mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 15:23:04 +00:00 
			
		
		
		
	Add unscented filter to nonlinear_filtering library and add associated unit test
This commit is contained in:
		| @@ -1,10 +1,12 @@ | ||||
| /*! | ||||
|  * \file cubature_filter.cc | ||||
|  * \brief Interface of a library with Bayesian noise statistic estimation | ||||
|  * \brief Interface of a library for nonlinear tracking algorithms | ||||
|  * | ||||
|  * Cubature_Filter implements the functionality of the Cubature Kalman | ||||
|  * Filter, which uses multidimensional cubature rules to estimate the | ||||
|  * time evolution of a nonlinear system. | ||||
|  * time evolution of a nonlinear system. Unscented_filter implements | ||||
|  * an Unscented Kalman Filter which uses Unscented Transform rules to | ||||
|  * perform a similar estimation. | ||||
|  * | ||||
|  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  | ||||
|  * Transactions on Automatic Control, 54(6):1254–1269,2009. | ||||
| @@ -38,8 +40,9 @@ | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "cubature_filter.h" | ||||
| #include "nonlinear_tracking.h" | ||||
|  | ||||
| /***************** CUBATURE KALMAN FILTER *****************/ | ||||
|  | ||||
| Cubature_filter::Cubature_filter() | ||||
| { | ||||
| @@ -113,11 +116,11 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma | ||||
|         P_x_pred = P_x_pred + Xi_pred*Xi_pred.t(); | ||||
|     } | ||||
|      | ||||
|     // Estimate predicted state and error covariance | ||||
|     // Compute predicted mean and error covariance | ||||
|     x_pred = x_pred / ((float) np); | ||||
|     P_x_pred = P_x_pred / ((float) np) - x_pred*x_pred.t() + noise_covariance; | ||||
|  | ||||
|     // Store predicted state and error covariance | ||||
|     // Store predicted mean and error covariance | ||||
|     x_pred_out = x_pred; | ||||
|     P_x_pred_out = P_x_pred; | ||||
| } | ||||
| @@ -135,7 +138,7 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& | ||||
|     // Generator Matrix | ||||
|     arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx)); | ||||
|  | ||||
|     // Evaluate predicted measurement and covariances | ||||
|     // Initialize estimated predicted measurement and covariances | ||||
|     arma::mat z_pred = arma::zeros(nz,1); | ||||
|     arma::mat P_zz_pred = arma::zeros(nz,nz); | ||||
|     arma::mat P_xz_pred = arma::zeros(nx,nz); | ||||
| @@ -156,15 +159,15 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& | ||||
|         P_xz_pred = P_xz_pred + Xi_pred*Zi_pred.t(); | ||||
|     } | ||||
|  | ||||
|     // Estimate measurement covariance and cross covariances | ||||
|     // Compute measurement mean, covariance and cross covariance | ||||
|     z_pred = z_pred / ((float) np); | ||||
|     P_zz_pred = P_zz_pred / ((float) np) - z_pred*z_pred.t() + noise_covariance; | ||||
|     P_xz_pred = P_xz_pred / ((float) np) - x_pred*z_pred.t(); | ||||
|  | ||||
|     // Estimate cubature Kalman gain | ||||
|     // Compute cubature Kalman gain | ||||
|     arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred); | ||||
|  | ||||
|     // Estimate and store the updated state and error covariance | ||||
|     // Compute and store the updated mean and error covariance | ||||
|     x_est = x_pred + W_k*(z_upd - z_pred); | ||||
|     P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t(); | ||||
| } | ||||
| @@ -188,3 +191,180 @@ arma::mat Cubature_filter::get_P_x_est() const | ||||
| { | ||||
|     return P_x_est; | ||||
| } | ||||
| /***************** END CUBATURE KALMAN FILTER *****************/ | ||||
|  | ||||
| /***************** UNSCENTED KALMAN FILTER *****************/ | ||||
|  | ||||
