galileo satellites. Read always at ID=0
global_gps_iono_map.read(0, d_ls_pvt->gps_iono);
}
// ############ 2 COMPUTE THE PVT ################################
if (gnss_pseudoranges_map.size() > 0 and d_ls_pvt->galileo_ephemeris_map.size() > 0 and d_ls_pvt->gps_ephemeris_map.size() > 0)
{
std::cout << "Both GPS and Galileo ephemeris map have been filled " << std::endl;
// compute on the fly PVT solution // compute on the fly PVT solution
if ((d_sample_counter % d_output_rate_ms) == 0) if ((d_sample_counter % d_output_rate_ms) == 0)
{ {
@ -180,7 +209,7 @@ int hybrid_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
if (pvt_result == true) if (pvt_result == true)
{ {
d_kml_dump.print_position_galileo(d_ls_pvt, d_flag_averaging); //IMPLEMENT KML OUTPUT d_kml_dump.print_position_galileo(d_ls_pvt, d_flag_averaging);
//ToDo: Implement Galileo RINEX and Galileo NMEA outputs //ToDo: Implement Galileo RINEX and Galileo NMEA outputs
// d_nmea_printer->Print_Nmea_Line(d_ls_pvt, d_flag_averaging); // d_nmea_printer->Print_Nmea_Line(d_ls_pvt, d_flag_averaging);
// //

View File

@ -43,10 +43,14 @@
#include "galileo_ephemeris.h" #include "galileo_ephemeris.h"
#include "galileo_utc_model.h" #include "galileo_utc_model.h"
#include "galileo_iono.h" #include "galileo_iono.h"
#include "gps_navigation_message.h"
#include "gps_ephemeris.h"
#include "gps_utc_model.h"
#include "gps_iono.h"
#include "nmea_printer.h" #include "nmea_printer.h"
#include "kml_printer.h" #include "kml_printer.h"
#include "rinex_printer.h" #include "rinex_printer.h"
#include "galileo_e1_ls_pvt.h" #include "hybrid_ls_pvt.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "Galileo_E1.h" #include "Galileo_E1.h"
@ -109,7 +113,9 @@ private:
Kml_Printer d_kml_dump; Kml_Printer d_kml_dump;
Nmea_Printer *d_nmea_printer; Nmea_Printer *d_nmea_printer;
double d_rx_time; double d_rx_time;
galileo_e1_ls_pvt *d_ls_pvt; double d_TOW_at_curr_symbol_constellation;
hybrid_ls_pvt *d_ls_pvt;
bool pseudoranges_pairCompare_min(std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b); bool pseudoranges_pairCompare_min(std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b);
public: public:

View File

@ -19,6 +19,7 @@
set(PVT_LIB_SOURCES set(PVT_LIB_SOURCES
gps_l1_ca_ls_pvt.cc gps_l1_ca_ls_pvt.cc
galileo_e1_ls_pvt.cc galileo_e1_ls_pvt.cc
hybrid_ls_pvt.cc
kml_printer.cc kml_printer.cc
rinex_printer.cc rinex_printer.cc
nmea_printer.cc nmea_printer.cc

View File

@ -0,0 +1,729 @@
/*!
