1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-07-05 11:23:14 +00:00

Merge branch 'next' into trk_hi_dyn

This commit is contained in:
Antonio Ramos 2018-08-28 22:09:49 +02:00
commit 1f1d5491b3
31 changed files with 1246 additions and 1318 deletions

View File

@ -523,7 +523,6 @@ if(NOT GNURADIO_RUNTIME_FOUND)
message("You can install it easily via Macports:")
message(" sudo port install gnuradio ")
message("Alternatively, you can use homebrew:")
message(" brew tap odrisci/gnuradio")
message(" brew install gnuradio" )
message(FATAL_ERROR "GNU Radio ${GNSSSDR_GNURADIO_MIN_VERSION} or later is required to build gnss-sdr")
endif(OS_IS_MACOSX)

View File

@ -12,11 +12,17 @@ author:
- et altri (see AUTHORS file for a list of contributors)
copyright_owner:
- The Authors
dependencies: gnuradio (>= 3.7.3), armadillo, gflags, glog, gnutls, matio
dependencies:
- gnuradio (>= 3.7.3)
- armadillo
- gflags
- glog
- gnutls
- matio
license: GPLv3+
repo: https://github.com/gnss-sdr/gnss-sdr
website: https://gnss-sdr.org
icon: https://raw.githubusercontent.com/gnss-sdr/gnss-sdr/master/docs/doxygen/images/gnss-sdr_logo.png
icon: https://gnss-sdr.org/assets/images/logo400x400.jpg
---
Global Navigation Satellite Systems receiver defined by software. It performs all the signal
processing from raw signal samples up to the computation of the Position-Velocity-Time solution,

View File

@ -71,7 +71,6 @@
#define socket_t int
#define closesocket close
#define lock_t pthread_mutex_t
#define thread_t pthread_t
#define initlock(f) pthread_mutex_init(f, NULL)
#define rtk_lock(f) pthread_mutex_lock(f)
#define rtk_unlock(f) pthread_mutex_unlock(f)
@ -1211,7 +1210,7 @@ typedef struct
char local[1024]; /* local file path */
int topts[4]; /* time options {poff,tint,toff,tretry} (s) */
gtime_t tnext; /* next retry time (gpst) */
thread_t thread; /* download thread */
pthread_t thread; /* download thread */
} ftp_t;
@ -1284,7 +1283,7 @@ typedef struct
stream_t stream[8]; /* streams {rov,base,corr,sol1,sol2,logr,logb,logc} */
stream_t *moni; /* monitor stream */
unsigned int tick; /* start tick */
thread_t thread; /* server thread */
pthread_t thread; /* server thread */
int cputime; /* CPU time (ms) for a processing cycle */
int prcout; /* missing observation data count */
lock_t lock; /* lock flag */

View File

@ -89,38 +89,6 @@ double leaps[MAXLEAPS + 1][7] = {/* leap seconds (y,m,d,h,m,s,utc-gpst) */
{}};
const prcopt_t prcopt_default = { /* defaults processing options */
PMODE_SINGLE, 0, 2, SYS_GPS, /* mode, soltype, nf, navsys */
15.0 * D2R, {{}, {{}, {}}}, /* elmin, snrmask */
0, 1, 1, 1, /* sateph, modear, glomodear, bdsmodear */
5, 0, 10, 1, /* maxout, minlock, minfix, armaxiter */
0, 0, 0, 0, /* estion, esttrop, dynamics, tidecorr */
1, 0, 0, 0, 0, /* niter, codesmooth, intpref, sbascorr, sbassatsel */
0, 0, /* rovpos, refpos */
{100.0, 100.0, 100.0}, /* eratio[] */
{100.0, 0.003, 0.003, 0.0, 1.0}, /* err[] */
{30.0, 0.03, 0.3}, /* std[] */
{1e-4, 1e-3, 1e-4, 1e-1, 1e-2, 0.0}, /* prn[] */
5E-12, /* sclkstab */
{3.0, 0.9999, 0.25, 0.1, 0.05, 0, 0, 0}, /* thresar */
0.0, 0.0, 0.05, /* elmaskar, almaskhold, thresslip */
30.0, 30.0, 30.0, /* maxtdif, maxinno, maxgdop */
{}, {}, {}, /* baseline, ru, rb */
{"", ""}, /* anttype */
{}, {}, {}, /* antdel, pcv, exsats */
0, 0, 0, {"", ""}, {}, 0, {{}, {}}, {{}, {{}, {}}, {{}, {}}, {}, {}}, 0, {}};
const solopt_t solopt_default = {
/* defaults solution output options */
SOLF_LLH, TIMES_GPST, 1, 3, /* posf, times, timef, timeu */
0, 1, 0, 0, 0, 0, /* degf, outhead, outopt, datum, height, geoid */
0, 0, 0, /* solstatic, sstat, trace */
{0.0, 0.0}, /* nmeaintv */
" ", "", 0 /* separator/program name */
};
const char *formatstrs[32] = {/* stream format strings */
"RTCM 2", /* 0 */
"RTCM 3", /* 1 */

View File

@ -1,6 +1,6 @@
/*!
* \file volk_gnsssdr_32f_fast_resamplerxnpuppet_32f.h
* \brief VOLK_GNSSSDR puppet for the multiple 32-bit float vector fast resampler kernel.
* \file volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f.h
* \brief VOLK_GNSSSDR puppet for the multiple 32-bit float vector high dynamics resampler kernel.
* \authors <ul>
* <li> Cillian O'Driscoll 2017 cillian.odriscoll at gmail dot com
* <li> Javier Arribas, 2018. javiarribas(at)gmail.com
@ -33,10 +33,10 @@
* -------------------------------------------------------------------------
*/
#ifndef INCLUDED_volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_H
#define INCLUDED_volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_H
#ifndef INCLUDED_volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_H
#define INCLUDED_volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_H
#include "volk_gnsssdr/volk_gnsssdr_32f_xn_fast_resampler_32f_xn.h"
#include "volk_gnsssdr/volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn.h"
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
@ -44,7 +44,7 @@
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_generic(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -60,7 +60,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -75,7 +75,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -91,7 +91,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* res
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -106,7 +106,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* res
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -122,7 +122,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* res
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -137,7 +137,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* res
#ifdef LV_HAVE_SSE4_1
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -153,7 +153,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse4_1(float* r
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -168,7 +168,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse4_1(float* r
#ifdef LV_HAVE_SSE4_1
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -184,7 +184,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse4_1(float* r
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -199,7 +199,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse4_1(float* r
#ifdef LV_HAVE_AVX
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -215,7 +215,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_avx(float* resu
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -229,7 +229,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_avx(float* resu
#ifdef LV_HAVE_AVX
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_avx(float* result, const float* local_code, unsigned int num_points)
static inline void volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f_u_avx(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
@ -245,7 +245,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_avx(float* resu
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -285,4 +285,4 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_avx(float* resu
//}
//#endif
#endif // INCLUDED_volk_gnsssdr_32f_fast_resamplerpuppet_32f_H
#endif // INCLUDED_volk_gnsssdr_32f_high_dynamics_resamplerpuppet_32f_H

View File

@ -1,5 +1,5 @@
/*!
* \file volk_gnsssdr_32f_xn_fast_resampler_32f_xn.h
* \file volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn.h
* \brief VOLK_GNSSSDR kernel: Resamples 1 complex 32-bit float vectors using zero hold resample algorithm
* and produces the delayed replicas by copying and rotating the resulting resampled signal.
* \authors <ul>
@ -38,7 +38,7 @@
*/
/*!
* \page volk_gnsssdr_32f_xn_fast_resampler_32f_xn
* \page volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn
*
* \b Overview
*
@ -46,7 +46,7 @@
*
* <b>Dispatcher Prototype</b>
* \code
* void volk_gnsssdr_32f_xn_fast_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
* void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
* \endcode
*
* \b Inputs
@ -64,8 +64,8 @@
*
*/
#ifndef INCLUDED_volk_gnsssdr_32f_xn_fast_resampler_32f_xn_H
#define INCLUDED_volk_gnsssdr_32f_xn_fast_resampler_32f_xn_H
#ifndef INCLUDED_volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_H
#define INCLUDED_volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_H
#include <assert.h>
#include <math.h>
@ -78,7 +78,7 @@
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
int local_code_chip_index;
int current_correlator_tap;
@ -109,7 +109,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** res
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int quarterPoints = num_points / 4;
@ -194,7 +194,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** resu
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int quarterPoints = num_points / 4;
@ -280,7 +280,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** resu
#ifdef LV_HAVE_SSE4_1
#include <smmintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int quarterPoints = num_points / 4;
@ -362,7 +362,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** re
#ifdef LV_HAVE_SSE4_1
#include <smmintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int quarterPoints = num_points / 4;
@ -444,7 +444,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** re
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_a_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int avx_iters = num_points / 8;
@ -532,7 +532,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(float** resul
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_u_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int avx_iters = num_points / 8;
@ -621,7 +621,7 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(float** resul
//#ifdef LV_HAVE_NEONV7
//#include <arm_neon.h>
//
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_neon(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//static inline void volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_neon(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int neon_iters = num_points / 4;
@ -704,4 +704,4 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(float** resul
//
//#endif
#endif /*INCLUDED_volk_gnsssdr_32f_xn_fast_resampler_32f_xn_H*/
#endif /*INCLUDED_volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn_H*/

View File

@ -93,7 +93,7 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
QA(VOLK_INIT_PUPP(volk_gnsssdr_16i_resamplerxnpuppet_16i, volk_gnsssdr_16i_xn_resampler_16i_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32fc_resamplerxnpuppet_32fc, volk_gnsssdr_32fc_xn_resampler_32fc_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32f_resamplerxnpuppet_32f, volk_gnsssdr_32f_xn_resampler_32f_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32f_fast_resamplerxnpuppet_32f, volk_gnsssdr_32f_xn_fast_resampler_32f_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32f_high_dynamics_resamplerxnpuppet_32f, volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
QA(VOLK_INIT_PUPP(volk_gnsssdr_16ic_16i_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn, test_params_int16))

View File

@ -55,7 +55,7 @@ GalileoE1BTelemetryDecoder::GalileoE1BTelemetryDecoder(ConfigurationInterface* c
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_filename);
// make telemetry decoder object
telemetry_decoder_ = galileo_e1b_make_telemetry_decoder_cc(satellite_, dump_); // TODO fix me
telemetry_decoder_ = galileo_make_telemetry_decoder_cc(satellite_, 1, dump_); //unified galileo decoder set to INAV (frame_type=1)
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
channel_ = 0;
if (in_streams_ > 1)

View File

@ -36,7 +36,7 @@
#include "telemetry_decoder_interface.h"
#include "galileo_e1b_telemetry_decoder_cc.h"
#include "galileo_telemetry_decoder_cc.h"
#include "gnss_satellite.h"
#include <string>
@ -76,7 +76,6 @@ public:
void set_satellite(const Gnss_Satellite& satellite) override;
inline void set_channel(int channel) override { telemetry_decoder_->set_channel(channel); }
inline void reset() override
{
return;
@ -88,7 +87,7 @@ public:
}
private:
galileo_e1b_telemetry_decoder_cc_sptr telemetry_decoder_;
galileo_telemetry_decoder_cc_sptr telemetry_decoder_;
Gnss_Satellite satellite_;
int channel_;
bool dump_;

View File

@ -58,7 +58,7 @@ GalileoE5aTelemetryDecoder::GalileoE5aTelemetryDecoder(ConfigurationInterface* c
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_filename);
// make telemetry decoder object
telemetry_decoder_ = galileo_e5a_make_telemetry_decoder_cc(satellite_, dump_); // TODO fix me
telemetry_decoder_ = galileo_make_telemetry_decoder_cc(satellite_, 2, dump_); //unified galileo decoder set to FNAV (frame_type=2)
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
channel_ = 0;
if (in_streams_ > 1)