| Unscented_filter::Unscented_filter() | ||||
| { | ||||
|     int nx = 1; | ||||
|     x_pred_out = arma::zeros(nx, 1); | ||||
|     P_x_pred_out = arma::eye(nx, nx) * (nx + 1); | ||||
|  | ||||
|     x_est = x_pred_out; | ||||
|     P_x_est = P_x_pred_out; | ||||
| } | ||||
|  | ||||
| Unscented_filter::Unscented_filter(int nx) | ||||
| { | ||||
|     x_pred_out = arma::zeros(nx, 1); | ||||
|     P_x_pred_out = arma::eye(nx, nx) * (nx + 1); | ||||
|  | ||||
|     x_est = x_pred_out; | ||||
|     P_x_est = P_x_pred_out; | ||||
| } | ||||
|  | ||||
| Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0) | ||||
| { | ||||
|     x_pred_out = x_pred_0; | ||||
|     P_x_pred_out = P_x_pred_0; | ||||
|  | ||||
|     x_est = x_pred_out; | ||||
|     P_x_est = P_x_pred_out; | ||||
| } | ||||
|  | ||||
| Unscented_filter::~Unscented_filter() = default; | ||||
|  | ||||
| void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0) | ||||
| { | ||||
|     x_pred_out = x_pred_0; | ||||
|     P_x_pred_out = P_x_pred_0; | ||||
|  | ||||
|     x_est = x_pred_out; | ||||
|     P_x_est = P_x_pred_out; | ||||
| } | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * Perform the prediction step of the Unscented Kalman filter | ||||
|  */ | ||||
| void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance) | ||||
| { | ||||
|     // Compute number of sigma points | ||||
|     int nx = x_post.n_elem; | ||||
|     int np = 2 * nx + 1; | ||||
|  | ||||
|     float alpha = 0.001; | ||||
|     float kappa = 0.0; | ||||
|     float beta = 2.0; | ||||
|  | ||||
|     float lambda = std::pow(alpha,2.0)*(((float) nx) + kappa) - ((float) nx); | ||||
|  | ||||
|     // Compute UT Weights | ||||
|     float W0_m = lambda / (((float) nx) + lambda); | ||||
|     float W0_c = lambda / (((float) nx) + lambda) + (1 - std::pow(alpha,2.0) + beta); | ||||
|     float Wi_m = 1.0 / (2.0 * (((float) nx) + lambda)); | ||||
|  | ||||
|     // Propagate and evaluate sigma points | ||||
|     arma::mat Xi_fact = arma::zeros(nx,nx); | ||||
|     arma::mat Xi_post = arma::zeros(nx,np); | ||||
|     arma::mat Xi_pred = arma::zeros(nx,np); | ||||
|  | ||||
|  | ||||
|     Xi_post.col(0) = x_post; | ||||
|     Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0)); | ||||
|     for (uint8_t i = 1; i <= nx; i++) | ||||
|     { | ||||
|         Xi_fact = std::sqrt(((float) nx) + lambda) * arma::sqrtmat_sympd(P_x_post); | ||||
|         Xi_post.col(i) = x_post + Xi_fact.col(i-1); | ||||
|         Xi_post.col(i+nx) = x_post - Xi_fact.col(i-1); | ||||
|  | ||||
|         Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));  | ||||
|         Xi_pred.col(i+nx) = (*transition_fcn)(Xi_post.col(i+nx));  | ||||
|     } | ||||
|  | ||||
|     // Compute predicted mean | ||||
|     arma::vec x_pred = W0_m*Xi_pred.col(0) + Wi_m*arma::sum(Xi_pred.cols(1,np-1),1); | ||||
|  | ||||
|     // Compute predicted error covariance | ||||
|     arma::mat P_x_pred = W0_c*((Xi_pred.col(0)-x_pred) * (Xi_pred.col(0).t()-x_pred.t())); | ||||
|     for (uint8_t i = 1; i < np; i++) | ||||
|     { | ||||
|         P_x_pred = P_x_pred + Wi_m*((Xi_pred.col(i)-x_pred) * (Xi_pred.col(i).t()-x_pred.t())); | ||||
|     } | ||||
|     P_x_pred = P_x_pred + noise_covariance; | ||||
|  | ||||
|     // Store predicted mean and error covariance | ||||
|     x_pred_out = x_pred; | ||||
|     P_x_pred_out = P_x_pred; | ||||
| } | ||||
|  | ||||
| /* | ||||
|  * Perform the update step of the Unscented Kalman filter | ||||
|  */ | ||||
| void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance) | ||||
| { | ||||
|     // Compute number of sigma points | ||||
|     int nx = x_pred.n_elem; | ||||
|     int nz = z_upd.n_elem; | ||||
|     int np = 2 * nx + 1; | ||||