* \file galileo_e1_ls_pvt.cc
* \brief Implementation of a Least Squares Position, Velocity, and Time
* (PVT) solver, based on K.Borre's Matlab receiver.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "hybrid_ls_pvt.h"
#include <glog/logging.h>
#include "Galileo_E1.h"
using google::LogMessage;
hybrid_ls_pvt::hybrid_ls_pvt(int nchannels, std::string dump_filename, bool flag_dump_to_file)
{
// init empty ephemeris for all the available GNSS channels
d_nchannels = nchannels;
d_ephemeris = new Galileo_Navigation_Message[nchannels];
d_dump_filename = dump_filename;
d_flag_dump_enabled = flag_dump_to_file;
d_averaging_depth = 0;
d_galileo_current_time = 0;
b_valid_position = false;
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
}
}
}
void hybrid_ls_pvt::set_averaging_depth(int depth)
{
d_averaging_depth = depth;
}
hybrid_ls_pvt::~hybrid_ls_pvt()
{
d_dump_file.close();
delete[] d_ephemeris;
}
arma::vec hybrid_ls_pvt::rotateSatellite(double traveltime, arma::vec X_sat)
{
/*
* Returns rotated satellite ECEF coordinates due to Earth
* rotation during signal travel time
*
* Inputs:
* travelTime - signal travel time
* X_sat - satellite's ECEF coordinates
*
* Returns:
* X_sat_rot - rotated satellite's coordinates (ECEF)
*/
//--- Find rotation angle --------------------------------------------------
double omegatau;
omegatau = OMEGA_EARTH_DOT * traveltime;
//--- Build a rotation matrix ----------------------------------------------
arma::mat R3 = arma::zeros(3,3);
R3(0, 0) = cos(omegatau);
R3(0, 1) = sin(omegatau);
R3(0, 2) = 0.0;
R3(1, 0) = -sin(omegatau);
R3(1, 1) = cos(omegatau);
R3(1, 2) = 0.0;
R3(2, 0) = 0.0;
R3(2, 1) = 0.0;
R3(2, 2) = 1;
//--- Do the rotation ------------------------------------------------------
arma::vec X_sat_rot;
X_sat_rot = R3 * X_sat;
return X_sat_rot;
}
arma::vec hybrid_ls_pvt::leastSquarePos(arma::mat satpos, arma::vec obs, arma::mat w)
{
/* Computes the Least Squares Solution.
* Inputs:
* satpos - Satellites positions in ECEF system: [X; Y; Z;]
* obs - Observations - the pseudorange measurements to each satellite
* w - weigths vector
*
* Returns:
* pos - receiver position and receiver clock error
* (in ECEF system: [X, Y, Z, dt])
*/
//=== Initialization =======================================================
int nmbOfIterations = 10; // TODO: include in config
int nmbOfSatellites;
nmbOfSatellites = satpos.n_cols; //Armadillo
arma::vec pos = "0.0 0.0 0.0 0.0";
arma::mat A;
arma::mat omc;
arma::mat az;
arma::mat el;
A = arma::zeros(nmbOfSatellites, 4);
omc = arma::zeros(nmbOfSatellites, 1);
az = arma::zeros(1, nmbOfSatellites);
el = arma::zeros(1, nmbOfSatellites);
arma::mat X = satpos;
arma::vec Rot_X;
double rho2;
double traveltime;
double trop;
arma::mat mat_tmp;
arma::vec x;
//=== Iteratively find receiver position ===================================
for (int iter = 0; iter < nmbOfIterations; iter++)
{
for (int i = 0; i < nmbOfSatellites; i++)
{
if (iter == 0)
{
//--- Initialize variables at the first iteration --------------
Rot_X = X.col(i); //Armadillo
trop = 0.0;
}
else
{
//--- Update equations -----------------------------------------
rho2 = (X(0, i) - pos(0)) *
(X(0, i) - pos(0)) + (X(1, i) - pos(1)) *
(X(1, i) - pos(1)) + (X(2, i) - pos(2)) *
(X(2, i) - pos(2));
traveltime = sqrt(rho2) / GALILEO_C_m_s;
//--- Correct satellite position (do to earth rotation) --------
Rot_X = rotateSatellite(traveltime, X.col(i)); //armadillo
//--- Find DOA and range of satellites
topocent(&d_visible_satellites_Az[i],
&d_visible_satellites_El[i],
&d_visible_satellites_Distance[i],
pos.subvec(0,2),
Rot_X - pos.subvec(0, 2));
}
//--- Apply the corrections ----------------------------------------
omc(i) = (obs(i) - norm(Rot_X - pos.subvec(0, 2), 2) - pos(3) - trop); // Armadillo
//--- Construct the A matrix ---------------------------------------
//Armadillo
A(i,0) = (-(Rot_X(0) - pos(0))) / obs(i);
A(i,1) = (-(Rot_X(1) - pos(1))) / obs(i);
A(i,2) = (-(Rot_X(2) - pos(2))) / obs(i);
A(i,3) = 1.0;
}
//--- Find position update ---------------------------------------------
x = arma::solve(w*A, w*omc); // Armadillo
//--- Apply position update --------------------------------------------
pos = pos + x;
if (arma::norm(x,2) < 1e-4)
{
break; // exit the loop because we assume that the LS algorithm has converged (err < 0.1 cm)
}
}
try
{
//-- compute the Dilution Of Precision values
d_Q = arma::inv(arma::htrans(A)*A);
}
catch(std::exception& e)
{
d_Q = arma::zeros(4,4);