View File

@ -37,7 +37,7 @@
#ifndef GNSS_SDR_GALILEO_E5A_TELEMETRY_DECODER_H_
#define GNSS_SDR_GALILEO_E5A_TELEMETRY_DECODER_H_
#include "galileo_e5a_telemetry_decoder_cc.h"
#include "galileo_telemetry_decoder_cc.h"
#include "telemetry_decoder_interface.h"
#include <string>
@ -76,7 +76,6 @@ public:
void set_satellite(const Gnss_Satellite& satellite) override;
inline void set_channel(int channel) override { telemetry_decoder_->set_channel(channel); }
inline void reset() override
{
return;
@ -88,7 +87,7 @@ public:
}
private:
galileo_e5a_telemetry_decoder_cc_sptr telemetry_decoder_;
galileo_telemetry_decoder_cc_sptr telemetry_decoder_;
Gnss_Satellite satellite_;
int channel_;
bool dump_;

View File

@ -20,11 +20,10 @@ set(TELEMETRY_DECODER_GR_BLOCKS_SOURCES
gps_l1_ca_telemetry_decoder_cc.cc
gps_l2c_telemetry_decoder_cc.cc
gps_l5_telemetry_decoder_cc.cc
galileo_e1b_telemetry_decoder_cc.cc
sbas_l1_telemetry_decoder_cc.cc
galileo_e5a_telemetry_decoder_cc.cc
glonass_l1_ca_telemetry_decoder_cc.cc
glonass_l2_ca_telemetry_decoder_cc.cc
galileo_telemetry_decoder_cc.cc
)
include_directories(

View File

@ -1,501 +0,0 @@
/*!
* \file galileo_e1b_telemetry_decoder_cc.cc
* \brief Implementation of a Galileo INAV message demodulator block
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas 2013. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e1b_telemetry_decoder_cc.h"
#include "control_message_factory.h"
#include "convolutional.h"
#include "gnss_synchro.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <iostream>
#define CRC_ERROR_LIMIT 6
using google::LogMessage;
galileo_e1b_telemetry_decoder_cc_sptr
galileo_e1b_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump)
{
return galileo_e1b_telemetry_decoder_cc_sptr(new galileo_e1b_telemetry_decoder_cc(satellite, dump));
}
void galileo_e1b_telemetry_decoder_cc::viterbi_decoder(double *page_part_symbols, int32_t *page_part_bits)
{
Viterbi(page_part_bits, out0, state0, out1, state1,
page_part_symbols, KK, nn, DataLength);
}
void galileo_e1b_telemetry_decoder_cc::deinterleaver(int32_t rows, int32_t cols, double *in, double *out)
{
for (int32_t r = 0; r < rows; r++)
{
for (int32_t c = 0; c < cols; c++)
{
out[c * rows + r] = in[r * cols + c];
}
}
}
galileo_e1b_telemetry_decoder_cc::galileo_e1b_telemetry_decoder_cc(
const Gnss_Satellite &satellite,
bool dump) : gr::block("galileo_e1b_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Ephemeris data port out
this->message_port_register_out(pmt::mp("telemetry"));
// initialize internal vars
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
LOG(INFO) << "Initializing GALILEO E1B TELEMETRY PROCESSING";
d_samples_per_symbol = (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS) / Galileo_E1_B_SYMBOL_RATE_BPS;
// set the preamble
uint16_t preambles_bits[GALILEO_INAV_PREAMBLE_LENGTH_BITS] = GALILEO_INAV_PREAMBLE;
d_symbols_per_preamble = GALILEO_INAV_PREAMBLE_LENGTH_BITS * d_samples_per_symbol;
memcpy(static_cast<uint16_t *>(this->d_preambles_bits), static_cast<uint16_t *>(preambles_bits), GALILEO_INAV_PREAMBLE_LENGTH_BITS * sizeof(uint16_t));
// preamble bits to sampled symbols
d_preambles_symbols = static_cast<int32_t *>(volk_gnsssdr_malloc(d_symbols_per_preamble * sizeof(int32_t), volk_gnsssdr_get_alignment()));
int32_t n = 0;
for (int32_t i = 0; i < GALILEO_INAV_PREAMBLE_LENGTH_BITS; i++)
{
for (uint32_t j = 0; j < d_samples_per_symbol; j++)
{
if (d_preambles_bits[i] == 1)
{
d_preambles_symbols[n] = 1;
}
else
{
d_preambles_symbols[n] = -1;
}
n++;
}
}
d_sample_counter = 0ULL;
d_stat = 0;
d_preamble_index = 0ULL;
d_flag_frame_sync = false;
d_flag_parity = false;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
delta_t = 0;
d_CRC_error_counter = 0;
flag_even_word_arrived = 0;
d_flag_preamble = false;
d_channel = 0;
flag_TOW_set = false;
// vars for Viterbi decoder
int32_t max_states = 1 << mm; // 2^mm
g_encoder[0] = 121; // Polynomial G1
g_encoder[1] = 91; // Polynomial G2
out0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
out1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
// create appropriate transition matrices
nsc_transit(out0, state0, 0, g_encoder, KK, nn);
nsc_transit(out1, state1, 1, g_encoder, KK, nn);
}
galileo_e1b_telemetry_decoder_cc::~galileo_e1b_telemetry_decoder_cc()
{
volk_gnsssdr_free(d_preambles_symbols);
volk_gnsssdr_free(out0);
volk_gnsssdr_free(out1);
volk_gnsssdr_free(state0);
volk_gnsssdr_free(state1);
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
void galileo_e1b_telemetry_decoder_cc::decode_word(double *page_part_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_part_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_INAV_INTERLEAVER_ROWS, GALILEO_INAV_INTERLEAVER_COLS, page_part_symbols, page_part_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180º
for (int32_t i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_part_symbols_deint[i] = -page_part_symbols_deint[i];
}
}
int32_t *page_part_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_part_symbols_deint, page_part_bits);
volk_gnsssdr_free(page_part_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
for (int32_t i = 0; i < (frame_length / 2); i++)
{
if (page_part_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
if (page_part_bits[0] == 1)
{
// DECODE COMPLETE WORD (even + odd) and TEST CRC
d_nav.split_page(page_String, flag_even_word_arrived);
if (d_nav.flag_CRC_test == true)
{
LOG(INFO) << "Galileo E1 CRC correct in channel " << d_channel << " from satellite " << d_satellite;
//std::cout << "Galileo E1 CRC correct on channel " << d_channel << " from satellite " << d_satellite << std::endl;
}
else
{
std::cout << "Galileo E1 CRC error in channel " << d_channel << " from satellite " << d_satellite << std::endl;
LOG(INFO) << "Galileo E1 CRC error in channel " << d_channel << " from satellite " << d_satellite;
}
flag_even_word_arrived = 0;
}
else
{
// STORE HALF WORD (even page)
d_nav.split_page(page_String.c_str(), flag_even_word_arrived);
flag_even_word_arrived = 1;
}
volk_gnsssdr_free(page_part_bits);
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Galileo_Ephemeris> tmp_obj = std::make_shared<Galileo_Ephemeris>(d_nav.get_ephemeris());
std::cout << "New Galileo E1 I/NAV message received in channel " << d_channel << ": ephemeris from satellite " << d_satellite << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_nav.have_new_iono_and_GST() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Galileo_Iono> tmp_obj = std::make_shared<Galileo_Iono>(d_nav.get_iono());
std::cout << "New Galileo E1 I/NAV message received in channel " << d_channel << ": iono/GST model parameters from satellite " << d_satellite << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_nav.have_new_utc_model() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Galileo_Utc_Model> tmp_obj = std::make_shared<Galileo_Utc_Model>(d_nav.get_utc_model());
std::cout << "New Galileo E1 I/NAV message received in channel " << d_channel << ": UTC model parameters from satellite " << d_satellite << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_nav.have_new_almanac() == true)
{
std::shared_ptr<Galileo_Almanac> tmp_obj = std::make_shared<Galileo_Almanac>(d_nav.get_almanac());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
//debug
std::cout << "Galileo E1 I/NAV almanac received in channel " << d_channel << " from satellite " << d_satellite << std::endl;
DLOG(INFO) << "GPS_to_Galileo time conversion:";
DLOG(INFO) << "A0G=" << tmp_obj->A_0G_10;
DLOG(INFO) << "A1G=" << tmp_obj->A_1G_10;
DLOG(INFO) << "T0G=" << tmp_obj->t_0G_10;
DLOG(INFO) << "WN_0G_10=" << tmp_obj->WN_0G_10;
DLOG(INFO) << "Current parameters:";
DLOG(INFO) << "d_TOW_at_current_symbol_ms=" << d_TOW_at_current_symbol_ms;
DLOG(INFO) << "d_nav.WN_0=" << d_nav.WN_0;
delta_t = tmp_obj->A_0G_10 + tmp_obj->A_1G_10 * (static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0 - tmp_obj->t_0G_10 + 604800 * (fmod((d_nav.WN_0 - tmp_obj->WN_0G_10), 64)));
DLOG(INFO) << "delta_t=" << delta_t << "[s]";
}
}
void galileo_e1b_telemetry_decoder_cc::set_satellite(const Gnss_Satellite &satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void galileo_e1b_telemetry_decoder_cc::set_channel(int32_t channel)
{
d_channel = channel;
LOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int32_t corr_value = 0;
int32_t preamble_diff = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output
current_symbol = in[0][0];
d_symbol_history.push_back(current_symbol); // add new symbol to the symbol queue
d_sample_counter++; // count for the processed samples
consume_each(1);
d_flag_preamble = false;
uint32_t required_symbols = static_cast<uint32_t>(GALILEO_INAV_PAGE_SYMBOLS) + static_cast<uint32_t>(d_symbols_per_preamble);
if (d_symbol_history.size() > required_symbols)
{
// TODO Optimize me!
// ******* preamble correlation ********
for (int32_t i = 0; i < d_symbols_per_preamble; i++)
{
if (d_symbol_history.at(i).Prompt_I < 0) // symbols clipping
{
corr_value -= d_preambles_symbols[i];
}
else
{
corr_value += d_preambles_symbols[i];
}
}
}
// ******* frame sync ******************
if (d_stat == 0) // no preamble information
{
if (abs(corr_value) >= d_symbols_per_preamble)
{
d_preamble_index = d_sample_counter; // record the preamble sample stamp
LOG(INFO) << "Preamble detection for Galileo satellite " << this->d_satellite;
d_stat = 1; // enter into frame pre-detection status
}
}
else if (d_stat == 1) // possible preamble lock
{
if (abs(corr_value) >= d_symbols_per_preamble)
{
// check preamble separation
preamble_diff = static_cast<int32_t>(d_sample_counter - d_preamble_index);
if (abs(preamble_diff - GALILEO_INAV_PREAMBLE_PERIOD_SYMBOLS) == 0)
{
// try to decode frame
LOG(INFO) << "Starting page decoder for Galileo satellite " << this->d_satellite;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
d_stat = 2;
}
else
{
if (preamble_diff > GALILEO_INAV_PREAMBLE_PERIOD_SYMBOLS)
{
d_stat = 0; // start again
}
}
}
}
else if (d_stat == 2)
{
if (d_sample_counter == d_preamble_index + static_cast<uint64_t>(GALILEO_INAV_PREAMBLE_PERIOD_SYMBOLS))
{
// NEW Galileo page part is received
// 0. fetch the symbols into an array
int32_t frame_length = GALILEO_INAV_PAGE_PART_SYMBOLS - d_symbols_per_preamble;
double *page_part_symbols = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
for (int32_t i = 0; i < frame_length; i++)
{
if (corr_value > 0)
{
page_part_symbols[i] = d_symbol_history.at(i + d_symbols_per_preamble).Prompt_I; // because last symbol of the preamble is just received now!
}
else
{
page_part_symbols[i] = -d_symbol_history.at(i + d_symbols_per_preamble).Prompt_I; // because last symbol of the preamble is just received now!
}
}
// call the decoder
decode_word(page_part_symbols, frame_length);
if (d_nav.flag_CRC_test == true)
{
d_CRC_error_counter = 0;
d_flag_preamble = true; // valid preamble indicator (initialized to false every work())
d_preamble_index = d_sample_counter; // record the preamble sample stamp (t_P)
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at "
<< d_symbol_history.at(0).Tracking_sample_counter << " [samples]";
}
}
else
{
d_CRC_error_counter++;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
if (d_CRC_error_counter > CRC_ERROR_LIMIT)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite;
d_flag_frame_sync = false;
d_stat = 0;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
d_nav.flag_TOW_set = false;
}
}
volk_gnsssdr_free(page_part_symbols);
}
}
// UPDATE GNSS SYNCHRO DATA
// 2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_nav.flag_TOW_set == true)
// update TOW at the preamble instant
{
if (d_nav.flag_TOW_5 == true) // page 5 arrived and decoded, so we are in the odd page (since Tow refers to the even page, we have to add 1 sec)
{
// TOW_5 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later plus the decoding delay
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.TOW_5 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>(GALILEO_INAV_PAGE_PART_MS + (required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS);
d_nav.flag_TOW_5 = false;
}
else if (d_nav.flag_TOW_6 == true) // page 6 arrived and decoded, so we are in the odd page (since Tow refers to the even page, we have to add 1 sec)
{
// TOW_6 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later plus the decoding delay
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.TOW_6 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>(GALILEO_INAV_PAGE_PART_MS + (required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS);
d_nav.flag_TOW_6 = false;
}
else
{
// this page has no timing information
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E1_CODE_PERIOD_MS); // + GALILEO_INAV_PAGE_PART_SYMBOLS*GALILEO_E1_CODE_PERIOD;
}
}
else // if there is not a new preamble, we define the TOW of the current symbol
{
if (d_nav.flag_TOW_set == true)
{
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E1_CODE_PERIOD_MS);
}
}
// remove used symbols from history
// todo: Use circular buffer here
if (d_symbol_history.size() > required_symbols)
{
d_symbol_history.pop_front();
}
if (d_nav.flag_TOW_set)
{
if (d_nav.flag_GGTO_1 == true and d_nav.flag_GGTO_2 == true and d_nav.flag_GGTO_3 == true and d_nav.flag_GGTO_4 == true) // all GGTO parameters arrived
{
delta_t = d_nav.A_0G_10 + d_nav.A_1G_10 * (static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0 - d_nav.t_0G_10 + 604800.0 * (fmod((d_nav.WN_0 - d_nav.WN_0G_10), 64.0)));
}
current_symbol.Flag_valid_word = d_nav.flag_TOW_set;
current_symbol.TOW_at_current_symbol_ms = d_TOW_at_current_symbol_ms;
// todo: Galileo to GPS time conversion should be moved to observable block.
// current_symbol.TOW_at_current_symbol_ms -= delta_t; //Galileo to GPS TOW
if (d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
uint64_t tmp_ulong_int;
tmp_double = static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_ulong_int = current_symbol.Tracking_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&tmp_ulong_int), sizeof(uint64_t));
tmp_double = static_cast<double>(d_TOW_at_Preamble_ms) / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
// 3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_symbol;
return 1;
}
else
{
return 0;
}
}

