1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-10-31 07:13:03 +00:00

Updated CUDA kernels and several GPU tracking optimizations.

Bug fix in GPS_L1_CA_DLL_PLL binary dump
This commit is contained in:
Javier Arribas
2015-08-06 17:05:15 +02:00
parent 26cf90cdd4
commit 1aa84cd1c4
18 changed files with 450 additions and 155 deletions

View File

@@ -18,6 +18,7 @@
if(ENABLE_CUDA)
FIND_PACKAGE(CUDA REQUIRED)
set(OPT_TRACKING_ADAPTERS ${OPT_TRACKING_ADAPTERS} gps_l1_ca_dll_pll_tracking_gpu.cc)
endif(ENABLE_CUDA)
set(TRACKING_ADAPTER_SOURCES
@@ -30,7 +31,7 @@ set(TRACKING_ADAPTER_SOURCES
gps_l1_ca_tcp_connector_tracking.cc
galileo_e5a_dll_pll_tracking.cc
gps_l2_m_dll_pll_tracking.cc
gps_l1_ca_dll_pll_tracking_gpu.cc
${OPT_TRACKING_ADAPTERS}
)
include_directories(

View File

@@ -19,6 +19,7 @@
if(ENABLE_CUDA)
FIND_PACKAGE(CUDA REQUIRED)
set(OPT_TRACKING_BLOCKS ${OPT_TRACKING_BLOCKS} gps_l1_ca_dll_pll_tracking_gpu_cc.cc)
endif(ENABLE_CUDA)
set(TRACKING_GR_BLOCKS_SOURCES
@@ -31,7 +32,7 @@ set(TRACKING_GR_BLOCKS_SOURCES
gps_l1_ca_tcp_connector_tracking_cc.cc
galileo_e5a_dll_pll_tracking_cc.cc
gps_l2_m_dll_pll_tracking_cc.cc
gps_l1_ca_dll_pll_tracking_gpu_cc.cc
${OPT_TRACKING_BLOCKS}
)
include_directories(

View File

@@ -594,7 +594,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
tmp_float=d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));

