mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-15 04:30:33 +00:00
A smarter way of handling the multirrate input of observables block
This commit is contained in:
parent
81179a9f38
commit
184bd0d1de
@ -37,6 +37,8 @@
|
||||
#include <utility>
|
||||
#include <armadillo>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <gnuradio/block_detail.h>
|
||||
#include <gnuradio/buffer.h>
|
||||
#include <glog/logging.h>
|
||||
#include <matio.h>
|
||||
#include "Galileo_E1.h"
|
||||
@ -52,8 +54,8 @@ hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels, bo
|
||||
|
||||
|
||||
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
|
||||
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
|
||||
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
@ -63,49 +65,49 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump,
|
||||
T_rx_s = 0.0;
|
||||
T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
|
||||
}
|
||||
{
|
||||
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
|
||||
}
|
||||
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (const std::ifstream::failure & e)
|
||||
{
|
||||
LOG(WARNING) << "Exception opening observables dump file " << e.what();
|
||||
}
|
||||
}
|
||||
try
|
||||
{
|
||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (const std::ifstream::failure & e)
|
||||
{
|
||||
LOG(WARNING) << "Exception opening observables dump file " << e.what();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
hybrid_observables_cc::~hybrid_observables_cc()
|
||||
{
|
||||
if (d_dump_file.is_open() == true)
|
||||
{
|
||||
try
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
catch(const std::exception & ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
|
||||
}
|
||||
d_dump_file.close();
|
||||
}
|
||||
catch(const std::exception & ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
|
||||
}
|
||||
}
|
||||
if(d_dump == true)
|
||||
{
|
||||
std::cout << "Writing observables .mat files ...";
|
||||
hybrid_observables_cc::save_matfile();
|
||||
std::cout << " done." << std::endl;
|
||||
}
|
||||
{
|
||||
std::cout << "Writing observables .mat files ...";
|
||||
hybrid_observables_cc::save_matfile();
|
||||
std::cout << " done." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -119,25 +121,25 @@ int hybrid_observables_cc::save_matfile()
|
||||
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
try
|
||||
{
|
||||
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
||||
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
||||
}
|
||||
catch(const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
||||
return 1;
|
||||
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
||||
return 1;
|
||||
}
|
||||
// count number of epochs and rewind
|
||||
long int num_epoch = 0;
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
size = dump_file.tellg();
|
||||
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
|
||||
dump_file.seekg(0, std::ios::beg);
|
||||
}
|
||||
{
|
||||
size = dump_file.tellg();
|
||||
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
|
||||
dump_file.seekg(0, std::ios::beg);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
double ** RX_time = new double * [d_nchannels];
|
||||
double ** TOW_at_current_symbol_s = new double * [d_nchannels];
|
||||
double ** Carrier_Doppler_hz = new double * [d_nchannels];
|
||||
@ -147,58 +149,58 @@ int hybrid_observables_cc::save_matfile()
|
||||
double ** Flag_valid_pseudorange = new double * [d_nchannels];
|
||||
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
RX_time[i] = new double [num_epoch];
|
||||
TOW_at_current_symbol_s[i] = new double[num_epoch];
|
||||
Carrier_Doppler_hz[i] = new double[num_epoch];
|
||||
Carrier_phase_cycles[i] = new double[num_epoch];
|
||||
Pseudorange_m[i] = new double[num_epoch];
|
||||
PRN[i] = new double[num_epoch];
|
||||
Flag_valid_pseudorange[i] = new double[num_epoch];
|
||||
}
|
||||
{
|
||||
RX_time[i] = new double [num_epoch];
|
||||
TOW_at_current_symbol_s[i] = new double[num_epoch];
|
||||
Carrier_Doppler_hz[i] = new double[num_epoch];
|
||||
Carrier_phase_cycles[i] = new double[num_epoch];
|
||||
Pseudorange_m[i] = new double[num_epoch];
|
||||