}
return pos;
}
bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, double galileo_current_time, bool flag_averaging)
{
std::map<int,Gnss_Synchro>::iterator gnss_pseudoranges_iter;
std::map<int,Galileo_Ephemeris>::iterator galileo_ephemeris_iter;
int valid_pseudoranges = gnss_pseudoranges_map.size();
arma::mat W = arma::eye(valid_pseudoranges, valid_pseudoranges); //channels weights matrix
arma::vec obs = arma::zeros(valid_pseudoranges); // pseudoranges observation vector
arma::mat satpos = arma::zeros(3, valid_pseudoranges); //satellite positions matrix
int Galileo_week_number = 0;
double utc = 0;
double SV_clock_drift_s = 0;
double SV_relativistic_clock_corr_s = 0;
double TX_time_corrected_s;
double SV_clock_bias_s = 0;
d_flag_averaging = flag_averaging;
// ********************************************************************************
// ****** PREPARE THE LEAST SQUARES DATA (SV POSITIONS MATRIX AND OBS VECTORS) ****
// ********************************************************************************
int valid_obs = 0; //valid observations counter
int obs_counter = 0;
for(gnss_pseudoranges_iter = gnss_pseudoranges_map.begin();
gnss_pseudoranges_iter != gnss_pseudoranges_map.end();
gnss_pseudoranges_iter++)
{
// 1- find the ephemeris for the current SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_pseudoranges_iter->first);
if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W(obs_counter, obs_counter) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
//Galileo_week_number = galileo_ephemeris_iter->second.WN_5;//for GST
//double sec_in_day = 86400;
//double day_in_week = 7;
// t = WN*sec_in_day*day_in_week + TOW; // t is Galileo System Time to use to compute satellite positions
//JAVIER VERSION:
double Rx_time = galileo_current_time;
//to compute satellite position we need GST = WN+TOW (everything expressed in seconds)
//double Rx_time = galileo_current_time + Galileo_week_number*sec_in_day*day_in_week;
double Tx_time = Rx_time - gnss_pseudoranges_iter->second.Pseudorange_m/GALILEO_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_drift_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the relativistic clock drift using the clock model (broadcast) for this SV
SV_relativistic_clock_corr_s = galileo_ephemeris_iter->second.sv_clock_relativistic_term(Tx_time);
// 4- compute the current ECEF position for this SV using corrected TX time
SV_clock_bias_s = SV_clock_drift_s + SV_relativistic_clock_corr_s;
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
satpos(0,obs_counter) = galileo_ephemeris_iter->second.d_satpos_X;
satpos(1,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Y;
satpos(2,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Z;
// 5- fill the observations vector with the corrected pseudoranges
obs(obs_counter) = gnss_pseudoranges_iter->second.Pseudorange_m + SV_clock_bias_s*GALILEO_C_m_s;
d_visible_satellites_IDs[valid_obs] = galileo_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_pseudoranges_iter->second.CN0_dB_hz;
valid_obs++;
Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
//debug
double GST = galileo_ephemeris_iter->second.Galileo_System_Time(Galileo_week_number, galileo_current_time);
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
// get time string gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
LOG(INFO) << "Galileo RX time at " << boost::posix_time::to_simple_string(p_time);
//end debug
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(obs_counter) << " [m]";
}
else // the ephemeris are not available for this SV
{
// no valid pseudorange for the current SV
W(obs_counter, obs_counter) = 0; // SV de-activated
obs(obs_counter) = 1; // to avoid algorithm problems (divide by zero)
DLOG(INFO) << "No ephemeris data for SV "<< gnss_pseudoranges_iter->first;
}
obs_counter++;
}
// ********************************************************************************
// ****** SOLVE LEAST SQUARES******************************************************
// ********************************************************************************
d_valid_observations = valid_obs;
LOG(INFO) << "Galileo PVT: valid observations=" << valid_obs;
if (valid_obs >= 4)
{
arma::vec mypos;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs="<< obs;
DLOG(INFO) << "W=" << W;
mypos = leastSquarePos(satpos, obs, W);
// Compute GST and Gregorian time
double GST = galileo_ephemeris_iter->second.Galileo_System_Time(Galileo_week_number, galileo_current_time);