View File

@ -1,513 +0,0 @@
/*!
* \file galileo_e5a_telemetry_decoder_cc.cc
* \brief Implementation of a Galileo FNAV message demodulator block
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* Javier Arribas, 2017. jarribas(at)cttc.es
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* </ul>
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5a_telemetry_decoder_cc.h"
#include "control_message_factory.h"
#include "convolutional.h"
#include "display.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <iostream>
#define GALILEO_E5a_CRC_ERROR_LIMIT 6
using google::LogMessage;
galileo_e5a_telemetry_decoder_cc_sptr
galileo_e5a_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump)
{
return galileo_e5a_telemetry_decoder_cc_sptr(new galileo_e5a_telemetry_decoder_cc(satellite, dump));
}
void galileo_e5a_telemetry_decoder_cc::viterbi_decoder(double *page_part_symbols, int32_t *page_part_bits)
{
Viterbi(page_part_bits, out0, state0, out1, state1,
page_part_symbols, KK, nn, DataLength);
}
void galileo_e5a_telemetry_decoder_cc::deinterleaver(int32_t rows, int32_t cols, double *in, double *out)
{
for (int32_t r = 0; r < rows; r++)
{
for (int32_t c = 0; c < cols; c++)
{
out[c * rows + r] = in[r * cols + c];
}
}
}
void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_FNAV_INTERLEAVER_ROWS, GALILEO_FNAV_INTERLEAVER_COLS, page_symbols, page_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180<38>
for (int32_t i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_symbols_deint[i] = -page_symbols_deint[i];
}
}
int32_t *page_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_symbols_deint, page_bits);
volk_gnsssdr_free(page_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
for (int32_t i = 0; i < frame_length; i++)
{
if (page_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
volk_gnsssdr_free(page_bits);
// DECODE COMPLETE WORD (even + odd) and TEST CRC
d_nav.split_page(page_String);
if (d_nav.flag_CRC_test == true)
{
LOG(INFO) << "Galileo E5a CRC correct in channel " << d_channel << " from satellite " << d_satellite;
}
else
{
std::cout << "Galileo E5a CRC error in channel " << d_channel << " from satellite " << d_satellite << std::endl;
LOG(INFO) << "Galileo E5a CRC error in channel " << d_channel << " from satellite " << d_satellite;
}
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
{
std::shared_ptr<Galileo_Ephemeris> tmp_obj = std::make_shared<Galileo_Ephemeris>(d_nav.get_ephemeris());
std::cout << TEXT_MAGENTA << "New Galileo E5a F/NAV message received in channel " << d_channel << ": ephemeris from satellite " << d_satellite << TEXT_RESET << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_nav.have_new_iono_and_GST() == true)
{
std::shared_ptr<Galileo_Iono> tmp_obj = std::make_shared<Galileo_Iono>(d_nav.get_iono());
std::cout << TEXT_MAGENTA << "New Galileo E5a F/NAV message received in channel " << d_channel << ": iono/GST model parameters from satellite " << d_satellite << TEXT_RESET << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_nav.have_new_utc_model() == true)
{
std::shared_ptr<Galileo_Utc_Model> tmp_obj = std::make_shared<Galileo_Utc_Model>(d_nav.get_utc_model());
std::cout << TEXT_MAGENTA << "New Galileo E5a F/NAV message received in channel " << d_channel << ": UTC model parameters from satellite " << d_satellite << TEXT_RESET << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
}
galileo_e5a_telemetry_decoder_cc::galileo_e5a_telemetry_decoder_cc(
const Gnss_Satellite &satellite, bool dump) : gr::block("galileo_e5a_telemetry_decoder_cc",
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Ephemeris data port out
this->message_port_register_out(pmt::mp("telemetry"));
// initialize internal vars
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
// set the preamble
for (int32_t i = 0; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
{
if (GALILEO_FNAV_PREAMBLE.at(i) == '0')
{
d_preambles_bits[i] = 1;
}
else
{
d_preambles_bits[i] = -1;
}
}
for (int32_t i = 0; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
{
for (int32_t k = 0; k < GALILEO_FNAV_CODES_PER_SYMBOL; k++)
{
d_preamble_samples[(i * GALILEO_FNAV_CODES_PER_SYMBOL) + k] = d_preambles_bits[i];
}
}
d_sample_counter = 0ULL;
d_stat = 0;
corr_value = 0;
d_flag_preamble = false;
d_preamble_index = 0ULL;
d_flag_frame_sync = false;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
flag_TOW_set = false;
d_CRC_error_counter = 0;
d_channel = 0;
delta_t = 0.0;
d_symbol_counter = 0;
d_prompt_acum = 0.0;
flag_bit_start = true;
new_symbol = false;
required_symbols = GALILEO_FNAV_SYMBOLS_PER_PAGE + GALILEO_FNAV_PREAMBLE_LENGTH_BITS;
// vars for Viterbi decoder
int32_t max_states = 1 << mm; // 2^mm
g_encoder[0] = 121; // Polynomial G1
g_encoder[1] = 91; // Polynomial G2
out0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
out1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
// create appropriate transition matrices
nsc_transit(out0, state0, 0, g_encoder, KK, nn);
nsc_transit(out1, state1, 1, g_encoder, KK, nn);
}
galileo_e5a_telemetry_decoder_cc::~galileo_e5a_telemetry_decoder_cc()
{
volk_gnsssdr_free(out0);
volk_gnsssdr_free(out1);
volk_gnsssdr_free(state0);
volk_gnsssdr_free(state1);
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
void galileo_e5a_telemetry_decoder_cc::set_satellite(const Gnss_Satellite &satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void galileo_e5a_telemetry_decoder_cc::set_channel(int32_t channel)
{
d_channel = channel;
LOG(INFO) << "Navigation channel set to " << channel;
// Enable data file logging
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
int galileo_e5a_telemetry_decoder_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int32_t preamble_diff = 0;
Gnss_Synchro *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const Gnss_Synchro *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
// 1. Copy the current tracking output
Gnss_Synchro current_sample = in[0];
d_symbol_counter++;
if (flag_bit_start)
{
d_prompt_acum += current_sample.Prompt_I;
if (d_symbol_counter == GALILEO_FNAV_CODES_PER_SYMBOL)
{
current_sample.Prompt_I = d_prompt_acum / static_cast<double>(GALILEO_FNAV_CODES_PER_SYMBOL);
d_symbol_history.push_back(current_sample); // add new symbol to the symbol queue
d_prompt_acum = 0.0;
d_symbol_counter = 0;
new_symbol = true;
}
}
else
{
if (current_sample.Prompt_I < 0.0)
{
d_preamble_init.push_back(1);
}
else
{
d_preamble_init.push_back(-1);
}
if (d_preamble_init.size() == GALILEO_FNAV_CODES_PER_PREAMBLE)
{
std::deque<int32_t>::iterator iter;
int32_t k = 0;
corr_value = 0;
for (iter = d_preamble_init.begin(); iter != d_preamble_init.end(); iter++)
{
corr_value += *iter * d_preamble_samples[k];
k++;
}
if (abs(corr_value) == GALILEO_FNAV_CODES_PER_PREAMBLE)
{
d_symbol_counter = 0;
flag_bit_start = true;
corr_value = 0;
d_preamble_init.clear();
d_symbol_history.clear();
LOG(INFO) << "Bit start sync for Galileo E5a satellite " << d_satellite;
}
else
{
d_preamble_init.pop_front();
}
}
}
d_sample_counter++; // count for the processed samples
consume_each(1);
d_flag_preamble = false;
if ((d_symbol_history.size() > required_symbols) && new_symbol)
{
// ****************** Preamble orrelation ******************
corr_value = 0;
for (int32_t i = 0; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
{
if (d_symbol_history.at(i).Prompt_I < 0.0) // symbols clipping
{
corr_value -= d_preambles_bits[i];
}
else
{
corr_value += d_preambles_bits[i];
}
}
}
// ****************** Frame sync ******************
if ((d_stat == 0) && new_symbol) // no preamble information
{
if (abs(corr_value) == GALILEO_FNAV_PREAMBLE_LENGTH_BITS)
{
d_preamble_index = d_sample_counter; // record the preamble sample stamp
LOG(INFO) << "Preamble detection for Galileo E5a satellite " << d_satellite;
d_stat = 1; // enter into frame pre-detection status
}
}
else if ((d_stat == 1) && new_symbol) // possible preamble lock
{
if (abs(corr_value) == GALILEO_FNAV_PREAMBLE_LENGTH_BITS)
{
// check preamble separation
preamble_diff = static_cast<int32_t>(d_sample_counter - d_preamble_index);
if (preamble_diff == GALILEO_FNAV_CODES_PER_PAGE)
{
// try to decode frame
LOG(INFO) << "Starting page decoder for Galileo E5a satellite " << d_satellite;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
d_stat = 2;
}
else if (preamble_diff > GALILEO_FNAV_CODES_PER_PAGE)
{
d_stat = 0; // start again
flag_bit_start = false;
LOG(INFO) << "Preamble diff = " << preamble_diff;
}
}
}
else if ((d_stat == 2) && new_symbol)
{
if (d_sample_counter == (d_preamble_index + static_cast<uint64_t>(GALILEO_FNAV_CODES_PER_PAGE)))
{
// NEW Galileo page part is received
// 0. fetch the symbols into an array
int32_t frame_length = GALILEO_FNAV_SYMBOLS_PER_PAGE - GALILEO_FNAV_PREAMBLE_LENGTH_BITS;
double corr_sign = 0.0;
if (corr_value > 0)
{
corr_sign = -1.0;
}
else
{
corr_sign = 1.0;
}
for (int32_t i = 0; i < frame_length; i++)
{
page_symbols[i] = corr_sign * d_symbol_history.at(i + GALILEO_FNAV_PREAMBLE_LENGTH_BITS).Prompt_I; // because last symbol of the preamble is just received now!
}
// call the decoder
decode_word(page_symbols, frame_length);
if (d_nav.flag_CRC_test == true)
{
d_CRC_error_counter = 0;
d_flag_preamble = true; // valid preamble indicator (initialized to false every work())
d_preamble_index = d_sample_counter; // record the preamble sample stamp (t_P)
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at "
<< d_symbol_history.at(0).Tracking_sample_counter << " [samples]";
}
}
else
{
d_CRC_error_counter++;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
if (d_CRC_error_counter > GALILEO_E5A_CRC_ERROR_LIMIT)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite;
d_flag_frame_sync = false;
d_stat = 0;
flag_bit_start = false;
d_nav.flag_TOW_set = false;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
}
}
}
}
new_symbol = false;
// UPDATE GNSS SYNCHRO DATA
// Add the telemetry decoder information
if (d_flag_preamble and d_nav.flag_TOW_set)
// update TOW at the preamble instant
// We expect a preamble each 10 seconds (FNAV page period)
{
if (d_nav.flag_TOW_1 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_1 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_1 = false;
}
else if (d_nav.flag_TOW_2 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_2 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_2 = false;
}
else if (d_nav.flag_TOW_3 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_3 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_3 = false;
}
else if (d_nav.flag_TOW_4 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_4 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_4 = false;
}
else
{
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E5a_CODE_PERIOD_MS);
}
}
else // if there is not a new preamble, we define the TOW of the current symbol
{
if (d_nav.flag_TOW_set == true)
{
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E5a_CODE_PERIOD_MS);
}
}
// remove used symbols from history
// todo: Use circular buffer here
while (d_symbol_history.size() > required_symbols)
{
d_symbol_history.pop_front();
}
if (d_nav.flag_TOW_set)
{
current_sample.Flag_valid_word = true;
current_sample.TOW_at_current_symbol_ms = d_TOW_at_current_symbol_ms;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
uint64_t tmp_ulong_int;
tmp_double = static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_ulong_int = current_sample.Tracking_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&tmp_ulong_int), sizeof(uint64_t));
tmp_double = static_cast<double>(d_TOW_at_Preamble_ms) / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing Galileo E5a Telemetry Decoder dump file " << e.what();
}
}
// 3. Make the output
out[0] = current_sample;
return 1;
}
else
{
return 0;
}
}