PRN[i] = new double[num_epoch];
|
||||
Flag_valid_pseudorange[i] = new double[num_epoch];
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
if (dump_file.is_open())
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
for(long int i = 0; i < num_epoch; i++)
|
||||
{
|
||||
for(unsigned int chan = 0; chan < d_nchannels; chan++)
|
||||
{
|
||||
for(long int i = 0; i < num_epoch; i++)
|
||||
{
|
||||
for(unsigned int chan = 0; chan < d_nchannels; chan++)
|
||||
{
|
||||
dump_file.read(reinterpret_cast<char *>(&RX_time[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Carrier_Doppler_hz[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Carrier_phase_cycles[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Pseudorange_m[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Flag_valid_pseudorange[chan][i]), sizeof(double));
|
||||
}
|
||||
}
|
||||
dump_file.read(reinterpret_cast<char *>(&RX_time[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Carrier_Doppler_hz[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Carrier_phase_cycles[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Pseudorange_m[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN[chan][i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&Flag_valid_pseudorange[chan][i]), sizeof(double));
|
||||
}
|
||||
dump_file.close();
|
||||
}
|
||||
}
|
||||
dump_file.close();
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
delete[] RX_time[i];
|
||||
delete[] TOW_at_current_symbol_s[i];
|
||||
delete[] Carrier_Doppler_hz[i];
|
||||
delete[] Carrier_phase_cycles[i];
|
||||
delete[] Pseudorange_m[i];
|
||||
delete[] PRN[i];
|
||||
delete[] Flag_valid_pseudorange[i];
|
||||
}
|
||||
delete[] RX_time;
|
||||
delete[] TOW_at_current_symbol_s;
|
||||
delete[] Carrier_Doppler_hz;
|
||||
delete[] Carrier_phase_cycles;
|
||||
delete[] Pseudorange_m;
|
||||
delete[] PRN;
|
||||
delete[] Flag_valid_pseudorange;
|
||||
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
delete[] RX_time[i];
|
||||
delete[] TOW_at_current_symbol_s[i];
|
||||
delete[] Carrier_Doppler_hz[i];
|
||||
delete[] Carrier_phase_cycles[i];
|
||||
delete[] Pseudorange_m[i];
|
||||
delete[] PRN[i];
|
||||
delete[] Flag_valid_pseudorange[i];
|
||||
}
|
||||
delete[] RX_time;
|
||||
delete[] TOW_at_current_symbol_s;
|
||||
delete[] Carrier_Doppler_hz;
|
||||
delete[] Carrier_phase_cycles;
|
||||
delete[] Pseudorange_m;
|
||||
delete[] PRN;
|
||||
delete[] Flag_valid_pseudorange;
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
double * RX_time_aux = new double [d_nchannels * num_epoch];
|
||||
@ -210,19 +212,19 @@ int hybrid_observables_cc::save_matfile()
|
||||
double * Flag_valid_pseudorange_aux = new double[d_nchannels * num_epoch];
|
||||
unsigned int k = 0;
|
||||
for(long int j = 0; j < num_epoch; j++ )
|
||||
{
|
||||
for(unsigned int i = 0; i < d_nchannels; i++ )
|
||||
{
|
||||
for(unsigned int i = 0; i < d_nchannels; i++ )
|
||||
{
|
||||
RX_time_aux[k] = RX_time[i][j];
|
||||
TOW_at_current_symbol_s_aux[k] = TOW_at_current_symbol_s[i][j];
|
||||
Carrier_Doppler_hz_aux[k] = Carrier_Doppler_hz[i][j];
|
||||
Carrier_phase_cycles_aux[k] = Carrier_phase_cycles[i][j];
|
||||
Pseudorange_m_aux[k] = Pseudorange_m[i][j];
|
||||
PRN_aux[k] = PRN[i][j];
|
||||
Flag_valid_pseudorange_aux[k] = Flag_valid_pseudorange[i][j];
|
||||
k++;
|
||||
}
|
||||
RX_time_aux[k] = RX_time[i][j];
|
||||
TOW_at_current_symbol_s_aux[k] = TOW_at_current_symbol_s[i][j];
|
||||
Carrier_Doppler_hz_aux[k] = Carrier_Doppler_hz[i][j];
|
||||
Carrier_phase_cycles_aux[k] = Carrier_phase_cycles[i][j];
|
||||
Pseudorange_m_aux[k] = Pseudorange_m[i][j];
|
||||
PRN_aux[k] = PRN[i][j];
|
||||
Flag_valid_pseudorange_aux[k] = Flag_valid_pseudorange[i][j];
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
// WRITE MAT FILE
|
||||
mat_t *matfp;
|
||||
@ -232,49 +234,49 @@ int hybrid_observables_cc::save_matfile()
|
||||
filename.append(".mat");
|
||||
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
||||
if(reinterpret_cast<long*>(matfp) != NULL)
|
||||
{
|
||||
size_t dims[2] = {static_cast<size_t>(d_nchannels), static_cast<size_t>(num_epoch)};
|
||||
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, RX_time_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