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
// get time string Gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
LOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
cart2geo((double)mypos(0), (double)mypos(1), (double)mypos(2), 4);
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
if (d_height_m > 50000)
{
b_valid_position = false;
return false;
}
LOG(INFO) << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]";
std::cout << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]" << std::endl;
// ###### Compute DOPs ########
// 1- Rotation matrix from ECEF coordinates to ENU coordinates
// ref: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
arma::mat F = arma::zeros(3,3);
F(0,0) = -sin(GPS_TWO_PI*(d_longitude_d/360.0));
F(0,1) = -sin(GPS_TWO_PI*(d_latitude_d/360.0))*cos(GPS_TWO_PI*(d_longitude_d/360.0));
F(0,2) = cos(GPS_TWO_PI*(d_latitude_d/360.0))*cos(GPS_TWO_PI*(d_longitude_d/360.0));
F(1,0) = cos((GPS_TWO_PI*d_longitude_d)/360.0);
F(1,1) = -sin((GPS_TWO_PI*d_latitude_d)/360.0)*sin((GPS_TWO_PI*d_longitude_d)/360.0);
F(1,2) = cos((GPS_TWO_PI*d_latitude_d/360.0))*sin((GPS_TWO_PI*d_longitude_d)/360.0);
F(2,0) = 0;
F(2,1) = cos((GPS_TWO_PI*d_latitude_d)/360.0);
F(2,2) = sin((GPS_TWO_PI*d_latitude_d/360.0));
// 2- Apply the rotation to the latest covariance matrix (available in ECEF from LS)
arma::mat Q_ECEF = d_Q.submat(0, 0, 2, 2);
arma::mat DOP_ENU = arma::zeros(3, 3);
try
{
DOP_ENU = arma::htrans(F)*Q_ECEF*F;
d_GDOP = sqrt(arma::trace(DOP_ENU)); // Geometric DOP
d_PDOP = sqrt(DOP_ENU(0,0) + DOP_ENU(1,1) + DOP_ENU(2,2)); // PDOP
d_HDOP = sqrt(DOP_ENU(0,0) + DOP_ENU(1,1)); // HDOP
d_VDOP = sqrt(DOP_ENU(2,2)); // VDOP
d_TDOP = sqrt(d_Q(3,3)); // TDOP
}
catch(std::exception& ex)
{
d_GDOP = -1; // Geometric DOP
d_PDOP = -1; // PDOP
d_HDOP = -1; // HDOP
d_VDOP = -1; // VDOP
d_TDOP = -1; // TDOP
}
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = galileo_current_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position East [m]
tmp_double = mypos(0);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position North [m]
tmp_double = mypos(1);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position Up [m]
tmp_double = mypos(2);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// User clock offset [s]
tmp_double = mypos(3);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Latitude [deg]
tmp_double = d_latitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Longitude [deg]
tmp_double = d_longitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Height [m]
tmp_double = d_height_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing PVT LS dump file "<< e.what();
}
}
// MOVING AVERAGE PVT
if (flag_averaging == true)
{
if (d_hist_longitude_d.size() == (unsigned int)d_averaging_depth)
{
// Pop oldest value
d_hist_longitude_d.pop_back();
d_hist_latitude_d.pop_back();
d_hist_height_m.pop_back();
// Push new values
d_hist_longitude_d.push_front(d_longitude_d);
d_hist_latitude_d.push_front(d_latitude_d);
d_hist_height_m.push_front(d_height_m);
d_avg_latitude_d = 0;
d_avg_longitude_d = 0;
d_avg_height_m = 0;
for (unsigned int i = 0; i < d_hist_longitude_d.size(); i++)
{
d_avg_latitude_d = d_avg_latitude_d + d_hist_latitude_d.at(i);
d_avg_longitude_d = d_avg_longitude_d + d_hist_longitude_d.at(i);
d_avg_height_m = d_avg_height_m + d_hist_height_m.at(i);
}
d_avg_latitude_d = d_avg_latitude_d / (double)d_averaging_depth;
d_avg_longitude_d = d_avg_longitude_d / (double)d_averaging_depth;
d_avg_height_m = d_avg_height_m / (double)d_averaging_depth;
b_valid_position = true;
return true; //indicates that the returned position is valid
}
else
{
// int current_depth=d_hist_longitude_d.size();
// Push new values
d_hist_longitude_d.push_front(d_longitude_d);
d_hist_latitude_d.push_front(d_latitude_d);
d_hist_height_m.push_front(d_height_m);
d_avg_latitude_d = d_latitude_d;
d_avg_longitude_d = d_longitude_d;
d_avg_height_m = d_height_m;
b_valid_position = false;
return false; //indicates that the returned position is not valid yet
}
}
else
{
b_valid_position = true;
return true; //indicates that the returned position is valid
}
}
else
{
b_valid_position = false;
return false;
}
return false;
}
void hybrid_ls_pvt::cart2geo(double X, double Y, double Z, int elipsoid_selection)
{
/* Conversion of Cartesian coordinates (X,Y,Z) to geographical
coordinates (latitude, longitude, h) on a selected reference ellipsoid.