View File

@ -1,127 +0,0 @@
/*!
* \file galileo_e5a_telemetry_decoder_cc.cc
* \brief Implementation of a Galileo FNAV message demodulator block
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* Javier Arribas, 2017. jarribas(at)cttc.es
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* </ul>
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E5A_TELEMETRY_DECODER_CC_H_
#define GNSS_SDR_GALILEO_E5A_TELEMETRY_DECODER_CC_H_
#include "Galileo_E5a.h"
#include "gnss_satellite.h"
#include "galileo_fnav_message.h"
#include "galileo_ephemeris.h"
#include "galileo_almanac.h"
#include "galileo_iono.h"
#include "galileo_utc_model.h"
#include "gnss_synchro.h"
#include <gnuradio/block.h>
#include <deque>
#include <fstream>
#include <string>
class galileo_e5a_telemetry_decoder_cc;
typedef boost::shared_ptr<galileo_e5a_telemetry_decoder_cc> galileo_e5a_telemetry_decoder_cc_sptr;
galileo_e5a_telemetry_decoder_cc_sptr galileo_e5a_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
/*!
* \brief This class implements a block that decodes the FNAV data defined in Galileo ICD
*
*/
class galileo_e5a_telemetry_decoder_cc : public gr::block
{
public:
~galileo_e5a_telemetry_decoder_cc();
void set_satellite(const Gnss_Satellite &satellite); //!< Set satellite PRN
void set_channel(int32_t channel); //!< Set receiver's channel
/*!
* \brief This is where all signal processing takes place
*/
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
private:
friend galileo_e5a_telemetry_decoder_cc_sptr
galileo_e5a_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
galileo_e5a_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
void viterbi_decoder(double *page_part_symbols, int32_t *page_part_bits);
void deinterleaver(int32_t rows, int32_t cols, double *in, double *out);
void decode_word(double *page_symbols, int32_t frame_length);
int32_t d_preambles_bits[GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
int32_t d_preamble_samples[GALILEO_FNAV_CODES_PER_PREAMBLE];
std::deque<int> d_preamble_init;
int32_t d_stat;
int32_t d_CRC_error_counter;
int32_t d_channel;
int32_t d_symbol_counter;
int32_t corr_value;
uint32_t required_symbols;
uint64_t d_sample_counter;
uint64_t d_preamble_index;
bool d_flag_frame_sync;
bool d_flag_preamble;
bool d_dump;
bool flag_TOW_set;
bool flag_bit_start;
bool new_symbol;
double d_prompt_acum;
double page_symbols[GALILEO_FNAV_SYMBOLS_PER_PAGE - GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
uint32_t d_TOW_at_Preamble_ms;
uint32_t d_TOW_at_current_symbol_ms;
double delta_t; //GPS-GALILEO time offset
std::string d_dump_filename;
std::ofstream d_dump_file;
std::deque<Gnss_Synchro> d_symbol_history;
Gnss_Satellite d_satellite;
// navigation message vars
Galileo_Fnav_Message d_nav;
// vars for Viterbi decoder
int32_t *out0, *out1, *state0, *state1;
int32_t g_encoder[2];
const int32_t nn = 2; // Coding rate 1/n
const int32_t KK = 7; // Constraint Length
int32_t mm = KK - 1;
const int32_t CodeLength = 488;
int32_t DataLength = (CodeLength / nn) - mm;
};
#endif /* GNSS_SDR_GALILEO_E5A_TELEMETRY_DECODER_CC_H_ */