{
|
||||
size_t dims[2] = {static_cast<size_t>(d_nchannels), static_cast<size_t>(num_epoch)};
|
||||
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, RX_time_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("TOW_at_current_symbol_s", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, TOW_at_current_symbol_s_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
matvar = Mat_VarCreate("TOW_at_current_symbol_s", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, TOW_at_current_symbol_s_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Carrier_Doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_Doppler_hz_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
matvar = Mat_VarCreate("Carrier_Doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_Doppler_hz_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Carrier_phase_cycles", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_phase_cycles_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
matvar = Mat_VarCreate("Carrier_phase_cycles", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_phase_cycles_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Pseudorange_m", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Pseudorange_m_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
matvar = Mat_VarCreate("Pseudorange_m", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Pseudorange_m_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, PRN_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
matvar = Mat_VarCreate("PRN", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, PRN_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Flag_valid_pseudorange", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Flag_valid_pseudorange_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
}
|
||||
matvar = Mat_VarCreate("Flag_valid_pseudorange", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Flag_valid_pseudorange_aux, MAT_F_DONT_COPY_DATA);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
}
|
||||
Mat_Close(matfp);
|
||||
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
delete[] RX_time[i];
|
||||
delete[] TOW_at_current_symbol_s[i];
|
||||
delete[] Carrier_Doppler_hz[i];
|
||||
delete[] Carrier_phase_cycles[i];
|
||||
delete[] Pseudorange_m[i];
|
||||
delete[] PRN[i];
|
||||
delete[] Flag_valid_pseudorange[i];
|
||||
{
|
||||
delete[] RX_time[i];
|
||||
delete[] TOW_at_current_symbol_s[i];
|
||||
delete[] Carrier_Doppler_hz[i];
|
||||
delete[] Carrier_phase_cycles[i];
|
||||
delete[] Pseudorange_m[i];
|
||||
delete[] PRN[i];
|
||||
delete[] Flag_valid_pseudorange[i];
|
||||
|
||||
}
|
||||
}
|
||||
delete[] RX_time;
|
||||
delete[] TOW_at_current_symbol_s;
|
||||
delete[] Carrier_Doppler_hz;
|
||||
@ -325,16 +327,28 @@ bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
|
||||
|
||||
void hybrid_observables_cc::forecast (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
|
||||
{
|
||||
|
||||
bool zero_samples=true;
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
int items=detail()->input(i)->items_available();
|
||||
if (items>0) zero_samples=false;
|
||||
ninput_items_required[i] = items; //set the required available samples in each call
|
||||
}
|
||||
|
||||
if (zero_samples==true)
|
||||
{
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
ninput_items_required[i] = 0; //set the required available samples in each call
|
||||
ninput_items_required[i] = 1; //set the required available samples in each call
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int hybrid_observables_cc::general_work (int noutput_items ,
|
||||
gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
|
||||
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
|
||||
@ -345,243 +359,231 @@ int hybrid_observables_cc::general_work (int noutput_items ,
|
||||
Gnss_Synchro current_gnss_synchro[d_nchannels];
|
||||
Gnss_Synchro aux = Gnss_Synchro();
|
||||
for(unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
current_gnss_synchro[i] = aux;
|
||||
}
|
||||
{
|
||||
current_gnss_synchro[i] = aux;
|
||||
}
|
||||
/*
|
||||
* 1. Read the GNSS SYNCHRO objects from available channels.