Choices of Reference Ellipsoid for Geographical Coordinates
0. International Ellipsoid 1924
1. International Ellipsoid 1967
2. World Geodetic System 1972
3. Geodetic Reference System 1980
4. World Geodetic System 1984
*/
const double a[5] = {6378388, 6378160, 6378135, 6378137, 6378137};
const double f[5] = {1/297, 1/298.247, 1/298.26, 1/298.257222101, 1/298.257223563};
double lambda = atan2(Y, X);
double ex2 = (2 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1 - f[elipsoid_selection])*(1 - f[elipsoid_selection]));
double c = a[elipsoid_selection] * sqrt(1+ex2);
double phi = atan(Z / ((sqrt(X*X + Y*Y)*(1 - (2 - f[elipsoid_selection])) * f[elipsoid_selection])));
double h = 0.1;
double oldh = 0;
double N;
int iterations = 0;
do
{
oldh = h;
N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi)));
phi = atan(Z / ((sqrt(X*X + Y*Y) * (1 - (2 - f[elipsoid_selection]) * f[elipsoid_selection] *N / (N + h) ))));
h = sqrt(X*X + Y*Y) / cos(phi) - N;
iterations = iterations + 1;
if (iterations > 100)
{
LOG(WARNING) << "Failed to approximate h with desired precision. h-oldh= " << h - oldh;
break;
}
}
while (abs(h - oldh) > 1.0e-12);
d_latitude_d = phi * 180.0 / GPS_PI;
d_longitude_d = lambda * 180 / GPS_PI;
d_height_m = h;
}
void hybrid_ls_pvt::togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
{
/* Subroutine to calculate geodetic coordinates latitude, longitude,
height given Cartesian coordinates X,Y,Z, and reference ellipsoid
values semi-major axis (a) and the inverse of flattening (finv).
The output units of angular quantities will be in decimal degrees
(15.5 degrees not 15 deg 30 min). The output units of h will be the
same as the units of X,Y,Z,a.
Inputs:
a - semi-major axis of the reference ellipsoid
finv - inverse of flattening of the reference ellipsoid
X,Y,Z - Cartesian coordinates
Outputs:
dphi - latitude
dlambda - longitude
h - height above reference ellipsoid
Based in a Matlab function by Kai Borre
*/
*h = 0;
double tolsq = 1.e-10; // tolerance to accept convergence
int maxit = 10; // max number of iterations
double rtd = 180/GPS_PI;
// compute square of eccentricity
double esq;
if (finv < 1.0E-20)
{
esq = 0;
}
else
{
esq = (2 - 1/finv) / finv;
}
// first guess
double P = sqrt(X*X + Y*Y); // P is distance from spin axis
//direct calculation of longitude
if (P > 1.0E-20)
{
*dlambda = atan2(Y, X) * rtd;
}
else
{
*dlambda = 0;
}
// correct longitude bound
if (*dlambda < 0)
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P*P + Z*Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
{
sinphi = Z/r;
}
else
{
sinphi = 0;
}
*dphi = asin(sinphi);
// initial value of height = distance from origin minus
// approximate distance from origin to surface of ellipsoid
if (r < 1.0E-20)
{
*h = 0;
return;
}
*h = r - a*(1 - sinphi*sinphi/finv);
// iterate
double cosphi;
double N_phi;
double dP;
double dZ;
double oneesq = 1 - esq;
for (int i = 0; i < maxit; i++)
{
sinphi = sin(*dphi);
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq*sinphi*sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi*oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi*dZ + cosphi*dP);
*dphi = *dphi + (cosphi*dZ - sinphi*dP)/(N_phi + (*h));
// test for convergence
if ((dP*dP + dZ*dZ) < tolsq)
{
break;
}
if (i == (maxit - 1))
{
LOG(WARNING) << "The computation of geodetic coordinates did not converge";
}
}
*dphi = (*dphi) * rtd;
}
void hybrid_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x, arma::vec dx)
{
/* Transformation of vector dx into topocentric coordinate
system with origin at x
Inputs:
x - vector origin coordinates (in ECEF system [X; Y; Z;])
dx - vector ([dX; dY; dZ;]).