View File

@ -0,0 +1,780 @@
/*!
* \file galileo_telemetry_decoder_cc.cc
* \brief Implementation of a Galileo unified INAV and FNAV message demodulator block
* \author Javier Arribas 2018. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_telemetry_decoder_cc.h"
#include "control_message_factory.h"
#include "convolutional.h"
#include "display.h"
#include "gnss_synchro.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <iostream>
#define CRC_ERROR_LIMIT 6
using google::LogMessage;
galileo_telemetry_decoder_cc_sptr
galileo_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, int frame_type, bool dump)
{
return galileo_telemetry_decoder_cc_sptr(new galileo_telemetry_decoder_cc(satellite, frame_type, dump));
}
void galileo_telemetry_decoder_cc::viterbi_decoder(double *page_part_symbols, int32_t *page_part_bits)
{
Viterbi(page_part_bits, out0, state0, out1, state1,
page_part_symbols, KK, nn, DataLength);
}
void galileo_telemetry_decoder_cc::deinterleaver(int32_t rows, int32_t cols, double *in, double *out)
{
for (int32_t r = 0; r < rows; r++)
{
for (int32_t c = 0; c < cols; c++)
{
out[c * rows + r] = in[r * cols + c];
}
}
}
galileo_telemetry_decoder_cc::galileo_telemetry_decoder_cc(
const Gnss_Satellite &satellite, int frame_type,
bool dump) : gr::block("galileo_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Ephemeris data port out
this->message_port_register_out(pmt::mp("telemetry"));
// initialize internal vars
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
d_frame_type = frame_type;
LOG(INFO) << "Initializing GALILEO UNIFIED TELEMETRY DECODER";
switch (d_frame_type)
{
case 1: //INAV
{
d_PRN_code_period_ms = static_cast<uint32_t>(GALILEO_E1_CODE_PERIOD_MS);
d_samples_per_symbol = Galileo_E1_B_SAMPLES_PER_SYMBOL;
d_bits_per_preamble = GALILEO_INAV_PREAMBLE_LENGTH_BITS;
// set the preamble
d_samples_per_preamble = GALILEO_INAV_PREAMBLE_LENGTH_BITS * d_samples_per_symbol;
d_preamble_period_symbols = GALILEO_INAV_PREAMBLE_PERIOD_SYMBOLS;
d_required_symbols = static_cast<uint32_t>(GALILEO_INAV_PAGE_SYMBOLS) + d_samples_per_preamble;
// preamble bits to sampled symbols
d_preamble_samples = static_cast<int32_t *>(volk_gnsssdr_malloc(d_samples_per_preamble * sizeof(int32_t), volk_gnsssdr_get_alignment()));
d_frame_length_symbols = GALILEO_INAV_PAGE_PART_SYMBOLS - GALILEO_INAV_PREAMBLE_LENGTH_BITS;
CodeLength = GALILEO_INAV_PAGE_PART_SYMBOLS - GALILEO_INAV_PREAMBLE_LENGTH_BITS;
DataLength = (CodeLength / nn) - mm;
break;
}
case 2: //FNAV
{
d_PRN_code_period_ms = static_cast<uint32_t>(GALILEO_E5a_CODE_PERIOD_MS);
d_samples_per_symbol = GALILEO_FNAV_CODES_PER_SYMBOL;
d_bits_per_preamble = GALILEO_FNAV_PREAMBLE_LENGTH_BITS;
// set the preamble
d_samples_per_preamble = GALILEO_FNAV_PREAMBLE_LENGTH_BITS * d_samples_per_symbol;
d_preamble_period_symbols = GALILEO_FNAV_CODES_PER_PAGE;
d_required_symbols = static_cast<uint32_t>(GALILEO_FNAV_SYMBOLS_PER_PAGE) * d_samples_per_symbol + d_samples_per_preamble;
// preamble bits to sampled symbols
d_preamble_samples = static_cast<int32_t *>(volk_gnsssdr_malloc(d_samples_per_preamble * sizeof(int32_t), volk_gnsssdr_get_alignment()));
d_secondary_code_samples = static_cast<int32_t *>(volk_gnsssdr_malloc(Galileo_E5a_I_SECONDARY_CODE_LENGTH * sizeof(int32_t), volk_gnsssdr_get_alignment()));
d_frame_length_symbols = GALILEO_FNAV_SYMBOLS_PER_PAGE - GALILEO_FNAV_PREAMBLE_LENGTH_BITS;
CodeLength = GALILEO_FNAV_SYMBOLS_PER_PAGE - GALILEO_FNAV_PREAMBLE_LENGTH_BITS;
DataLength = (CodeLength / nn) - mm;
for (int32_t i = 0; i < Galileo_E5a_I_SECONDARY_CODE_LENGTH; i++)
{
if (Galileo_E5a_I_SECONDARY_CODE.at(i) == '1')
{
d_secondary_code_samples[i] = 1;
}
else
{
d_secondary_code_samples[i] = -1;
}
}
break;
}
default:
std::cout << "Galileo unified telemetry decoder error: Unknown frame type " << std::endl;
}
d_page_part_symbols = static_cast<double *>(volk_gnsssdr_malloc(d_frame_length_symbols * sizeof(double), volk_gnsssdr_get_alignment()));
int32_t n = 0;
for (int32_t i = 0; i < d_bits_per_preamble; i++)
{
switch (d_frame_type)
{
case 1: //INAV
{
if (GALILEO_INAV_PREAMBLE.at(i) == '1')
{
for (uint32_t j = 0; j < d_samples_per_symbol; j++)
{
d_preamble_samples[n] = 1;
n++;
}
}
else
{
for (uint32_t j = 0; j < d_samples_per_symbol; j++)
{
d_preamble_samples[n] = -1;
n++;
}
}
break;
}
case 2: //FNAV for E5a-I
{
// Galileo E5a data channel (E5a-I) still has a secondary code
int m = 0;
if (GALILEO_FNAV_PREAMBLE.at(i) == '1')
{
for (uint32_t j = 0; j < d_samples_per_symbol; j++)
{
d_preamble_samples[n] = d_secondary_code_samples[m];
n++;
m++;
m = m % Galileo_E5a_I_SECONDARY_CODE_LENGTH;
}
}
else
{
for (uint32_t j = 0; j < d_samples_per_symbol; j++)
{
d_preamble_samples[n] = -d_secondary_code_samples[m];
n++;
m++;
m = m % Galileo_E5a_I_SECONDARY_CODE_LENGTH;
}
}
break;
}
}
}
d_sample_counter = 0ULL;
d_stat = 0;
d_preamble_index = 0ULL;
d_flag_frame_sync = false;
d_flag_parity = false;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
delta_t = 0;
d_CRC_error_counter = 0;
flag_even_word_arrived = 0;
d_flag_preamble = false;
d_channel = 0;
flag_TOW_set = false;
// vars for Viterbi decoder
int32_t max_states = 1 << mm; // 2^mm
g_encoder[0] = 121; // Polynomial G1
g_encoder[1] = 91; // Polynomial G2
out0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
out1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
// create appropriate transition matrices
nsc_transit(out0, state0, 0, g_encoder, KK, nn);
nsc_transit(out1, state1, 1, g_encoder, KK, nn);
}
galileo_telemetry_decoder_cc::~galileo_telemetry_decoder_cc()
{
volk_gnsssdr_free(d_preamble_samples);
if (d_frame_type == 2)
{
volk_gnsssdr_free(d_secondary_code_samples);
}
volk_gnsssdr_free(d_page_part_symbols);
volk_gnsssdr_free(out0);
volk_gnsssdr_free(out1);
volk_gnsssdr_free(state0);
volk_gnsssdr_free(state1);
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
void galileo_telemetry_decoder_cc::decode_INAV_word(double *page_part_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_part_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_INAV_INTERLEAVER_ROWS, GALILEO_INAV_INTERLEAVER_COLS, page_part_symbols, page_part_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180º
for (int32_t i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_part_symbols_deint[i] = -page_part_symbols_deint[i];
}
}
int32_t *page_part_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_part_symbols_deint, page_part_bits);
volk_gnsssdr_free(page_part_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
for (int32_t i = 0; i < (frame_length / 2); i++)
{
if (page_part_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
if (page_part_bits[0] == 1)
{
// DECODE COMPLETE WORD (even + odd) and TEST CRC
d_inav_nav.split_page(page_String, flag_even_word_arrived);
if (d_inav_nav.flag_CRC_test == true)
{
LOG(INFO) << "Galileo E1 CRC correct in channel " << d_channel << " from satellite " << d_satellite;
}
else
{
LOG(INFO) << "Galileo E1 CRC error in channel " << d_channel << " from satellite " << d_satellite;
}
flag_even_word_arrived = 0;
}
else
{
// STORE HALF WORD (even page)
d_inav_nav.split_page(page_String.c_str(), flag_even_word_arrived);
flag_even_word_arrived = 1;
}
volk_gnsssdr_free(page_part_bits);
// 4. Push the new navigation data to the queues
if (d_inav_nav.have_new_ephemeris() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Galileo_Ephemeris> tmp_obj = std::make_shared<Galileo_Ephemeris>(d_inav_nav.get_ephemeris());
std::cout << "New Galileo E1 I/NAV message received in channel " << d_channel << ": ephemeris from satellite " << d_satellite << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_inav_nav.have_new_iono_and_GST() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Galileo_Iono> tmp_obj = std::make_shared<Galileo_Iono>(d_inav_nav.get_iono());
std::cout << "New Galileo E1 I/NAV message received in channel " << d_channel << ": iono/GST model parameters from satellite " << d_satellite << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_inav_nav.have_new_utc_model() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Galileo_Utc_Model> tmp_obj = std::make_shared<Galileo_Utc_Model>(d_inav_nav.get_utc_model());
std::cout << "New Galileo E1 I/NAV message received in channel " << d_channel << ": UTC model parameters from satellite " << d_satellite << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_inav_nav.have_new_almanac() == true)
{
std::shared_ptr<Galileo_Almanac> tmp_obj = std::make_shared<Galileo_Almanac>(d_inav_nav.get_almanac());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
//debug
std::cout << "Galileo E1 I/NAV almanac received in channel " << d_channel << " from satellite " << d_satellite << std::endl;
DLOG(INFO) << "GPS_to_Galileo time conversion:";
DLOG(INFO) << "A0G=" << tmp_obj->A_0G_10;
DLOG(INFO) << "A1G=" << tmp_obj->A_1G_10;
DLOG(INFO) << "T0G=" << tmp_obj->t_0G_10;
DLOG(INFO) << "WN_0G_10=" << tmp_obj->WN_0G_10;
DLOG(INFO) << "Current parameters:";
DLOG(INFO) << "d_TOW_at_current_symbol_ms=" << d_TOW_at_current_symbol_ms;
DLOG(INFO) << "d_nav.WN_0=" << d_inav_nav.WN_0;
delta_t = tmp_obj->A_0G_10 + tmp_obj->A_1G_10 * (static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0 - tmp_obj->t_0G_10 + 604800 * (fmod((d_inav_nav.WN_0 - tmp_obj->WN_0G_10), 64)));
DLOG(INFO) << "delta_t=" << delta_t << "[s]";
}
}
void galileo_telemetry_decoder_cc::decode_FNAV_word(double *page_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_FNAV_INTERLEAVER_ROWS, GALILEO_FNAV_INTERLEAVER_COLS, page_symbols, page_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180<38>
for (int32_t i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_symbols_deint[i] = -page_symbols_deint[i];
}
}
int32_t *page_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_symbols_deint, page_bits);
volk_gnsssdr_free(page_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
for (int32_t i = 0; i < frame_length; i++)
{
if (page_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
volk_gnsssdr_free(page_bits);
// DECODE COMPLETE WORD (even + odd) and TEST CRC
d_fnav_nav.split_page(page_String);
if (d_fnav_nav.flag_CRC_test == true)
{
LOG(INFO) << "Galileo E5a CRC correct in channel " << d_channel << " from satellite " << d_satellite;
}
else
{
LOG(INFO) << "Galileo E5a CRC error in channel " << d_channel << " from satellite " << d_satellite;
}
// 4. Push the new navigation data to the queues
if (d_fnav_nav.have_new_ephemeris() == true)
{
std::shared_ptr<Galileo_Ephemeris> tmp_obj = std::make_shared<Galileo_Ephemeris>(d_fnav_nav.get_ephemeris());
std::cout << TEXT_MAGENTA << "New Galileo E5a F/NAV message received in channel " << d_channel << ": ephemeris from satellite " << d_satellite << TEXT_RESET << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_fnav_nav.have_new_iono_and_GST() == true)
{
std::shared_ptr<Galileo_Iono> tmp_obj = std::make_shared<Galileo_Iono>(d_fnav_nav.get_iono());
std::cout << TEXT_MAGENTA << "New Galileo E5a F/NAV message received in channel " << d_channel << ": iono/GST model parameters from satellite " << d_satellite << TEXT_RESET << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
if (d_fnav_nav.have_new_utc_model() == true)
{
std::shared_ptr<Galileo_Utc_Model> tmp_obj = std::make_shared<Galileo_Utc_Model>(d_fnav_nav.get_utc_model());
std::cout << TEXT_MAGENTA << "New Galileo E5a F/NAV message received in channel " << d_channel << ": UTC model parameters from satellite " << d_satellite << TEXT_RESET << std::endl;
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
}
}
void galileo_telemetry_decoder_cc::set_satellite(const Gnss_Satellite &satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void galileo_telemetry_decoder_cc::set_channel(int32_t channel)
{
d_channel = channel;
LOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
int galileo_telemetry_decoder_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int32_t corr_value = 0;
int32_t preamble_diff = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output
current_symbol = in[0][0];
// add new symbol to the symbol queue
d_symbol_history.push_back(current_symbol.Prompt_I);
d_sample_counter++; // count for the processed samples
consume_each(1);
d_flag_preamble = false;
if (d_symbol_history.size() > d_required_symbols)
{
// TODO Optimize me!
// ******* preamble correlation ********
for (int32_t i = 0; i < d_samples_per_preamble; i++)
{
if (d_symbol_history.at(i) < 0.0) // symbols clipping
{
corr_value -= d_preamble_samples[i];
}
else
{
corr_value += d_preamble_samples[i];
}
}
}
// ******* frame sync ******************
switch (d_stat)
{
case 0: // no preamble information
{
if (abs(corr_value) >= d_samples_per_preamble)
{
d_preamble_index = d_sample_counter; // record the preamble sample stamp
LOG(INFO) << "Preamble detection for Galileo satellite " << this->d_satellite;
d_stat = 1; // enter into frame pre-detection status
}
break;
}
case 1: // possible preamble lock
{
if (abs(corr_value) >= d_samples_per_preamble)
{
// check preamble separation
preamble_diff = static_cast<int32_t>(d_sample_counter - d_preamble_index);
if (abs(preamble_diff - d_preamble_period_symbols) == 0)
{
// try to decode frame
LOG(INFO) << "Starting page decoder for Galileo satellite " << this->d_satellite;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
d_stat = 2;
}
else
{
if (preamble_diff > d_preamble_period_symbols)
{
d_stat = 0; // start again
}
}
}
break;
}
case 2: //preamble acquired
{
if (d_sample_counter == d_preamble_index + static_cast<uint64_t>(d_preamble_period_symbols))
{
// call the decoder
switch (d_frame_type)
{
case 1: //INAV
// NEW Galileo page part is received
// 0. fetch the symbols into an array
if (corr_value > 0) //normal PLL lock
{
for (uint32_t i = 0; i < d_frame_length_symbols; i++)
{
d_page_part_symbols[i] = d_symbol_history.at(i + d_samples_per_preamble); // because last symbol of the preamble is just received now!
}
}
else //180 deg. inverted carrier phase PLL lock
{
for (uint32_t i = 0; i < d_frame_length_symbols; i++)
{
d_page_part_symbols[i] = d_symbol_history.at(i + d_samples_per_preamble); // because last symbol of the preamble is just received now!
}
}
decode_INAV_word(d_page_part_symbols, d_frame_length_symbols);
break;
case 2: //FNAV
// NEW Galileo page part is received
// 0. fetch the symbols into an array
if (corr_value > 0) //normal PLL lock
{
int k = 0;
for (uint32_t i = 0; i < d_frame_length_symbols; i++)
{
d_page_part_symbols[i] = 0;
for (uint32_t m = 0; m < d_samples_per_symbol; m++)
{
d_page_part_symbols[i] += static_cast<float>(d_secondary_code_samples[k]) * d_symbol_history.at(i * d_samples_per_symbol + d_samples_per_preamble + m); // because last symbol of the preamble is just received now!
k++;
k = k % Galileo_E5a_I_SECONDARY_CODE_LENGTH;
}
}
}
else //180 deg. inverted carrier phase PLL lock
{
int k = 0;
for (uint32_t i = 0; i < d_frame_length_symbols; i++)
{
d_page_part_symbols[i] = 0;
for (uint32_t m = 0; m < d_samples_per_symbol; m++) //integrate samples into symbols
{
d_page_part_symbols[i] -= static_cast<float>(d_secondary_code_samples[k]) * d_symbol_history.at(i * d_samples_per_symbol + d_samples_per_preamble + m); // because last symbol of the preamble is just received now!
k++;
k = k % Galileo_E5a_I_SECONDARY_CODE_LENGTH;
}
}
}
decode_FNAV_word(d_page_part_symbols, d_frame_length_symbols);
break;
default:
return -1;
break;
}
if (d_inav_nav.flag_CRC_test == true or d_fnav_nav.flag_CRC_test == true)
{
d_CRC_error_counter = 0;
d_flag_preamble = true; // valid preamble indicator (initialized to false every work())
d_preamble_index = d_sample_counter; // record the preamble sample stamp (t_P)
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
DLOG(INFO) << " Frame sync SAT " << this->d_satellite;
}
}
else
{
d_CRC_error_counter++;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
if (d_CRC_error_counter > CRC_ERROR_LIMIT)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite;
d_flag_frame_sync = false;
d_stat = 0;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
d_fnav_nav.flag_TOW_set = false;
d_inav_nav.flag_TOW_set = false;
}
}
}
break;
}
}
// UPDATE GNSS SYNCHRO DATA
// 2. Add the telemetry decoder information
if (this->d_flag_preamble == true)
// update TOW at the preamble instant
{
switch (d_frame_type)
{
case 1: //INAV
{
if (d_inav_nav.flag_TOW_set == true)
{
if (d_inav_nav.flag_TOW_5 == true) // page 5 arrived and decoded, so we are in the odd page (since Tow refers to the even page, we have to add 1 sec)
{
// TOW_5 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later plus the decoding delay
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_inav_nav.TOW_5 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>(GALILEO_INAV_PAGE_PART_MS + (d_required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS);
d_inav_nav.flag_TOW_5 = false;
}
else if (d_inav_nav.flag_TOW_6 == true) // page 6 arrived and decoded, so we are in the odd page (since Tow refers to the even page, we have to add 1 sec)
{
// TOW_6 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later plus the decoding delay
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_inav_nav.TOW_6 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>(GALILEO_INAV_PAGE_PART_MS + (d_required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS);
d_inav_nav.flag_TOW_6 = false;
}
else
{
// this page has no timing information
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E1_CODE_PERIOD_MS); // + GALILEO_INAV_PAGE_PART_SYMBOLS*GALILEO_E1_CODE_PERIOD;
}
}
break;
}
case 2: //FNAV
{
if (d_fnav_nav.flag_TOW_set == true)
{
if (d_fnav_nav.flag_TOW_1 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_fnav_nav.FNAV_TOW_1 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((d_required_symbols + 1) * GALILEO_E5a_CODE_PERIOD_MS);
//d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_fnav_nav.flag_TOW_1 = false;
}
else if (d_fnav_nav.flag_TOW_2 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_fnav_nav.FNAV_TOW_2 * 1000.0);
//d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((d_required_symbols + 1) * GALILEO_E5a_CODE_PERIOD_MS);
d_fnav_nav.flag_TOW_2 = false;
}
else if (d_fnav_nav.flag_TOW_3 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_fnav_nav.FNAV_TOW_3 * 1000.0);
//d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((d_required_symbols + 1) * GALILEO_E5a_CODE_PERIOD_MS);
d_fnav_nav.flag_TOW_3 = false;
}
else if (d_fnav_nav.flag_TOW_4 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_fnav_nav.FNAV_TOW_4 * 1000.0);
//d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((d_required_symbols + 1) * GALILEO_E5a_CODE_PERIOD_MS);
d_fnav_nav.flag_TOW_4 = false;
}
else
{
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E5a_CODE_PERIOD_MS);
}
break;
}
}
}
}
else // if there is not a new preamble, we define the TOW of the current symbol
{
switch (d_frame_type)
{
case 1: //INAV
{
if (d_inav_nav.flag_TOW_set == true)
{
d_TOW_at_current_symbol_ms += d_PRN_code_period_ms;
}
break;
}
case 2: //FNAV
{
if (d_fnav_nav.flag_TOW_set == true)
{
d_TOW_at_current_symbol_ms += d_PRN_code_period_ms;
}
break;
}
}
}
// remove used symbols from history
// todo: Use circular buffer here
if (d_symbol_history.size() > d_required_symbols)
{
d_symbol_history.pop_front();
}
switch (d_frame_type)
{
case 1: //INAV
{
if (d_inav_nav.flag_TOW_set)
{
if (d_inav_nav.flag_GGTO_1 == true and d_inav_nav.flag_GGTO_2 == true and d_inav_nav.flag_GGTO_3 == true and d_inav_nav.flag_GGTO_4 == true) // all GGTO parameters arrived
{
delta_t = d_inav_nav.A_0G_10 + d_inav_nav.A_1G_10 * (static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0 - d_inav_nav.t_0G_10 + 604800.0 * (fmod((d_inav_nav.WN_0 - d_inav_nav.WN_0G_10), 64.0)));
}
current_symbol.Flag_valid_word = true;
}
break;
}
case 2: //FNAV
{
if (d_fnav_nav.flag_TOW_set)
{
current_symbol.Flag_valid_word = true;
}
break;
}
}
if (d_inav_nav.flag_TOW_set or d_fnav_nav.flag_TOW_set)
{
current_symbol.TOW_at_current_symbol_ms = d_TOW_at_current_symbol_ms;
// todo: Galileo to GPS time conversion should be moved to observable block.
// current_symbol.TOW_at_current_symbol_ms -= delta_t; //Galileo to GPS TOW
if (d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
uint64_t tmp_ulong_int;
tmp_double = static_cast<double>(d_TOW_at_current_symbol_ms) / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_ulong_int = current_symbol.Tracking_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&tmp_ulong_int), sizeof(uint64_t));
tmp_double = static_cast<double>(d_TOW_at_Preamble_ms) / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
// 3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_symbol;
return 1;
}
else
{
return 0;
}
}