|  | ||||
|     float alpha = 0.001; | ||||
|     float kappa = 0.0; | ||||
|     float beta = 2.0; | ||||
|  | ||||
|     float lambda = std::pow(alpha,2.0)*(((float) nx) + kappa) - ((float) nx); | ||||
|  | ||||
|     // Compute UT Weights | ||||
|     float W0_m = lambda / (((float) nx) + lambda); | ||||
|     float W0_c = lambda / (((float) nx) + lambda) + (1 - std::pow(alpha,2.0) + beta); | ||||
|     float Wi_m = 1.0 / (2.0 * (((float) nx) + lambda)); | ||||
|  | ||||
|     // Propagate and evaluate sigma points | ||||
|     arma::mat Xi_fact = arma::zeros(nx,nx); | ||||
|     arma::mat Xi_pred = arma::zeros(nx,np); | ||||
|     arma::mat Zi_pred = arma::zeros(nz,np); | ||||
|  | ||||
|     Xi_pred.col(0) = x_pred; | ||||
|     Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0)); | ||||
|     for (uint8_t i = 1; i <= nx; i++) | ||||
|     { | ||||
|         Xi_fact = std::sqrt(((float) nx) + lambda) * arma::sqrtmat_sympd(P_x_pred); | ||||
|         Xi_pred.col(i) = x_pred + Xi_fact.col(i-1); | ||||
|         Xi_pred.col(i+nx) = x_pred - Xi_fact.col(i-1); | ||||
|  | ||||
|         Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));  | ||||
|         Zi_pred.col(i+nx) = (*measurement_fcn)(Xi_pred.col(i+nx));  | ||||
|     } | ||||
|  | ||||
|     // Compute measurement mean | ||||
|     arma::mat z_pred = W0_m*Zi_pred.col(0) + Wi_m*arma::sum(Zi_pred.cols(1,np-1),1); | ||||
|  | ||||
|     // Compute measurement covariance and cross covariance | ||||
|     arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t())); | ||||
|     arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t())); | ||||
|     for (uint8_t i = 0; i < np; i++) | ||||
|     { | ||||
|         P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t())); | ||||
|         P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t())); | ||||
|     } | ||||
|     P_zz_pred = P_zz_pred + noise_covariance; | ||||
|  | ||||
|     // Estimate cubature Kalman gain | ||||
|     arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred); | ||||
|  | ||||
|     // Estimate and store the updated mean and error covariance | ||||
|     x_est = x_pred + W_k*(z_upd - z_pred); | ||||
|     P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t(); | ||||
| } | ||||
|  | ||||
| arma::mat Unscented_filter::get_x_pred() const | ||||
| { | ||||
|     return x_pred_out; | ||||
| } | ||||
|  | ||||
| arma::mat Unscented_filter::get_P_x_pred() const | ||||
| { | ||||
|     return P_x_pred_out; | ||||
| } | ||||
|  | ||||
| arma::mat Unscented_filter::get_x_est() const | ||||
| { | ||||
|     return x_est; | ||||
| } | ||||
|  | ||||
| arma::mat Unscented_filter::get_P_x_est() const | ||||
| { | ||||
|     return P_x_est; | ||||
| } | ||||
| /***************** END UNSCENTED KALMAN FILTER *****************/ | ||||
|   | ||||
| @@ -1,10 +1,12 @@ | ||||
| /*! | ||||
|  * \file cubature_filter.h | ||||
|  * \brief Interface of a library with Bayesian noise statistic estimation | ||||
|  * \file nonlinear_tracking.h | ||||
|  * \brief Interface of a library for nonlinear tracking algorithms | ||||
|  * | ||||
|  * Cubature_Filter implements the functionality of the Cubature Kalman | ||||
|  * Filter, which uses multidimensional cubature rules to estimate the | ||||
|  * time evolution of a nonlinear system. | ||||
|  * time evolution of a nonlinear system. Unscented_filter implements | ||||
|  * an Unscented Kalman Filter which uses Unscented Transform rules to | ||||
|  * perform a similar estimation. | ||||
|  * | ||||
|  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  | ||||
|  * Transactions on Automatic Control, 54(6):1254–1269,2009. | ||||