Outputs:
D - vector length. Units like the input
Az - azimuth from north positive clockwise, degrees
El - elevation angle, degrees
Based on a Matlab function by Kai Borre
*/
double lambda;
double phi;
double h;
double dtr = GPS_PI/180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
double cl = cos(lambda * dtr);
double sl = sin(lambda * dtr);
double cb = cos(phi * dtr);
double sb = sin(phi * dtr);
arma::mat F = arma::zeros(3,3);
F(0,0) = -sl;
F(0,1) = -sb*cl;
F(0,2) = cb*cl;
F(1,0) = cl;
F(1,1) = -sb*sl;
F(1,2) = cb*sl;
F(2,0) = 0;
F(2,1) = cb;
F(2,2) = sb;
arma::vec local_vector;
local_vector = arma::htrans(F) * dx;
double E = local_vector(0);
double N = local_vector(1);
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E*E + N*N);
if (hor_dis < 1.0E-20)
{
*Az = 0;
*El = 90;
}
else
{
*Az = atan2(E, N)/dtr;
*El = atan2(U, hor_dis)/dtr;
}
if (*Az < 0)
{
*Az = *Az + 360.0;
}
*D = sqrt(dx(0)*dx(0) + dx(1)*dx(1) + dx(2)*dx(2));
}

View File

@ -0,0 +1,150 @@
/*!
* \file galileo_e1_ls_pvt.h
* \brief Interface of a Least Squares Position, Velocity, and Time (PVT)
* solver, based on K.Borre's Matlab receiver.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_HYBRID_LS_PVT_H_
#define GNSS_SDR_HYBRID_LS_PVT_H_
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <deque>
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <armadillo>
#include <boost/date_time/posix_time/posix_time.hpp>
#include "GPS_L1_CA.h"
#include "galileo_navigation_message.h"
#include "gps_navigation_message.h"
#include "gnss_synchro.h"
#include "galileo_ephemeris.h"
#include "galileo_utc_model.h"
#include "gps_ephemeris.h"
#include "gps_utc_model.h"
#define PVT_MAX_CHANNELS 24
/*!
