1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 20:50:33 +00:00

Clean pcps acquisition

This commit is contained in:
Antonio Ramos 2018-01-09 16:43:38 +01:00
parent 419957bec6
commit 188df6c5b8
2 changed files with 149 additions and 260 deletions

View File

@ -127,13 +127,9 @@ pcps_acquisition_cc::pcps_acquisition_cc(
// For dumping samples into a file // For dumping samples into a file
d_dump = dump; d_dump = dump;
d_dump_filename = dump_filename; d_dump_filename = dump_filename;
d_gnss_synchro = 0; d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0; d_grid_doppler_wipeoffs = 0;
d_done = false;
d_blocking = blocking; d_blocking = blocking;
d_new_data_available = false;
d_worker_active = false; d_worker_active = false;
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
} }
@ -160,19 +156,6 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
{ {
d_dump_file.close(); d_dump_file.close();
} }
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
volk_gnsssdr_free( d_data_buffer ); volk_gnsssdr_free( d_data_buffer );
} }
@ -233,9 +216,6 @@ void pcps_acquisition_cc::init()
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler); update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
} }
d_new_data_available = false;
d_done = false;
d_worker_active = false; d_worker_active = false;
} }
@ -253,6 +233,7 @@ void pcps_acquisition_cc::set_state(int state)
d_mag = 0.0; d_mag = 0.0;
d_input_power = 0.0; d_input_power = 0.0;
d_test_statistics = 0.0; d_test_statistics = 0.0;
d_active = true;
} }
else if (d_state == 0) else if (d_state == 0)
{} {}
@ -299,7 +280,7 @@ void pcps_acquisition_cc::send_negative_acquisition()
} }
int pcps_acquisition_cc::general_work(int noutput_items, int pcps_acquisition_cc::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused))) gr_vector_void_star &output_items __attribute__((unused)))
{ {
@ -314,193 +295,157 @@ int pcps_acquisition_cc::general_work(int noutput_items,
* 6. Declare positive or negative acquisition using a message port * 6. Declare positive or negative acquisition using a message port
*/ */
switch (d_state) gr::thread::scoped_lock lk(d_setlock);
if(!d_active || d_worker_active)
{
d_sample_counter += d_fft_size * ninput_items[0];
consume_each(ninput_items[0]);
return 0;
}
switch(d_state)
{ {
case 0: case 0:
{ {
if (d_active) //restart acquisition variables
{ d_gnss_synchro->Acq_delay_samples = 0.0;
//restart acquisition variables d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_doppler_hz = 0.0; d_well_count = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0; d_mag = 0.0;
d_well_count = 0; d_input_power = 0.0;
d_mag = 0.0; d_test_statistics = 0.0;
d_input_power = 0.0; d_state = 1;
d_test_statistics = 0.0;
d_state = 1;
}
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]); consume_each(ninput_items[0]);
break; break;
} }
case 1: case 1:
{ {
std::unique_lock<std::mutex> lk( d_mutex ); // Copy the data to the core and let it know that new data is available
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex));
int num_items_consumed = 1; if(d_blocking)
if( d_worker_active )
{ {
if( d_blocking ) lk.unlock();
{ acquisition_core();
// Should never get here:
std::string msg = "pcps_acquisition_cc: Entered general work with worker active in blocking mode, should never happen";
LOG(WARNING) << msg;
std::cout << msg << std::endl;
d_cond.wait( lk, [&]{ return !this->d_worker_active; } );
}
else
{
num_items_consumed = ninput_items[0];
d_sample_counter += d_fft_size * num_items_consumed;
}
} }
else else
{ {
// Copy the data to the core and let it know that new data is available gr::thread::thread d_worker(&pcps_acquisition_cc::acquisition_core, this);
memcpy( d_data_buffer, input_items[0], d_fft_size * sizeof( gr_complex ) ); d_worker_active = true;
d_new_data_available = true;
d_cond.notify_one();
if( d_blocking )
{
d_cond.wait( lk, [&]{ return !this->d_new_data_available; } );
}
} }
consume_each(1);
consume_each(num_items_consumed);
break; break;
} // case 1, switch d_state }
}
} // switch d_state return 0;
return noutput_items;
} }
void pcps_acquisition_cc::acquisition_core( void ) void pcps_acquisition_cc::acquisition_core( void )
{ {
d_worker_active = false; gr::thread::scoped_lock lk(d_setlock);
while( 1 )
unsigned long int sample_counter = d_sample_counter; // sample counter
// initialize acquisition algorithm
int doppler;
uint32_t indext = 0;
float magt = 0.0;
const gr_complex *in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
lk.unlock();
if (d_use_CFAR_algorithm_flag)
{ {
std::unique_lock<std::mutex> lk( d_mutex ); // 1- (optional) Compute the input signal power estimation
d_cond.wait( lk, [&]{ return this->d_new_data_available or this->d_done; } ); volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
d_worker_active = !d_done; volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
unsigned long int sample_counter = d_sample_counter; // sample counter d_input_power /= static_cast<float>(d_fft_size);
lk.unlock(); }
// 2- Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
if( d_done ) volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag)
{ {
break; // Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
} }
// 4- record the maximum peak and the associated synchronization parameters
// initialize acquisition algorithm if (d_mag < magt)
int doppler;
uint32_t indext = 0;
float magt = 0.0;
const gr_complex *in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
if (d_use_CFAR_algorithm_flag == true)
{ {
// 1- (optional) Compute the input signal power estimation d_mag = magt;
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
}
// 2- Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, if (!d_use_CFAR_algorithm_flag)
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag == true)
{ {
// Normalize the maximum value to correct the scale factor introduced by FFTW // Search grid noise floor approximation for this doppler line
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
} d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
if (d_use_CFAR_algorithm_flag == false)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
}
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
} }
// Record results to file if required // In case that d_bit_transition_flag = true, we compare the potentially
if (d_dump) // new maximum test statistics (d_mag/d_input_power) with the value in
{ // d_test_statistics. When the second dwell is being processed, the value
std::stringstream filename; // of d_mag/d_input_power could be lower than d_test_statistics (i.e,
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write // the maximum test statistics in the previous dwell is greater than
filename.str(""); // current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
boost::filesystem::path p = d_dump_filename; if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
filename << p.parent_path().string() {
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator << boost::filesystem::path::preferred_separator
<< p.stem().string() << p.stem().string()
<< "_" << d_gnss_synchro->System << "_" << d_gnss_synchro->System
@ -509,15 +454,32 @@ void pcps_acquisition_cc::acquisition_core( void )
<< doppler << doppler
<< p.extension().string(); << p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str(); DLOG(INFO) << "Writing ACQ out to " << filename.str();
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write(reinterpret_cast<char*>(d_ifft->get_outbuf()), n); //write directly |abs(x)|^2 in this Doppler bin? d_dump_file.write(reinterpret_cast<char*>(d_ifft->get_outbuf()), n); //write directly |abs(x)|^2 in this Doppler bin?
d_dump_file.close(); d_dump_file.close();
}
} }
}
if (!d_bit_transition_flag) lk.lock();
if (!d_bit_transition_flag)
{
if (d_test_statistics > d_threshold)
{
d_state = 0; // Positive acquisition
d_active = false;
send_positive_acquisition();
}
else if (d_well_count == d_max_dwells)
{
d_state = 0;
d_active = false;
send_negative_acquisition();
}
}
else
{
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{ {
if (d_test_statistics > d_threshold) if (d_test_statistics > d_threshold)
{ {
@ -525,66 +487,13 @@ void pcps_acquisition_cc::acquisition_core( void )
d_active = false; d_active = false;
send_positive_acquisition(); send_positive_acquisition();
} }
else if (d_well_count == d_max_dwells) else
{ {
d_state = 0; d_state = 0; // Negative acquisition
d_active = false; d_active = false;
send_negative_acquisition(); send_negative_acquisition();
} }
} }
else
{
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{
d_state = 0; // Positive acquisition
d_active = false;
send_positive_acquisition();
}
else
{
d_state = 0; // Negative acquisition
d_active = false;
send_negative_acquisition();
}
}
}
lk.lock();
d_worker_active = false;
d_new_data_available = false;
lk.unlock();
d_cond.notify_one();
} }
}
bool pcps_acquisition_cc::start( void )
{
d_worker_active = false; d_worker_active = false;
d_done = false;
// Start the worker thread and wait for it to acknowledge:
d_worker_thread = std::move( std::thread( &pcps_acquisition_cc::acquisition_core, this ) );
return gr::block::start();
} }
bool pcps_acquisition_cc::stop( void )
{
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
return gr::block::stop();
}