| @@ -38,8 +40,8 @@ | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GNSS_SDR_CUBATURE_FILTER_H_ | ||||
| #define GNSS_SDR_CUBATURE_FILTER_H_ | ||||
| #ifndef GNSS_SDR_NONLINEAR_TRACKING_H_ | ||||
| #define GNSS_SDR_NONLINEAR_TRACKING_H_ | ||||
|  | ||||
| #include <armadillo> | ||||
| #include <gnuradio/gr_complex.h> | ||||
| @@ -81,4 +83,33 @@ private: | ||||
|     arma::mat P_x_est; | ||||
| }; | ||||
|  | ||||
| class Unscented_filter | ||||
| { | ||||
| public: | ||||
|     // Constructors and destructors | ||||
|     Unscented_filter(); | ||||
|     Unscented_filter(int nx); | ||||
|     Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0); | ||||
|     ~Unscented_filter(); | ||||
|  | ||||
|     // Reinitialization function | ||||
|     void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0); | ||||
|  | ||||
|     // Prediction and estimation | ||||
|     void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance); | ||||
|     void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance); | ||||
|  | ||||
|     // Getters | ||||
|     arma::mat get_x_pred() const; | ||||
|     arma::mat get_P_x_pred() const; | ||||
|     arma::mat get_x_est() const; | ||||
|     arma::mat get_P_x_est() const; | ||||
|  | ||||
| private: | ||||
|     arma::vec x_pred_out; | ||||
|     arma::mat P_x_pred_out; | ||||
|     arma::vec x_est; | ||||
|     arma::mat P_x_est; | ||||
| }; | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -782,6 +782,7 @@ if(NOT ENABLE_PACKAGING AND NOT ENABLE_FPGA) | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/unscented_filter_test.cc | ||||
|     ) | ||||
|     if(${FILESYSTEM_FOUND}) | ||||
|         target_compile_definitions(trk_test PRIVATE -DHAS_STD_FILESYSTEM=1) | ||||
|   | ||||
| @@ -100,6 +100,7 @@ DECLARE_string(log_dir); | ||||
|  | ||||
| #include "unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/unscented_filter_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/galileo_e1_dll_pll_veml_tracking_test.cc" | ||||
|   | ||||
| @@ -0,0 +1,157 @@ | ||||
| /*! | ||||
|  * \file unscented_filter_test.cc | ||||
|  * \brief  This file implements numerical accuracy test for the CKF library. | ||||
|  * \author Gerald LaMountain, 2019. gerald(at)ece.neu.edu | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "nonlinear_tracking.h" | ||||
| #include <armadillo> | ||||
| #include <gtest/gtest.h> | ||||
| #include <random> | ||||
|  | ||||
| #define UNSCENTED_TEST_N_TRIALS 10 | ||||
| #define UNSCENTED_TEST_TOLERANCE 10 | ||||
|  | ||||
| class Transition_Model_UKF : public Model_Function { | ||||
|     public: | ||||
|         Transition_Model_UKF(arma::mat kf_F) {coeff_mat = kf_F;}; | ||||
|         virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;}; | ||||
|     private: | ||||
|         arma::mat coeff_mat; | ||||
| }; | ||||
|  | ||||
| class Measurement_Model_UKF : public Model_Function { | ||||
|     public: | ||||
|         Measurement_Model_UKF(arma::mat kf_H) {coeff_mat = kf_H;}; | ||||
|         virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;}; | ||||
|     private: | ||||
|         arma::mat coeff_mat; | ||||
| }; | ||||
|  | ||||
| TEST(UnscentedFilterComputationTest, UnscentedFilterTest) | ||||
| { | ||||
|     Unscented_filter kf_unscented; | ||||
|  | ||||
|     arma::vec kf_x; | ||||
|     arma::mat kf_P_x; | ||||
|  | ||||
|     arma::vec kf_x_pre; | ||||
|     arma::mat kf_P_x_pre; | ||||
|  | ||||
|     arma::vec ukf_x_pre; | ||||
|     arma::mat ukf_P_x_pre; | ||||
|  | ||||
|     arma::vec kf_x_post; | ||||
|     arma::mat kf_P_x_post; | ||||
|  | ||||
|     arma::vec ukf_x_post; | ||||
|     arma::mat ukf_P_x_post; | ||||
|  | ||||
|     arma::mat kf_F; | ||||
|     arma::mat kf_H; | ||||
|  | ||||