View File

@@ -81,7 +81,6 @@ gps_l1_ca_dll_pll_make_tracking_gpu_cc(
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required)
{
@@ -120,14 +119,19 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment()));
//d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment()));
d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
multicorrelator_gpu = new cuda_multicorrelator();
int N_CORRELATORS=3;
multicorrelator_gpu->init_cuda(0, NULL, 2 * d_vector_length , 2 * d_vector_length , N_CORRELATORS);
//local code resampler on CPU (old)
//multicorrelator_gpu->init_cuda(0, NULL, 2 * d_vector_length , 2 * d_vector_length , N_CORRELATORS);
//local code resampler on GPU (new)
multicorrelator_gpu->init_cuda_integrated_resampler(0, NULL, 2 * d_vector_length , GPS_L1_CA_CODE_LENGTH_CHIPS , N_CORRELATORS);
// Get space for the resampled early / prompt / late local replicas
checkCudaErrors(cudaHostAlloc((void**)&d_local_code_shift_samples, N_CORRELATORS * sizeof(int), cudaHostAllocMapped ));
checkCudaErrors(cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped ));
//allocate host memory
@@ -138,7 +142,7 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
//checkCudaErrors(cudaHostAlloc((void**)&d_local_codes_gpu, (V_LEN * sizeof(gr_complex))*N_CORRELATORS, cudaHostAllocWriteCombined ));
//new integrated shifts
checkCudaErrors(cudaHostAlloc((void**)&d_local_codes_gpu, (2 * d_vector_length * sizeof(gr_complex)), cudaHostAllocWriteCombined ));
//checkCudaErrors(cudaHostAlloc((void**)&d_local_codes_gpu, (2 * d_vector_length * sizeof(gr_complex)), cudaHostAllocWriteCombined ));
// correlator outputs (scalar)
checkCudaErrors(cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocWriteCombined ));
@@ -242,9 +246,13 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(&d_ca_code[1], d_acquisition_gnss_synchro->PRN, 0);
d_ca_code[0] = d_ca_code[static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS)];
d_ca_code[static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) + 1] = d_ca_code[1];
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
d_local_code_shift_chips[0]=-d_early_late_spc_chips;
d_local_code_shift_chips[1]=0.0;
d_local_code_shift_chips[2]=d_early_late_spc_chips;
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS,d_ca_code, d_local_code_shift_chips,3);
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
@@ -272,40 +280,6 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
}
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::update_local_code()
{
double tcode_chips;
double rem_code_phase_chips;
int associated_chip_index;
int code_length_chips = static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS);
double code_phase_step_chips;
int epl_loop_length_samples;
// unified loop for E, P, L code vectors
code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
tcode_chips = -rem_code_phase_chips;
// Alternative EPL code generation (40% of speed improvement!)
d_local_code_shift_samples[0]=0;
d_local_code_shift_samples[1]=round(d_early_late_spc_chips / code_phase_step_chips);
d_local_code_shift_samples[2]=round((2*d_early_late_spc_chips) / code_phase_step_chips);
epl_loop_length_samples = d_current_prn_length_samples + d_local_code_shift_samples[2]; //maximum length
for (int i = 0; i < epl_loop_length_samples; i++)
{
associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
d_local_codes_gpu[i] = d_ca_code[associated_chip_index];
tcode_chips = tcode_chips + code_phase_step_chips;
}
}
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
{
d_dump_file.close();
@@ -313,7 +287,7 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
cudaFreeHost(in_gpu);
cudaFreeHost(d_carr_sign_gpu);
cudaFreeHost(d_corr_outs_gpu);
cudaFreeHost(d_local_codes_gpu);
cudaFreeHost(d_local_code_shift_chips);
multicorrelator_gpu->free_cuda();
delete(multicorrelator_gpu);
@@ -329,10 +303,10 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
float carr_error_hz=0.0;
float carr_error_filt_hz=0.0;
float code_error_chips=0.0;
float code_error_filt_chips=0.0;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0];
@@ -341,23 +315,17 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
if (d_enable_tracking == true)
{
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
samples_offset = round(d_acq_code_phase_samples)+d_current_prn_length_samples - acq_to_trk_delay_samples%d_current_prn_length_samples;
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
*out[0] = current_synchro_data;
@@ -368,46 +336,24 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Generate local code and carrier replicas (using \hat{f}_d(k-1))
update_local_code();
// UPDATE NCO COMMAND
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
//std::cout<<"d_current_prn_length_samples="<<d_current_prn_length_samples<<std::endl;
// perform carrier wipe-off and compute Early, Prompt and Late correlation
cudaProfilerStart();
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_cuda(
//code resampler on GPU (new)
float code_phase_step_chips = static_cast<float>(d_code_freq_chips) / static_cast<float>(d_fs_in);
float rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
cudaProfilerStart();
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(
d_corr_outs_gpu,
in,
d_local_codes_gpu,
d_rem_carr_phase_rad,
phase_step_rad,
d_local_code_shift_samples,
code_phase_step_chips,
rem_code_phase_chips,
d_current_prn_length_samples,
3);
cudaProfilerStop();
//std::cout<<"d_Prompt="<<*d_Prompt<<"d_Early="<<*d_Early<<"d_Late="<<*d_Late<<std::endl;
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
{
const int samples_available = ninput_items[0];
d_sample_counter = d_sample_counter + samples_available;
LOG(WARNING) << "Detected NaN samples at sample number " << d_sample_counter;
consume_each(samples_available);
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_timestamp_secs = static_cast<double>(d_sample_counter) / static_cast<double>(d_fs_in);
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.Code_phase_secs = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_tracking = false;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
return 1;
}
// ################## PLL ##########################################################
// PLL discriminator
@@ -444,8 +390,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + static_cast<double>(code_error_filt_secs) * static_cast<double>(d_fs_in);
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
@@ -591,7 +536,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
tmp_float=d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));

View File

@@ -130,7 +130,7 @@ private:
gr_complex* in_gpu;
gr_complex* d_carr_sign_gpu;
gr_complex* d_local_codes_gpu;
int* d_local_code_shift_samples;
float* d_local_code_shift_chips;
gr_complex* d_corr_outs_gpu;
cuda_multicorrelator *multicorrelator_gpu;