View File

@ -1,8 +1,7 @@
/*!
* \file galileo_e1b_telemetry_decoder_cc.h
* \brief Interface of a Galileo INAV message demodulator block
* \author Javier Arribas 2013 jarribas(at)cttc.es,
* Mara Branzanti 2013 mara.branzanti(at)gmail.com
* \file galileo_telemetry_decoder_cc.h
* \brief Implementation of a Galileo unified INAV and FNAV message demodulator block
* \author Javier Arribas 2018. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
@ -29,12 +28,15 @@
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E1B_TELEMETRY_DECODER_CC_H
#define GNSS_SDR_GALILEO_E1B_TELEMETRY_DECODER_CC_H
#ifndef GNSS_SDR_galileo_telemetry_decoder_cc_H
#define GNSS_SDR_galileo_telemetry_decoder_cc_H
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
#include "galileo_navigation_message.h"
#include "galileo_fnav_message.h"
#include "galileo_ephemeris.h"
#include "galileo_almanac.h"
#include "galileo_iono.h"
@ -46,20 +48,20 @@
#include <string>
class galileo_e1b_telemetry_decoder_cc;
class galileo_telemetry_decoder_cc;
typedef boost::shared_ptr<galileo_e1b_telemetry_decoder_cc> galileo_e1b_telemetry_decoder_cc_sptr;
typedef boost::shared_ptr<galileo_telemetry_decoder_cc> galileo_telemetry_decoder_cc_sptr;
galileo_e1b_telemetry_decoder_cc_sptr galileo_e1b_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
galileo_telemetry_decoder_cc_sptr galileo_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, int frame_type, bool dump);
/*!
* \brief This class implements a block that decodes the INAV data defined in Galileo ICD
* \brief This class implements a block that decodes the INAV and FNAV data defined in Galileo ICD
*
*/
class galileo_e1b_telemetry_decoder_cc : public gr::block
class galileo_telemetry_decoder_cc : public gr::block
{
public:
~galileo_e1b_telemetry_decoder_cc();
~galileo_telemetry_decoder_cc();
void set_satellite(const Gnss_Satellite &satellite); //!< Set satellite PRN
void set_channel(int32_t channel); //!< Set receiver's channel
int32_t flag_even_word_arrived;
@ -71,23 +73,30 @@ public:
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
private:
friend galileo_e1b_telemetry_decoder_cc_sptr
galileo_e1b_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
galileo_e1b_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
friend galileo_telemetry_decoder_cc_sptr
galileo_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, int frame_type, bool dump);
galileo_telemetry_decoder_cc(const Gnss_Satellite &satellite, int frame_type, bool dump);
void viterbi_decoder(double *page_part_symbols, int32_t *page_part_bits);
void deinterleaver(int32_t rows, int32_t cols, double *in, double *out);
void decode_word(double *symbols, int32_t frame_length);
void decode_INAV_word(double *symbols, int32_t frame_length);
void decode_FNAV_word(double *page_symbols, int32_t frame_length);
uint16_t d_preambles_bits[GALILEO_INAV_PREAMBLE_LENGTH_BITS];
int32_t *d_preambles_symbols;
int d_frame_type;
int32_t d_bits_per_preamble;
int32_t d_samples_per_preamble;
int32_t d_preamble_period_symbols;
int32_t *d_preamble_samples;
int32_t *d_secondary_code_samples;
uint32_t d_samples_per_symbol;
int32_t d_symbols_per_preamble;
uint32_t d_PRN_code_period_ms;
uint32_t d_required_symbols;
uint32_t d_frame_length_symbols;
double *d_page_part_symbols;
std::deque<Gnss_Synchro> d_symbol_history;
std::deque<float> d_symbol_history;
uint64_t d_sample_counter;
uint64_t d_preamble_index;
@ -99,7 +108,8 @@ private:
int32_t d_CRC_error_counter;
// navigation message vars
Galileo_Navigation_Message d_nav;
Galileo_Navigation_Message d_inav_nav;
Galileo_Fnav_Message d_fnav_nav;
bool d_dump;
Gnss_Satellite d_satellite;
@ -120,8 +130,8 @@ private:
const int32_t nn = 2; // Coding rate 1/n
const int32_t KK = 7; // Constraint Length
int32_t mm = KK - 1;
const int32_t CodeLength = 240;
int32_t DataLength = (CodeLength / nn) - mm;
int32_t CodeLength;
int32_t DataLength;
};
#endif