|
||||
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
|
||||
* Record all synchronization data into queues
|
||||
*/
|
||||
bool zero_samples=true;
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
n_consume[i] = ninput_items[i];// full throttle
|
||||
for (int j = 0; j < n_consume[i]; j++)
|
||||
{
|
||||
n_consume[i] = ninput_items[i];// full throttle
|
||||
for (int j = 0; j < n_consume[i]; j++)
|
||||
{
|
||||
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
||||
zero_samples=false;
|
||||
}
|
||||
}
|
||||
|
||||
//check if there are new channel data available
|
||||
//This is required because the combination of several GNSS tracking signals
|
||||
//leads to a multirrate inputs that can not warantee that every channel will have new data
|
||||
//and forecast method is set to zero samples for each channel to avoid blockings
|
||||
if (zero_samples==true)
|
||||
{
|
||||
usleep(500); // run this task at up to 2 kHz rate
|
||||
return 0; // No new samples in this call, thus, return.
|
||||
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
bool channel_history_ok;
|
||||
do
|
||||
{
|
||||
channel_history_ok = true;
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
channel_history_ok = true;
|
||||
if (d_gnss_synchro_history_queue[i].size() < history_deep)
|
||||
{
|
||||
channel_history_ok = false;
|
||||
}
|
||||
}
|
||||
if (channel_history_ok == true)
|
||||
{
|
||||
std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
|
||||
std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
|
||||
|
||||
// 1. If the RX time is not set, set the Rx time
|
||||
if (T_rx_s == 0)
|
||||
{
|
||||
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
|
||||
std::map<int,Gnss_Synchro> gnss_synchro_map;
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].front().Channel_ID,
|
||||
d_gnss_synchro_history_queue[i].front()));
|
||||
}
|
||||
gnss_synchro_map_iter = min_element(gnss_synchro_map.cbegin(),
|
||||
gnss_synchro_map.cend(),
|
||||
Hybrid_pairCompare_gnss_synchro_sample_counter);
|
||||
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
||||
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
||||
}
|
||||
|
||||
// 2. Realign RX time in all valid channels
|
||||
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
|
||||
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
|
||||
// shift channels history to match the reference TOW
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].cbegin(),
|
||||
d_gnss_synchro_history_queue[i].cend(),
|
||||
T_rx_s,
|
||||
Hybrid_valueCompare_gnss_synchro_receiver_time);
|
||||
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].cend())
|
||||
{
|
||||
if (d_gnss_synchro_history_queue[i].size() < history_deep)
|
||||
if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
||||
{
|
||||
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
||||
double delta_T_rx_s = T_rx_channel - T_rx_s;
|
||||
|
||||
// check that T_rx difference is less than a threshold (the correlation interval)
|
||||
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
|
||||
{
|
||||
channel_history_ok = false;
|
||||
}
|
||||
}
|
||||
if (channel_history_ok == true)
|
||||
{
|
||||
std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
|
||||
std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
|
||||
|
||||
// 1. If the RX time is not set, set the Rx time
|
||||
if (T_rx_s == 0)
|
||||
{
|
||||
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
|
||||
std::map<int,Gnss_Synchro> gnss_synchro_map;
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
// record the word structure in a map for pseudorange computation
|
||||
// save the previous observable
|
||||
int distance = std::distance(d_gnss_synchro_history_queue[i].cbegin(), gnss_synchro_deque_iter);
|
||||
if (distance > 0)
|
||||
{
|
||||
if (d_gnss_synchro_history_queue[i].at(distance - 1).Flag_valid_word)
|
||||
{
|
||||
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].front().Channel_ID,
|
||||
d_gnss_synchro_history_queue[i].front()));
|
||||
}
|
||||
gnss_synchro_map_iter = min_element(gnss_synchro_map.cbegin(),
|
||||
gnss_synchro_map.cend(),
|
||||
Hybrid_pairCompare_gnss_synchro_sample_counter);
|
||||
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