View File

@@ -33,7 +33,6 @@ if(ENABLE_CUDA)
SET(LIB_TYPE STATIC) #set the lib type
CUDA_ADD_LIBRARY(CUDA_CORRELATOR_LIB ${LIB_TYPE} cuda_multicorrelator.h cuda_multicorrelator.cu)
endif(ENABLE_CUDA)

View File

@@ -53,7 +53,83 @@
#include <helper_cuda.h>
#include <helper_functions.h>
#define ACCUM_N 1024
#define ACCUM_N 256
__global__ void scalarProdGPUCPXxN_shifts_chips(
GPU_Complex *d_corr_out,
GPU_Complex *d_sig_in,
GPU_Complex *d_local_code_in,
float *d_shifts_chips,
float code_length_chips,
float code_phase_step_chips,
float rem_code_phase_chips,
int vectorN,
int elementN
)
{
//Accumulators cache
__shared__ GPU_Complex accumResult[ACCUM_N];
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
//int vectorBase = IMUL(elementN, vec);
//int vectorEnd = elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x)
{
GPU_Complex sum = GPU_Complex(0,0);
for (int pos = iAccum; pos < elementN; pos += ACCUM_N)
{
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
//sum.multiply_acc(d_sig_in[pos],d_local_codes_in[pos+d_shifts_samples[vec]]);
// 1.resample local code for the current shift
float local_code_chip_index= fmod(code_phase_step_chips*(float)pos + d_shifts_chips[vec] - rem_code_phase_chips, code_length_chips);
//TODO: Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index<0.0) local_code_chip_index+=code_length_chips;
// 2.correlate
sum.multiply_acc(d_sig_in[pos],d_local_code_in[__float2int_rd(local_code_chip_index)]);
}
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1)
{
__syncthreads();
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
{
accumResult[iAccum] += accumResult[stride + iAccum];
}
}
if (threadIdx.x == 0)
{
d_corr_out[vec] = accumResult[0];
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on GPU
@@ -145,8 +221,9 @@ __global__ void scalarProdGPUCPXxN(
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
int vectorBase = IMUL(elementN, vec);
int vectorEnd = vectorBase + elementN;
//int vectorBase = IMUL(elementN, vec);
//int vectorEnd = vectorBase + elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
@@ -158,11 +235,13 @@ __global__ void scalarProdGPUCPXxN(
{
GPU_Complex sum = GPU_Complex(0,0);
for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
//for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
for (int pos = iAccum; pos < elementN; pos += ACCUM_N)
{
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
sum.multiply_acc(d_sig_in[pos-vectorBase],d_local_codes_in[pos]);
//sum.multiply_acc(d_sig_in[pos-vectorBase],d_local_codes_in[pos]);
sum.multiply_acc(d_sig_in[pos],d_local_codes_in[pos]);
}
accumResult[iAccum] = sum;
}
@@ -200,9 +279,9 @@ __global__ void scalarProdGPUCPXxN(
*/
__global__ void CUDA_32fc_x2_multiply_32fc( GPU_Complex *A, GPU_Complex *B, GPU_Complex *C, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < numElements;
i += blockDim.x * gridDim.x)
{
C[i] = A[i] * B[i];
}
@@ -232,10 +311,11 @@ CUDA_32fc_Doppler_wipeoff( GPU_Complex *sig_out, GPU_Complex *sig_in, float rem
// CUDA version of floating point NCO and vector dot product integrated
int i = blockDim.x * blockIdx.x + threadIdx.x;
float sin;
float cos;
if (i < numElements)
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < numElements;
i += blockDim.x * gridDim.x)
{
__sincosf(rem_carrier_phase_in_rad + i*phase_step_rad, &sin, &cos);
sig_out[i] = sig_in[i] * GPU_Complex(cos,-sin);
@@ -252,11 +332,11 @@ CUDA_32fc_Doppler_wipeoff( GPU_Complex *sig_out, GPU_Complex *sig_in, float rem
__global__ void
CUDA_32fc_x2_add_32fc( GPU_Complex *A, GPU_Complex *B, GPU_Complex *C, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < numElements;
i += blockDim.x * gridDim.x)
{
C[i] = A[i] * B[i];
C[i] = A[i] + B[i];
}
}
@@ -264,23 +344,53 @@ CUDA_32fc_x2_add_32fc( GPU_Complex *A, GPU_Complex *B, GPU_Complex *C, int
bool cuda_multicorrelator::init_cuda(const int argc, const char **argv, int signal_length_samples, int local_codes_length_samples, int n_correlators)
{
// use command-line specified CUDA device, otherwise use device with highest Gflops/s
findCudaDevice(argc, (const char **)argv);
cudaDeviceProp prop;
int whichDevice;
cudaGetDevice( &whichDevice );
cudaGetDeviceProperties( &prop, whichDevice );
//debug code
if (prop.canMapHostMemory != 1) {
printf( "Device can not map memory.\n" );
}
printf("L2 Cache size= %u \n",prop.l2CacheSize);
printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
printf("maxGridSize= %i \n",prop.maxGridSize[0]);
printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
printf("deviceOverlap= %i \n",prop.deviceOverlap);
//end debug code