View File

@ -110,7 +110,7 @@ GpsL5DllPllTracking::GpsL5DllPllTracking(
int max_lock_fail = configuration->property(role + ".max_lock_fail", 50);
if (FLAGS_max_lock_fail != 50) max_lock_fail = FLAGS_max_lock_fail;
trk_param.max_lock_fail = max_lock_fail;
double carrier_lock_th = configuration->property(role + ".carrier_lock_th", 0.85);
double carrier_lock_th = configuration->property(role + ".carrier_lock_th", 0.75);
if (FLAGS_carrier_lock_th != 0.85) carrier_lock_th = FLAGS_carrier_lock_th;
trk_param.carrier_lock_th = carrier_lock_th;

View File

@ -238,17 +238,18 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(const Dll_Pll_Conf &conf_) : gr::bl
d_correlation_length_ms = 1;
d_code_samples_per_chip = 1;
d_code_length_chips = static_cast<uint32_t>(Galileo_E5a_CODE_LENGTH_CHIPS);
d_secondary = true;
if (trk_parameters.track_pilot)
{
d_secondary = true;
d_secondary_code_length = static_cast<uint32_t>(Galileo_E5a_Q_SECONDARY_CODE_LENGTH);
signal_pretty_name = signal_pretty_name + "Q";
interchange_iq = true;
}
else
{
d_secondary_code_length = static_cast<uint32_t>(Galileo_E5a_I_SECONDARY_CODE_LENGTH);
d_secondary_code_string = const_cast<std::string *>(&Galileo_E5a_I_SECONDARY_CODE);
//Do not acquire secondary code in data component. It is done in telemetry decoder
d_secondary = false;
signal_pretty_name = signal_pretty_name + "I";
interchange_iq = false;
}
@ -362,7 +363,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(const Dll_Pll_Conf &conf_) : gr::bl
}
// --- Initializations ---
multicorrelator_cpu.set_fast_resampler(trk_parameters.use_fast_resampler);
multicorrelator_cpu.set_high_dynamics_resampler(trk_parameters.use_high_dynamics_resampler);
// Initial code frequency basis of NCO
d_code_freq_chips = d_code_chip_rate;
// Residual code phase (in chips)
@ -497,7 +498,7 @@ void dll_pll_veml_tracking::start_tracking()
for (uint32_t i = 0; i < d_code_length_chips; i++)
{
d_tracking_code[i] = aux_code[i].imag();
d_data_code[i] = aux_code[i].real();
d_data_code[i] = aux_code[i].real(); //the same because it is generated the full signal (E5aI + E5aQ)
}
d_Prompt_Data[0] = gr_complex(0.0, 0.0);
correlator_data_cpu.set_local_code_and_taps(d_code_length_chips, d_data_code, d_prompt_data_shift);

View File

@ -1,6 +1,6 @@
/*!
* \file cpu_multicorrelator_real_codes.cc
* \brief High optimized CPU vector multiTAP correlator class with real-valued local codes
* \brief Highly optimized CPU vector multiTAP correlator class with real-valued local codes
* \authors <ul>
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* <li> Cillian O'Driscoll, 2017. cillian.odriscoll(at)gmail.com
@ -46,7 +46,7 @@ cpu_multicorrelator_real_codes::cpu_multicorrelator_real_codes()
d_local_codes_resampled = nullptr;
d_code_length_chips = 0;
d_n_correlators = 0;
d_use_fast_resampler = true;
d_use_high_dynamics_resampler = true;
}
@ -100,9 +100,9 @@ bool cpu_multicorrelator_real_codes::set_input_output_vectors(std::complex<float
void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips)
{
if (d_use_fast_resampler)
if (d_use_high_dynamics_resampler)
{
volk_gnsssdr_32f_xn_fast_resampler_32f_xn(d_local_codes_resampled,
volk_gnsssdr_32f_xn_high_dynamics_resampler_32f_xn(d_local_codes_resampled,
d_local_code_in,
rem_code_phase_chips,
code_phase_step_chips,
@ -159,8 +159,9 @@ bool cpu_multicorrelator_real_codes::free()
return true;
}
void cpu_multicorrelator_real_codes::set_fast_resampler(
bool use_fast_resampler)
void cpu_multicorrelator_real_codes::set_high_dynamics_resampler(
bool use_high_dynamics_resampler)
{
d_use_fast_resampler = use_fast_resampler;
d_use_high_dynamics_resampler = use_high_dynamics_resampler;
}

View File

@ -1,6 +1,6 @@
/*!
* \file cpu_multicorrelator_real_codes.h
* \brief High optimized CPU vector multiTAP correlator class using real-valued local codes
* \brief Highly optimized CPU vector multiTAP correlator class using real-valued local codes
* \authors <ul>
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* <li> Cillian O'Driscoll, 2017, cillian.odriscoll(at)gmail.com
@ -46,7 +46,7 @@ class cpu_multicorrelator_real_codes
{
public:
cpu_multicorrelator_real_codes();
void set_fast_resampler(bool use_fast_resampler);
void set_high_dynamics_resampler(bool use_high_dynamics_resampler);
~cpu_multicorrelator_real_codes();
bool init(int max_signal_length_samples, int n_correlators);
bool set_local_code_and_taps(int code_length_chips, const float *local_code_in, float *shifts_chips);
@ -62,7 +62,7 @@ private:
const float *d_local_code_in;
std::complex<float> *d_corr_out;
float *d_shifts_chips;
bool d_use_fast_resampler;
bool d_use_high_dynamics_resampler;
int d_code_length_chips;
int d_n_correlators;
};

View File

@ -36,7 +36,7 @@
Dll_Pll_Conf::Dll_Pll_Conf()
{
/* DLL/PLL tracking configuration */
use_fast_resampler = true;
use_high_dynamics_resampler = true;
fs_in = 0.0;
vector_length = 0U;
dump = false;

View File

@ -56,7 +56,7 @@ public:
float early_late_space_narrow_chips;
float very_early_late_space_narrow_chips;
int32_t extend_correlation_symbols;
bool use_fast_resampler;
bool use_high_dynamics_resampler;
int32_t cn0_samples;
int32_t carrier_lock_det_mav_samples;
int32_t cn0_min;

View File

@ -1,6 +1,9 @@
/*!
* \file gnss_synchro_monitor.cc
* \brief Interface of a Position Velocity and Time computation block
* \brief Implementation of a receiver monitoring block which allows sending
* a data stream with the receiver internal parameters (Gnss_Synchro objects)
* to local or remote clients over UDP.
*
* \author Álvaro Cebrián Juan, 2018. acebrianjuan(at)gmail.com
*
* -------------------------------------------------------------------------
@ -61,6 +64,8 @@ gnss_synchro_monitor::gnss_synchro_monitor(unsigned int n_channels,
d_nchannels = n_channels;
udp_sink_ptr = std::unique_ptr<Gnss_Synchro_Udp_Sink>(new Gnss_Synchro_Udp_Sink(udp_addresses, udp_port));
count = 0;
}
@ -75,17 +80,16 @@ int gnss_synchro_monitor::work(int noutput_items, gr_vector_const_void_star& inp
const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
for (int epoch = 0; epoch < noutput_items; epoch++)
{
// ############ 1. READ PSEUDORANGES ####
for (unsigned int i = 0; i < d_nchannels; i++)
count++;
if (count >= d_output_rate_ms)
{
//if (in[i][epoch].Flag_valid_pseudorange)
// {
// }
//todo: send the gnss_synchro objects
std::vector<Gnss_Synchro> stocks;
stocks.push_back(in[i][epoch]);
udp_sink_ptr->write_gnss_synchro(stocks);
for (unsigned int i = 0; i < d_nchannels; i++)
{
std::vector<Gnss_Synchro> stocks;
stocks.push_back(in[i][epoch]);
udp_sink_ptr->write_gnss_synchro(stocks);
}
count = 0;
}
}
return noutput_items;

View File

@ -1,6 +1,9 @@
/*!
* \file gnss_synchro_monitor.h
* \brief Interface of a Position Velocity and Time computation block
* \brief Interface of a receiver monitoring block which allows sending
* a data stream with the receiver internal parameters (Gnss_Synchro objects)
* to local or remote clients over UDP.
*
* \author Álvaro Cebrián Juan, 2018. acebrianjuan(at)gmail.com
*
* -------------------------------------------------------------------------
@ -65,6 +68,8 @@ private:
std::unique_ptr<Gnss_Synchro_Udp_Sink> udp_sink_ptr;
int count;
public:
gnss_synchro_monitor(unsigned int nchannels,

View File

@ -59,6 +59,7 @@ const double Galileo_E1_SUB_CARRIER_A_RATE_HZ = 1.023e6; //!< Galileo E1 sub-ca
const double Galileo_E1_SUB_CARRIER_B_RATE_HZ = 6.138e6; //!< Galileo E1 sub-carrier 'b' rate [Hz]
const double Galileo_E1_B_CODE_LENGTH_CHIPS = 4092.0; //!< Galileo E1-B code length [chips]
const double Galileo_E1_B_SYMBOL_RATE_BPS = 250.0; //!< Galileo E1-B symbol rate [bits/second]
const int32_t Galileo_E1_B_SAMPLES_PER_SYMBOL = 1; //!< (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS) / Galileo_E1_B_SYMBOL_RATE_BPS
const int32_t Galileo_E1_C_SECONDARY_CODE_LENGTH = 25; //!< Galileo E1-C secondary code length [chips]
const int32_t Galileo_E1_NUMBER_OF_CODES = 50;
@ -70,10 +71,7 @@ const int32_t GALILEO_E1_HISTORY_DEEP = 100;
// Galileo INAV Telemetry structure
#define GALILEO_INAV_PREAMBLE \
{ \
0, 1, 0, 1, 1, 0, 0, 0, 0, 0 \
}
const std::string GALILEO_INAV_PREAMBLE = {"0101100000"};
const int32_t GALILEO_INAV_PREAMBLE_LENGTH_BITS = 10;
const double GALILEO_INAV_PAGE_PART_WITH_PREABLE_SECONDS = 2.0 + GALILEO_INAV_PREAMBLE_LENGTH_BITS * Galileo_E1_CODE_PERIOD;

View File

@ -35,7 +35,7 @@
#include <limits>
DEFINE_double(skip_obs_transitory_s, 30.0, "Skip the initial observable outputs to avoid transitory results [s]");
DEFINE_bool(compute_single_diffs, false, "Compute also the signel difference errors for Accumulated Carrier Phase and Carrier Doppler (requires LO synchronization between receivers)");
DEFINE_bool(compute_single_diffs, false, "Compute also the single difference errors for Accumulated Carrier Phase and Carrier Doppler (requires LO synchronization between receivers)");
DEFINE_bool(compare_with_5X, false, "Compare the E5a Doppler and Carrier Phases with the E5 full bw in RINEX (expect discrepancy due to the center frequencies differences");
#endif

View File

@ -158,6 +158,7 @@ DECLARE_string(log_dir);
#include "unit-tests/signal-processing-blocks/observables/hybrid_observables_test.cc"
#endif
#include "unit-tests/signal-processing-blocks/telemetry_decoder/galileo_fnav_inav_decoder_test.cc"
#include "unit-tests/system-parameters/glonass_gnav_ephemeris_test.cc"
#include "unit-tests/system-parameters/glonass_gnav_nav_message_test.cc"