||||
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
||||
}
|
||||
|
||||
// 2. Realign RX time in all valid channels
|
||||
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
|
||||
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
|
||||
// shift channels history to match the reference TOW
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].cbegin(),
|
||||
d_gnss_synchro_history_queue[i].cend(),
|
||||
T_rx_s,
|
||||
Hybrid_valueCompare_gnss_synchro_receiver_time);
|
||||
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].cend())
|
||||
{
|
||||
if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
||||
{
|
||||
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
||||
double delta_T_rx_s = T_rx_channel - T_rx_s;
|
||||
|
||||
// check that T_rx difference is less than a threshold (the correlation interval)
|
||||
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
|
||||
{
|
||||
// record the word structure in a map for pseudorange computation
|
||||
// save the previous observable
|
||||
int distance = std::distance(d_gnss_synchro_history_queue[i].cbegin(), gnss_synchro_deque_iter);
|
||||
if (distance > 0)
|
||||
{
|
||||
if (d_gnss_synchro_history_queue[i].at(distance - 1).Flag_valid_word)
|
||||
{
|
||||
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
||||
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
||||
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
||||
{
|
||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
|
||||
d_gnss_synchro_history_queue[i].at(distance - 1)));
|
||||
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||
}
|
||||
else
|
||||
{
|
||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
|
||||
d_gnss_synchro_history_queue[i].at(distance - 1)));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(!realigned_gnss_synchro_map.empty())
|
||||
{
|
||||
/*
|
||||
* 2.1 Use CURRENT set of measurements and find the nearest satellite
|
||||
* common RX time algorithm
|
||||
*/
|
||||
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
||||
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.cbegin(),
|
||||
realigned_gnss_synchro_map.cend(),
|
||||
Hybrid_pairCompare_gnss_synchro_d_TOW);
|
||||
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||
|
||||
// compute interpolated TOW value at T_rx_s
|
||||
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
||||
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
||||
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
||||
|
||||
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
||||
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
||||
|
||||
double selected_T_rx_s = T_rx_s;
|
||||
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
||||
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
|
||||
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
||||
|
||||
// Now compute RX time differences due to the PRN alignment in the correlators
|
||||
double traveltime_ms;
|
||||
double pseudorange_m;
|
||||
double channel_T_rx_s;
|
||||
double channel_fs_hz;
|
||||
double channel_TOW_s;
|
||||
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
|
||||
{
|
||||
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
||||
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
||||
// compute interpolated observation values
|
||||
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
||||
// TOW at the selected receiver time T_rx_s
|
||||
int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
||||
adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
||||
|
||||
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
||||
|
||||
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
||||
|
||||
// Doppler and Accumulated carrier phase
|
||||
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
||||
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
||||
|
||||
// compute the pseudorange (no rx time offset correction)
|
||||
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
||||
// convert to meters
|
||||
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
||||
// update the pseudorange object
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
||||
// Save the estimated RX time (no RX clock offset correction yet!)
