1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 12:10:34 +00:00

Merge branch 'next' of git+ssh://github.com/gnss-sdr/gnss-sdr into next

# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
This commit is contained in:
Carles Fernandez 2016-01-28 18:10:21 +01:00
commit 2014149e17
3 changed files with 273 additions and 23 deletions

View File

@ -14,6 +14,12 @@ This library is automatically built and installed along with GNSS-SDR if it is n
However, you can install and use VOLK_GNSSSDR kernels as you use VOLK's, independently from GNSS-SDR. However, you can install and use VOLK_GNSSSDR kernels as you use VOLK's, independently from GNSS-SDR.
First, make sure that the required dependencies are installed in you machine:
~~~~~~
$ sudo apt-get install git subversion cmake python-cheetah libboost-dev libbbost-filesystem
~~~~~~
In order to build and install the library, go to the base folder of the source code and do: In order to build and install the library, go to the base folder of the source code and do:
~~~~~~ ~~~~~~

View File

@ -4,26 +4,70 @@
#include <volk_gnsssdr/volk_gnsssdr_complex.h> #include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include "volk_gnsssdr/volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h" #include "volk_gnsssdr/volk_gnsssdr_16ic_s32fc_x2_rotator_16ic.h"
#include <math.h>
#ifdef LV_HAVE_GENERIC #ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points) static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{ {
lv_32fc_t phase[1] = {lv_cmake(.3, 0.95393)}; // phases must be normalized. Phase rotator expects a complex exponential input!
const lv_32fc_t phase_inc = lv_cmake(.1, 0.01); float rem_carrier_phase_in_rad=0.345;
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(outVector, inVector, phase_inc, phase, num_points); float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(outVector, inVector, phase_inc[0], phase, num_points);
} }
#endif /* LV_HAVE_GENERIC */ #endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_SSE2
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad=0.345;
float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(outVector, inVector, phase_inc[0], phase, num_points);
}
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_SSE2
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad=0.345;
float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse2(outVector, inVector, phase_inc[0], phase, num_points);
}
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_NEON #ifdef LV_HAVE_NEON
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points) static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{ {
lv_32fc_t phase[1] = {lv_cmake(.3, 0.95393)}; // phases must be normalized. Phase rotator expects a complex exponential input!
const lv_32fc_t phase_inc = lv_cmake(.1, 0.01); float rem_carrier_phase_in_rad=0.345;
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(outVector, inVector, phase_inc, phase, num_points); float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(outVector, inVector, phase_inc[0], phase, num_points);
} }
#endif /* LV_HAVE_NEON */ #endif /* LV_HAVE_NEON */

View File

@ -38,6 +38,7 @@
#include <volk_gnsssdr/volk_gnsssdr_complex.h> #include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <math.h> #include <math.h>
#include <stdio.h>
#define ROTATOR_RELOAD 512 #define ROTATOR_RELOAD 512
@ -47,55 +48,254 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* ou
{ {
unsigned int i = 0; unsigned int i = 0;
int j = 0; int j = 0;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
for(i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i) for(i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i)
{ {
for(j = 0; j < ROTATOR_RELOAD; ++j) for(j = 0; j < ROTATOR_RELOAD; ++j)
{ {
*outVector++ = *inVector++ * (*phase); tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc; (*phase) *= phase_inc;
tmp32=(*phase);
//printf("[%i][%i] phase fc: %f,%f \n",i,j,lv_creal(tmp32),lv_cimag(tmp32));
} }
#ifdef __cplusplus
(*phase) /= std::abs((*phase));
#else
//(*phase) /= cabsf((*phase));
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
#endif
} }
for(i = 0; i < num_points % ROTATOR_RELOAD; ++i) for(i = 0; i < num_points % ROTATOR_RELOAD; ++i)
{ {
*outVector++ = *inVector++ * (*phase); tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc; (*phase) *= phase_inc;
} }
} }
#endif /* LV_HAVE_GENERIC */ #endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_SSE2
#include <emmintrin.h>
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
// compute next four 16ic complex exponential values for phase rotation
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
result = _mm_or_si128 (real, imag);
// normalize the rotations
// TODO
// store results
_mm_store_si128((__m128i*)_out, result);
_in_a += 4;
_out += 4;
}
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_SSE2
#include <emmintrin.h>
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
// compute next four 16ic complex exponential values for phase rotation
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
result = _mm_or_si128 (real, imag);
// normalize the rotations
// TODO
// store results
_mm_storeu_si128((__m128i*)_out, result);
_in_a += 4;
_out += 4;
}
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_NEON #ifdef LV_HAVE_NEON
#include <arm.neon.h> #include <arm.neon.h>
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points) static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{ {
unsigned int i = 0; unsigned int i = 0;
int j = 0; int j = 0;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
for(i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i) for(i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i)
{ {
for(j = 0; j < ROTATOR_RELOAD; ++j) for(j = 0; j < ROTATOR_RELOAD; ++j)
{ {
*outVector++ = *inVector++ * (*phase); tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc; (*phase) *= phase_inc;
tmp32=(*phase);
printf("[%i][%i] phase fc: %f,%f \n",i,j,lv_creal(tmp32),lv_cimag(tmp32));
} }
#ifdef __cplusplus
(*phase) /= std::abs((*phase));
#else
//(*phase) /= cabsf((*phase));
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
#endif
} }
for(i = 0; i < num_points % ROTATOR_RELOAD; ++i) for(i = 0; i < num_points % ROTATOR_RELOAD; ++i)
{ {
*outVector++ = *inVector++ * (*phase); tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc; (*phase) *= phase_inc;
} }
}
#endif /* LV_HAVE_NEON */ #endif /* LV_HAVE_NEON */