View File

@ -64,7 +64,7 @@ DEFINE_int32(acq_test_second_doppler_step, 10, "If --acq_test_make_two_steps is
DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration, in s");
DEFINE_int32(acq_test_num_meas, 0, "Number of measurements per run. 0 means the complete file.");
DEFINE_double(acq_test_cn0_init, 33.0, "Initial CN0, in dBHz.");
DEFINE_double(acq_test_cn0_init, 30.0, "Initial CN0, in dBHz.");
DEFINE_double(acq_test_cn0_final, 45.0, "Final CN0, in dBHz.");
DEFINE_double(acq_test_cn0_step, 3.0, "CN0 step, in dB.");

View File

@ -53,7 +53,6 @@
#include "telemetry_decoder_interface.h"
#include "in_memory_configuration.h"
#include "gnss_synchro.h"
#include "gps_l1_ca_telemetry_decoder.h"
#include "tracking_true_obs_reader.h"
#include "true_observables_reader.h"
#include "tracking_dump_reader.h"
@ -326,7 +325,8 @@ bool HybridObservablesTest::acquire_signal()
{
tmp_gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L1 CA";
config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
@ -337,7 +337,8 @@ bool HybridObservablesTest::acquire_signal()
{
tmp_gnss_synchro.System = 'E';
std::string signal = "1B";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E1B";
config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
@ -347,7 +348,8 @@ bool HybridObservablesTest::acquire_signal()
{
tmp_gnss_synchro.System = 'G';
std::string signal = "2S";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L2CM";
config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
@ -357,7 +359,8 @@ bool HybridObservablesTest::acquire_signal()
{
tmp_gnss_synchro.System = 'E';
std::string signal = "5X";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E5a";
config->set_property("Acquisition_5X.coherent_integration_time_ms", "1");
@ -372,7 +375,8 @@ bool HybridObservablesTest::acquire_signal()
{
tmp_gnss_synchro.System = 'E';
std::string signal = "5X";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E5a";
config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
@ -382,7 +386,8 @@ bool HybridObservablesTest::acquire_signal()
{
tmp_gnss_synchro.System = 'G';
std::string signal = "L5";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L5I";
config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
@ -579,7 +584,7 @@ void HybridObservablesTest::configure_receiver(
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "false");
config->set_property("Tracking.track_pilot", "true");
config->set_property("TelemetryDecoder.implementation", "GPS_L2C_Telemetry_Decoder");
}
@ -596,7 +601,7 @@ void HybridObservablesTest::configure_receiver(
config->supersede_property("Tracking.implementation", std::string("Galileo_E5a_DLL_PLL_Tracking"));
}
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "false");
config->set_property("Tracking.track_pilot", "true");
config->set_property("Tracking.order", "2");
config->set_property("TelemetryDecoder.implementation", "Galileo_E5a_Telemetry_Decoder");
@ -610,7 +615,7 @@ void HybridObservablesTest::configure_receiver(
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "false");
config->set_property("Tracking.track_pilot", "true");
config->set_property("Tracking.order", "2");
config->set_property("TelemetryDecoder.implementation", "GPS_L5_Telemetry_Decoder");
@ -888,9 +893,9 @@ void HybridObservablesTest::check_results_carrier_doppler_double_diff(
ASSERT_LT(error_mean, 5);
ASSERT_GT(error_mean, -5);
//assuming PLL BW=35
ASSERT_LT(error_var, 200);
ASSERT_LT(max_error, 70);
ASSERT_GT(min_error, -70);
ASSERT_LT(error_var, 250);
ASSERT_LT(max_error, 100);
ASSERT_GT(min_error, -100);
ASSERT_LT(rmse, 30);
}
@ -967,9 +972,9 @@ void HybridObservablesTest::check_results_carrier_doppler(
ASSERT_LT(error_mean_ch0, 5);
ASSERT_GT(error_mean_ch0, -5);
//assuming PLL BW=35
ASSERT_LT(error_var_ch0, 200);
ASSERT_LT(max_error_ch0, 70);
ASSERT_GT(min_error_ch0, -70);
ASSERT_LT(error_var_ch0, 250);
ASSERT_LT(max_error_ch0, 100);
ASSERT_GT(min_error_ch0, -100);
ASSERT_LT(rmse_ch0, 30);
}
@ -1195,7 +1200,7 @@ bool HybridObservablesTest::ReadRinexObs(std::vector<arma::mat>* obs_vec, Gnss_S
dataobj = r_ref_data.getObs(prn, "L5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("5X\0", gnss.Signal) == 0) //Simulator gives RINEX with E5a+E5b
else if (strcmp("5X\0", gnss.Signal) == 0) //Simulator gives RINEX with E5a+E5b. Doppler and accumulated Carrier phase WILL differ
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C8I", r_ref_header);
@ -1579,8 +1584,8 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
}
arma::vec receiver_time_offset_ref_channel_s;
receiver_time_offset_ref_channel_s = true_obs_vec.at(min_pr_ch_id).col(1) / GPS_C_m_s - GPS_STARTOFFSET_ms / 1000.0;
std::cout << "Ref channel initial Receiver time offset " << receiver_time_offset_ref_channel_s(0) * 1e3 << " [ms]" << std::endl;
receiver_time_offset_ref_channel_s = (true_obs_vec.at(min_pr_ch_id).col(1)(0) - measured_obs_vec.at(min_pr_ch_id).col(4)(0)) / GPS_C_m_s;
std::cout << "Ref. channel initial Receiver time offset " << receiver_time_offset_ref_channel_s(0) * 1e3 << " [ms]" << std::endl;
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
@ -1624,21 +1629,28 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_phase_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_doppler_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
//Do not compare E5a with E5 RINEX due to the Doppler frequency discrepancy caused by the different center frequencies
//E5a_fc=1176.45e6, E5b_fc=1207.14e6, E5_fc=1191.795e6;
std::cout << "s:" << gnss_synchro_vec.at(n).Signal << std::endl;
if (strcmp("5X\0", gnss_synchro_vec.at(n).Signal) != 0 or FLAGS_compare_with_5X)
{
check_results_carrier_phase_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_doppler_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
}
}
else
{

View File

@ -0,0 +1,288 @@
/*!
* \file galileo_fnav_inav_decoder_test.cc
* \brief This class implements the unit test for the Galileo FNAV and INAV frames
* according to the Galileo ICD
* \author Javier Arribas, 2018. jarribas(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_navigation_message.h"
#include "galileo_fnav_message.h"
#include "convolutional.h"
#include <unistd.h>
#include <chrono>
#include <exception>
#include <string>
#include <armadillo>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <gtest/gtest.h>
class Galileo_FNAV_INAV_test : public ::testing::Test
{
public:
Galileo_Navigation_Message INAV_decoder;
Galileo_Fnav_Message FNAV_decoder;
// vars for Viterbi decoder
int32_t *out0, *out1, *state0, *state1;
int32_t g_encoder[2];
const int32_t nn = 2; // Coding rate 1/n
const int32_t KK = 7; // Constraint Length
int32_t mm = KK - 1;
int32_t flag_even_word_arrived;
void viterbi_decoder(double *page_part_symbols, int32_t *page_part_bits, int32_t _datalength)
{
Viterbi(page_part_bits, out0, state0, out1, state1,
page_part_symbols, KK, nn, _datalength);
}
void deinterleaver(int32_t rows, int32_t cols, double *in, double *out)
{
for (int32_t r = 0; r < rows; r++)
{
for (int32_t c = 0; c < cols; c++)
{
out[c * rows + r] = in[r * cols + c];
}
}
}
bool decode_INAV_word(double *page_part_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_part_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_INAV_INTERLEAVER_ROWS, GALILEO_INAV_INTERLEAVER_COLS, page_part_symbols, page_part_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180º
for (int32_t i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_part_symbols_deint[i] = -page_part_symbols_deint[i];
}
}
int32_t *page_part_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
const int32_t CodeLength = 240;
int32_t DataLength = (CodeLength / nn) - mm;
viterbi_decoder(page_part_symbols_deint, page_part_bits, DataLength);
volk_gnsssdr_free(page_part_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
for (int32_t i = 0; i < (frame_length / 2); i++)
{
if (page_part_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
bool crc_ok = false;
if (page_part_bits[0] == 1)
{
// DECODE COMPLETE WORD (even + odd) and TEST CRC
INAV_decoder.split_page(page_String, flag_even_word_arrived);
if (INAV_decoder.flag_CRC_test == true)
{
std::cout << "Galileo E1 INAV PAGE CRC correct \n";
//std::cout << "Galileo E1 CRC correct on channel " << d_channel << " from satellite " << d_satellite << std::endl;
crc_ok = true;
}
flag_even_word_arrived = 0;
}
else
{
// STORE HALF WORD (even page)
INAV_decoder.split_page(page_String.c_str(), flag_even_word_arrived);
flag_even_word_arrived = 1;
}
volk_gnsssdr_free(page_part_bits);
return crc_ok;
}
bool decode_FNAV_word(double *page_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_FNAV_INTERLEAVER_ROWS, GALILEO_FNAV_INTERLEAVER_COLS, page_symbols, page_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180
for (int32_t i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_symbols_deint[i] = -page_symbols_deint[i];
}
}
int32_t *page_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
const int32_t CodeLength = 488;
int32_t DataLength = (CodeLength / nn) - mm;
viterbi_decoder(page_symbols_deint, page_bits, DataLength);
volk_gnsssdr_free(page_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
for (int32_t i = 0; i < frame_length; i++)
{
if (page_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
volk_gnsssdr_free(page_bits);
// DECODE COMPLETE WORD (even + odd) and TEST CRC
FNAV_decoder.split_page(page_String);
if (FNAV_decoder.flag_CRC_test == true)
{
std::cout << "Galileo E5a FNAV PAGE CRC correct \n";
return true;
}
else
{
return false;
}
}
Galileo_FNAV_INAV_test()
{
// vars for Viterbi decoder
int32_t max_states = 1 << mm; // 2^mm
g_encoder[0] = 121; // Polynomial G1
g_encoder[1] = 91; // Polynomial G2
out0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
out1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state0 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
state1 = static_cast<int32_t *>(volk_gnsssdr_malloc(max_states * sizeof(int32_t), volk_gnsssdr_get_alignment()));
// create appropriate transition matrices
nsc_transit(out0, state0, 0, g_encoder, KK, nn);
nsc_transit(out1, state1, 1, g_encoder, KK, nn);
flag_even_word_arrived = 0;
}
~Galileo_FNAV_INAV_test()
{
volk_gnsssdr_free(out0);
volk_gnsssdr_free(out1);
volk_gnsssdr_free(state0);
volk_gnsssdr_free(state1);
}
};
TEST_F(Galileo_FNAV_INAV_test, ValidationOfResults)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
int repetitions = 10;
// FNAV FULLY ENCODED FRAME
double FNAV_frame[488] = {-1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
-1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1,
-1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
-1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1,
-1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1,
-1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1,
-1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1,
1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1,
-1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1,
1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1,
-1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1,
1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1,
1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1};
ASSERT_NO_THROW({
for (int n = 0; n < repetitions; n++)
{
EXPECT_EQ(decode_FNAV_word(&FNAV_frame[0], 488), true);
}
}) << "Exception during FNAV frame decoding";
// INAV FULLY ENCODED FRAME
double INAV_frame_even[240] = {-1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1,
-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1,
1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1,
-1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1};
double INAV_frame_odd[240] = {1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1,
1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1,
-1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1,
1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1,
-1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1,
1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1,
1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1,
-1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1,
-1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1};
ASSERT_NO_THROW({
for (int n = 0; n < repetitions; n++)
{
decode_INAV_word(&INAV_frame_even[0], 240);
EXPECT_EQ(decode_INAV_word(&INAV_frame_odd[0], 240), true);
}
}) << "Exception during INAV frame decoding";
std::cout << "Galileo FNAV/INAV Test completed in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}