// findCudaDevice(argc, (const char **)argv);
// cudaDeviceProp prop;
// int num_devices, device;
// cudaGetDeviceCount(&num_devices);
// if (num_devices > 1) {
// int max_multiprocessors = 0, max_device = 0;
// for (device = 0; device < num_devices; device++) {
// cudaDeviceProp properties;
// cudaGetDeviceProperties(&properties, device);
// if (max_multiprocessors < properties.multiProcessorCount) {
// max_multiprocessors = properties.multiProcessorCount;
// max_device = device;
// }
// printf("Found GPU device # %i\n",device);
// }
// //cudaSetDevice(max_device);
//
// //set random device!
// cudaSetDevice(rand() % num_devices); //generates a random number between 0 and num_devices to split the threads between GPUs
//
// cudaGetDeviceProperties( &prop, max_device );
// //debug code
// if (prop.canMapHostMemory != 1) {
// printf( "Device can not map memory.\n" );
// }
// printf("L2 Cache size= %u \n",prop.l2CacheSize);
// printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
// printf("maxGridSize= %i \n",prop.maxGridSize[0]);
// printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
// printf("deviceOverlap= %i \n",prop.deviceOverlap);
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
// }else{
// int whichDevice;
// cudaGetDevice( &whichDevice );
// cudaGetDeviceProperties( &prop, whichDevice );
// //debug code
// if (prop.canMapHostMemory != 1) {
// printf( "Device can not map memory.\n" );
// }
//
// printf("L2 Cache size= %u \n",prop.l2CacheSize);
// printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
// printf("maxGridSize= %i \n",prop.maxGridSize[0]);
// printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
// printf("deviceOverlap= %i \n",prop.deviceOverlap);
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
// }
//checkCudaErrors(cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
@@ -300,7 +410,7 @@ bool cuda_multicorrelator::init_cuda(const int argc, const char **argv, int sign
// Required: The last correlator tap in d_shifts_samples has the largest sample shift
size_t size_local_code_bytes = local_codes_length_samples * sizeof(GPU_Complex);
checkCudaErrors(cudaMalloc((void **)&d_local_codes_in, size_local_code_bytes));
checkCudaErrors(cudaMalloc((void **)&d_shifts_samples, size+sizeof(int)*n_correlators));
checkCudaErrors(cudaMalloc((void **)&d_shifts_samples, sizeof(int)*n_correlators));
//scalars
checkCudaErrors(cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators));
@@ -315,6 +425,116 @@ bool cuda_multicorrelator::init_cuda(const int argc, const char **argv, int sign
}
bool cuda_multicorrelator::init_cuda_integrated_resampler(
const int argc, const char **argv,
int signal_length_samples,
int code_length_chips,
int n_correlators
)
{
// use command-line specified CUDA device, otherwise use device with highest Gflops/s
// findCudaDevice(argc, (const char **)argv);
// cudaDeviceProp prop;
// int num_devices, device;
// cudaGetDeviceCount(&num_devices);
// if (num_devices > 1) {
// int max_multiprocessors = 0, max_device = 0;
// for (device = 0; device < num_devices; device++) {
// cudaDeviceProp properties;
// cudaGetDeviceProperties(&properties, device);
// if (max_multiprocessors < properties.multiProcessorCount) {
// max_multiprocessors = properties.multiProcessorCount;
// max_device = device;
// }
// printf("Found GPU device # %i\n",device);
// }
// //cudaSetDevice(max_device);
//
// //set random device!
// cudaSetDevice(rand() % num_devices); //generates a random number between 0 and num_devices to split the threads between GPUs
//
// cudaGetDeviceProperties( &prop, max_device );
// //debug code
// if (prop.canMapHostMemory != 1) {
// printf( "Device can not map memory.\n" );
// }
// printf("L2 Cache size= %u \n",prop.l2CacheSize);
// printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
// printf("maxGridSize= %i \n",prop.maxGridSize[0]);
// printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
// printf("deviceOverlap= %i \n",prop.deviceOverlap);
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
// }else{
// int whichDevice;
// cudaGetDevice( &whichDevice );
// cudaGetDeviceProperties( &prop, whichDevice );
// //debug code
// if (prop.canMapHostMemory != 1) {
// printf( "Device can not map memory.\n" );
// }
//
// printf("L2 Cache size= %u \n",prop.l2CacheSize);
// printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
// printf("maxGridSize= %i \n",prop.maxGridSize[0]);
// printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
// printf("deviceOverlap= %i \n",prop.deviceOverlap);