* \brief This class implements a simple PVT Least Squares solution
*/
class hybrid_ls_pvt
{
private:
arma::vec leastSquarePos(arma::mat satpos, arma::vec obs, arma::mat w);
arma::vec rotateSatellite(double traveltime, arma::vec X_sat);
void topocent(double *Az, double *El, double *D, arma::vec x, arma::vec dx);
void togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z);
public:
int d_nchannels; //!< Number of available channels for positioning
int d_valid_observations; //!< Number of valid pseudorange observations (valid satellites)
int d_visible_satellites_IDs[PVT_MAX_CHANNELS]; //!< Array with the IDs of the valid satellites
double d_visible_satellites_El[PVT_MAX_CHANNELS]; //!< Array with the LOS Elevation of the valid satellites
double d_visible_satellites_Az[PVT_MAX_CHANNELS]; //!< Array with the LOS Azimuth of the valid satellites
double d_visible_satellites_Distance[PVT_MAX_CHANNELS]; //!< Array with the LOS Distance of the valid satellites
double d_visible_satellites_CN0_dB[PVT_MAX_CHANNELS]; //!< Array with the IDs of the valid satellites
Galileo_Navigation_Message* d_ephemeris;
//Gps_Navigation_Message* d_ephemeris;
std::map<int,Galileo_Ephemeris> galileo_ephemeris_map; //!< Map storing new Galileo_Ephemeris
std::map<int,Gps_Ephemeris> gps_ephemeris_map; //!< Map storing new Galileo_Ephemeris
Galileo_Utc_Model galileo_utc_model;
Galileo_Iono galileo_iono;
Gps_Utc_Model gps_utc_model;
Gps_Iono gps_iono;
double d_galileo_current_time;
boost::posix_time::ptime d_position_UTC_time;
bool b_valid_position;
double d_latitude_d; //!< Latitude in degrees
double d_longitude_d; //!< Longitude in degrees
double d_height_m; //!< Height [m]
//averaging
std::deque<double> d_hist_latitude_d;
std::deque<double> d_hist_longitude_d;
std::deque<double> d_hist_height_m;
int d_averaging_depth; //!< Length of averaging window
double d_avg_latitude_d; //!< Averaged latitude in degrees
double d_avg_longitude_d; //!< Averaged longitude in degrees
double d_avg_height_m; //!< Averaged height [m]
double d_x_m;
double d_y_m;
double d_z_m;
// DOP estimations
arma::mat d_Q;
double d_GDOP;
double d_PDOP;
double d_HDOP;
double d_VDOP;
double d_TDOP;
bool d_flag_dump_enabled;
bool d_flag_averaging;
std::string d_dump_filename;
std::ofstream d_dump_file;
void set_averaging_depth(int depth);
hybrid_ls_pvt(int nchannels,std::string dump_filename, bool flag_dump_to_file);
~hybrid_ls_pvt();
bool get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, double galileo_current_time, bool flag_averaging);
/*!
* \brief Conversion of Cartesian coordinates (X,Y,Z) to geographical
* coordinates (d_latitude_d, d_longitude_d, d_height_m) on a selected reference ellipsoid.
*
* \param[in] X [m] Cartesian coordinate
* \param[in] Y [m] Cartesian coordinate
* \param[in] Z [m] Cartesian coordinate
* \param[in] elipsoid_selection. Choices of Reference Ellipsoid for Geographical Coordinates:
* 0 - International Ellipsoid 1924.
* 1 - International Ellipsoid 1967.
* 2 - World Geodetic System 1972.
* 3 - Geodetic Reference System 1980.
* 4 - World Geodetic System 1984.
*
*/
void cart2geo(double X, double Y, double Z, int elipsoid_selection);
};
#endif

View File

@ -278,7 +278,7 @@ void galileo_e1b_telemetry_decoder_cc::decode_word(double *page_part_symbols,int
std::cout<<"d_TOW_at_current_symbol="<<d_TOW_at_current_symbol<<std::endl; std::cout<<"d_TOW_at_current_symbol="<<d_TOW_at_current_symbol<<std::endl;
std::cout<<"d_nav.WN_0="<<d_nav.WN_0<<std::endl; std::cout<<"d_nav.WN_0="<<d_nav.WN_0<<std::endl;
//double delta_t; declared out of this function to be used in the observable block
delta_t=almanac.A_0G_10+almanac.A_1G_10*(d_TOW_at_current_symbol-almanac.t_0G_10+604800*(fmod((d_nav.WN_0-almanac.WN_0G_10),64))); delta_t=almanac.A_0G_10+almanac.A_1G_10*(d_TOW_at_current_symbol-almanac.t_0G_10+604800*(fmod((d_nav.WN_0-almanac.WN_0G_10),64)));
std::cout<<"delta_t="<<delta_t<<"[s]"<<std::endl; std::cout<<"delta_t="<<delta_t<<"[s]"<<std::endl;

View File

@ -136,6 +136,7 @@ private:
double d_TOW_at_Preamble; double d_TOW_at_Preamble;
double d_TOW_at_current_symbol; double d_TOW_at_current_symbol;
double Prn_timestamp_at_preamble_ms; double Prn_timestamp_at_preamble_ms;
bool flag_TOW_set; bool flag_TOW_set;
double delta_t; //GPS-GALILEO time offset double delta_t; //GPS-GALILEO time offset