View File

@ -21,6 +21,7 @@
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com * <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com * <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org * <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* <li> Antonio Ramos, 2017. antonio.ramos@cttc.es
* </ul> * </ul>
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
@ -53,9 +54,6 @@
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <gnuradio/block.h> #include <gnuradio/block.h>
#include <gnuradio/gr_complex.h> #include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h> #include <gnuradio/fft/fft.h>
@ -109,7 +107,6 @@ private:
int d_samples_per_code; int d_samples_per_code;
//unsigned int d_doppler_resolution; //unsigned int d_doppler_resolution;
float d_threshold; float d_threshold;
std::string d_satellite_str;
unsigned int d_doppler_max; unsigned int d_doppler_max;
unsigned int d_doppler_step; unsigned int d_doppler_step;
unsigned int d_sampled_ms; unsigned int d_sampled_ms;
@ -137,16 +134,8 @@ private:
bool d_dump; bool d_dump;
unsigned int d_channel; unsigned int d_channel;
std::string d_dump_filename; std::string d_dump_filename;
std::thread d_worker_thread;
std::mutex d_mutex;
std::condition_variable d_cond;
bool d_done;
bool d_new_data_available;
bool d_worker_active; bool d_worker_active;
bool d_blocking; bool d_blocking;
gr_complex *d_data_buffer; gr_complex *d_data_buffer;
public: public:
@ -251,15 +240,6 @@ public:
gr_vector_const_void_star &input_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items); gr_vector_void_star &output_items);
/*!
* Called by the flowgraph when processing is about to start.
*/
bool start( void );
/*!
* Called by the flowgraph when processing is done.
*/
bool stop( void );
}; };
#endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/ #endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/