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
||||
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
||||
}
|
||||
|
||||
if(d_dump == true)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
try
|
||||
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
||||
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
||||
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
||||
{
|
||||
double tmp_double;
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
tmp_double = current_gnss_synchro[i].RX_time;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].PRN;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
|
||||
d_gnss_synchro_history_queue[i].at(distance - 1)));
|
||||
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||
}
|
||||
catch (const std::ifstream::failure& e)
|
||||
else
|
||||
{
|
||||
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
|
||||
d_gnss_synchro_history_queue[i].at(distance - 1)));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
out[i][n_outputs] = current_gnss_synchro[i];
|
||||
}
|
||||
|
||||
n_outputs++;
|
||||
}
|
||||
|
||||
// Move RX time
|
||||
T_rx_s = T_rx_s + T_rx_step_s;
|
||||
// pop old elements from queue
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
while (static_cast<double>(d_gnss_synchro_history_queue[i].front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue[i].front().fs) < (T_rx_s - past_history_s))
|
||||
{
|
||||
d_gnss_synchro_history_queue[i].pop_front();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} while(channel_history_ok == true && noutput_items > n_outputs);
|
||||
}
|
||||
|
||||
if(!realigned_gnss_synchro_map.empty())
|
||||
{
|
||||
/*
|
||||
* 2.1 Use CURRENT set of measurements and find the nearest satellite
|
||||
* common RX time algorithm
|
||||
*/
|
||||
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
||||
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.cbegin(),
|
||||
realigned_gnss_synchro_map.cend(),
|
||||
Hybrid_pairCompare_gnss_synchro_d_TOW);
|
||||
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||
|
||||
// compute interpolated TOW value at T_rx_s
|
||||
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
||||
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
||||
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
||||
|
||||
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
||||
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
||||
|
||||
double selected_T_rx_s = T_rx_s;
|
||||
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
||||
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
|
||||
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
||||
|
||||
// Now compute RX time differences due to the PRN alignment in the correlators
|
||||
double traveltime_ms;
|
||||
double pseudorange_m;
|
||||
double channel_T_rx_s;
|
||||
double channel_fs_hz;
|
||||
double channel_TOW_s;
|
||||
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
|
||||
{
|
||||
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
||||
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
||||
// compute interpolated observation values
|
||||
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
||||
// TOW at the selected receiver time T_rx_s
|
||||
int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
||||
adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
||||
|
||||
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
||||
|
||||
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
||||
|
||||
// Doppler and Accumulated carrier phase
|
||||
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
||||
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
||||
|
||||
// compute the pseudorange (no rx time offset correction)
|
||||
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
||||
// convert to meters
|
||||
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
||||
// update the pseudorange object
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
||||
// Save the estimated RX time (no RX clock offset correction yet!)
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
||||
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
||||
}
|
||||
|
||||
if(d_dump == true)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
try
|
||||
{
|
||||
double tmp_double;
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
tmp_double = current_gnss_synchro[i].RX_time;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = current_gnss_synchro[i].PRN;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
}
|
||||
catch (const std::ifstream::failure& e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
out[i][n_outputs] = current_gnss_synchro[i];
|
||||
}
|
||||
|
||||
n_outputs++;
|
||||
}
|
||||
|
||||
// Move RX time
|
||||
T_rx_s = T_rx_s + T_rx_step_s;
|
||||
// pop old elements from queue
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
while (static_cast<double>(d_gnss_synchro_history_queue[i].front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue[i].front().fs) < (T_rx_s - past_history_s))
|
||||
{
|
||||
d_gnss_synchro_history_queue[i].pop_front();
|
||||
}
|
||||
}
|
||||
}
|
||||
} while(channel_history_ok == true && noutput_items > n_outputs);
|
||||
|
||||
// Multi-rate consume!
|
||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||
{
|
||||
consume(i, n_consume[i]); // which input, how many items
|
||||
}
|
||||
{
|
||||
consume(i, n_consume[i]); // which input, how many items
|
||||
}
|
||||
|
||||
return n_outputs;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user