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
// }
//checkCudaErrors(cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
// ALLOCATE GPU MEMORY FOR INPUT/OUTPUT and INTERNAL vectors
size_t size = signal_length_samples * sizeof(GPU_Complex);
checkCudaErrors(cudaMalloc((void **)&d_sig_in, size));
checkCudaErrors(cudaMemset(d_sig_in,0,size));
//checkCudaErrors(cudaMalloc((void **)&d_nco_in, size));
checkCudaErrors(cudaMalloc((void **)&d_sig_doppler_wiped, size));
checkCudaErrors(cudaMemset(d_sig_doppler_wiped,0,size));
checkCudaErrors(cudaMalloc((void **)&d_local_codes_in, sizeof(std::complex<float>)*code_length_chips));
checkCudaErrors(cudaMemset(d_local_codes_in,0,sizeof(std::complex<float>)*code_length_chips));
d_code_length_chips=code_length_chips;
checkCudaErrors(cudaMalloc((void **)&d_shifts_chips, sizeof(float)*n_correlators));
checkCudaErrors(cudaMemset(d_shifts_chips,0,sizeof(float)*n_correlators));
//scalars
checkCudaErrors(cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators));
checkCudaErrors(cudaMemset(d_corr_out,0,sizeof(std::complex<float>)*n_correlators));
// Launch the Vector Add CUDA Kernel
threadsPerBlock = 256;
blocksPerGrid =(int)(signal_length_samples+threadsPerBlock-1)/threadsPerBlock;
cudaStreamCreate (&stream1) ;
cudaStreamCreate (&stream2) ;
return true;
}
bool cuda_multicorrelator::set_local_code_and_taps(
int code_length_chips,
const std::complex<float>* local_codes_in,
float *shifts_chips,
int n_correlators
)
{
// local code CPU -> GPU copy memory
checkCudaErrors(cudaMemcpyAsync(d_local_codes_in, local_codes_in, sizeof(GPU_Complex)*code_length_chips, cudaMemcpyHostToDevice,stream1));
d_code_length_chips=(float)code_length_chips;
// Correlator shifts vector CPU -> GPU copy memory (fractional chip shifts are allowed!)
checkCudaErrors(cudaMemcpyAsync(d_shifts_chips, shifts_chips, sizeof(float)*n_correlators,
cudaMemcpyHostToDevice,stream1));
return true;
}
bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_cuda(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
@@ -396,13 +616,88 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_cuda(
return true;
}
bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
float rem_carrier_phase_in_rad,
float phase_step_rad,
float code_phase_step_chips,
float rem_code_phase_chips,
int signal_length_samples,
int n_correlators)
{
size_t memSize = signal_length_samples * sizeof(std::complex<float>);
// input signal CPU -> GPU copy memory
checkCudaErrors(cudaMemcpyAsync(d_sig_in, sig_in, memSize,
cudaMemcpyHostToDevice, stream2));
//***** NOTICE: NCO is computed on-the-fly, not need to copy NCO into GPU! ****
//Launch carrier wipe-off kernel here, while local codes are being copied to GPU!
checkCudaErrors(cudaStreamSynchronize(stream2));
CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream2>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
//wait for Doppler wipeoff end...
checkCudaErrors(cudaStreamSynchronize(stream1));
checkCudaErrors(cudaStreamSynchronize(stream2));
//launch the multitap correlator with integrated local code resampler!
scalarProdGPUCPXxN_shifts_chips<<<blocksPerGrid, threadsPerBlock,0 ,stream1>>>(
d_corr_out,
d_sig_doppler_wiped,
d_local_codes_in,
d_shifts_chips,
d_code_length_chips,
code_phase_step_chips,
rem_code_phase_chips,
n_correlators,
signal_length_samples
);
checkCudaErrors(cudaGetLastError());
//wait for correlators end...
checkCudaErrors(cudaStreamSynchronize(stream1));
// Copy the device result vector in device memory to the host result vector
// in host memory.
//scalar products (correlators outputs)
checkCudaErrors(cudaMemcpyAsync(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
cudaMemcpyDeviceToHost,stream1));
checkCudaErrors(cudaStreamSynchronize(stream1));
return true;
}
cuda_multicorrelator::cuda_multicorrelator()
{
d_sig_in=NULL;
d_nco_in=NULL;
d_sig_doppler_wiped=NULL;
d_local_codes_in=NULL;
d_shifts_samples=NULL;
d_shifts_chips=NULL;
d_corr_out=NULL;
threadsPerBlock=0;
blocksPerGrid=0;
d_code_length_chips=0;
}
bool cuda_multicorrelator::free_cuda()
{
// Free device global memory
cudaFree(d_sig_in);
//cudaFree(d_nco_in);
cudaFree(d_local_codes_in);
cudaFree(d_corr_out);
if (d_sig_in!=NULL) cudaFree(d_sig_in);
if (d_nco_in!=NULL) cudaFree(d_nco_in);
if (d_sig_doppler_wiped!=NULL) cudaFree(d_sig_doppler_wiped);
if (d_local_codes_in!=NULL) cudaFree(d_local_codes_in);
if (d_corr_out!=NULL) cudaFree(d_corr_out);
if (d_shifts_samples!=NULL) cudaFree(d_shifts_samples);
if (d_shifts_chips!=NULL) cudaFree(d_shifts_chips);
cudaStreamDestroy(stream1) ;
cudaStreamDestroy(stream2) ;