|     arma::mat kf_Q; | ||||
|     arma::mat kf_R; | ||||
|  | ||||
|     arma::vec eta; | ||||
|     arma::vec nu; | ||||
|  | ||||
|     arma::vec kf_y; | ||||
|     arma::mat kf_P_y; | ||||
|     arma::mat kf_K; | ||||
|  | ||||
|     Model_Function* transition_function; | ||||
|     Model_Function* measurement_function; | ||||
|  | ||||
|     //--- Perform initializations ------------------------------ | ||||
|  | ||||
|     std::random_device r; | ||||
|     std::default_random_engine e1(r()); | ||||
|     std::normal_distribution<float> normal_dist(0, 5); | ||||
|     std::uniform_real_distribution<float> uniform_dist(0.1, 5.0); | ||||
|  | ||||
|     uint8_t nx = 0; | ||||
|     uint8_t ny = 0; | ||||
|  | ||||
|     for (uint16_t k = 0; k < UNSCENTED_TEST_N_TRIALS; k++) | ||||
|         { | ||||
|             nx = std::rand() % 5 + 1; | ||||
|             ny = std::rand() % 5 + 1; | ||||
|  | ||||
|             kf_x = arma::randn<arma::vec>(nx,1); | ||||
|  | ||||
|             kf_P_x_post = 5.0 * arma::diagmat(arma::randu<arma::vec>(nx,1)); | ||||
|             kf_x_post = arma::mvnrnd(kf_x, kf_P_x_post); | ||||
|  | ||||
|             kf_unscented.initialize(kf_x_post, kf_P_x_post); | ||||
|  | ||||
|             // Prediction Step | ||||
|             kf_F = arma::randu<arma::mat>(nx,nx); | ||||
|             kf_Q = arma::diagmat(arma::randu<arma::vec>(nx,1)); | ||||
|  | ||||
|             transition_function = new Transition_Model_UKF(kf_F); | ||||
|             arma::mat ttx = (*transition_function)(kf_x_post); | ||||
|  | ||||
|             kf_unscented.predict_sequential(kf_x_post,kf_P_x_post,transition_function,kf_Q); | ||||
|  | ||||
|             ukf_x_pre = kf_unscented.get_x_pred(); | ||||
|             ukf_P_x_pre = kf_unscented.get_P_x_pred(); | ||||
|  | ||||
|             kf_x_pre = kf_F * kf_x_post; | ||||
|             kf_P_x_pre = kf_F * kf_P_x_post * kf_F.t() + kf_Q; | ||||
|  | ||||
|             EXPECT_TRUE(arma::approx_equal(ukf_x_pre, kf_x_pre, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||
|             EXPECT_TRUE(arma::approx_equal(ukf_P_x_pre, kf_P_x_pre, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||
|  | ||||
|             // Update Step | ||||
|             kf_H = arma::randu<arma::mat>(ny,nx); | ||||
|             kf_R = arma::diagmat(arma::randu<arma::vec>(ny,1)); | ||||
|  | ||||
|             eta = arma::mvnrnd(arma::zeros<arma::vec>(nx,1),kf_Q); | ||||
|             nu = arma::mvnrnd(arma::zeros<arma::vec>(ny,1),kf_R); | ||||
|  | ||||
|             kf_y = kf_H*(kf_F*kf_x + eta) + nu; | ||||
|  | ||||
|             measurement_function = new Measurement_Model_UKF(kf_H); | ||||
|             kf_unscented.update_sequential(kf_y,kf_x_pre,kf_P_x_pre,measurement_function,kf_R); | ||||
|  | ||||
|             ukf_x_post = kf_unscented.get_x_est(); | ||||
|             ukf_P_x_post = kf_unscented.get_P_x_est(); | ||||
|  | ||||
|             kf_P_y = kf_H * kf_P_x_pre * kf_H.t() + kf_R; | ||||
|             kf_K = (kf_P_x_pre * kf_H.t()) * arma::inv(kf_P_y); | ||||
|  | ||||
|             kf_x_post = kf_x_pre + kf_K * (kf_y - kf_H * kf_x_pre); | ||||
|             kf_P_x_post = (arma::eye(nx,nx) - kf_K * kf_H) * kf_P_x_pre; | ||||
|  | ||||
|             EXPECT_TRUE(arma::approx_equal(ukf_x_post, kf_x_post, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||
|             EXPECT_TRUE(arma::approx_equal(ukf_P_x_post, kf_P_x_post, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||
|  | ||||
|             delete transition_function; | ||||
|             delete measurement_function; | ||||
|         } | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Gerald LaMountain
					Gerald LaMountain