View File

@@ -113,8 +113,20 @@ struct GPU_Complex_Short {
class cuda_multicorrelator
{
public:
cuda_multicorrelator();
bool init_cuda(const int argc, const char **argv, int signal_length_samples, int local_codes_length_samples, int n_correlators);
bool init_cuda_integrated_resampler(
const int argc, const char **argv,
int signal_length_samples,
int code_length_chips,
int n_correlators
);
bool set_local_code_and_taps(
int code_length_chips,
const std::complex<float>* local_codes_in,
float *shifts_chips,
int n_correlators
);
bool free_cuda();
bool Carrier_wipeoff_multicorrelator_cuda(
std::complex<float>* corr_out,
@@ -125,6 +137,15 @@ public:
const int *shifts_samples,
int signal_length_samples,
int n_correlators);
bool Carrier_wipeoff_multicorrelator_resampler_cuda(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
float rem_carrier_phase_in_rad,
float phase_step_rad,
float code_phase_step_chips,
float rem_code_phase_chips,
int signal_length_samples,
int n_correlators);
private:
// Allocate the device input vectors
GPU_Complex *d_sig_in;
@@ -133,6 +154,9 @@ private:
GPU_Complex *d_local_codes_in;
GPU_Complex *d_corr_out;
int *d_shifts_samples;
float *d_shifts_chips;
float d_code_length_chips;
int threadsPerBlock;
int blocksPerGrid;

View File

@@ -94,7 +94,7 @@ Tracking_2nd_PLL_filter::Tracking_2nd_PLL_filter ()
{
//--- PLL variables --------------------------------------------------------
d_pdi_carr = 0.001;// Summation interval for carrier
d_plldampingratio = 0.65;
d_plldampingratio = 0.7;
}