mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 23:33:03 +00:00 
			
		
		
		
	Add unscented filter to nonlinear_filtering library and add associated unit test
This commit is contained in:
		| @@ -1,10 +1,12 @@ | |||||||
| /*! | /*! | ||||||
|  * \file cubature_filter.cc |  * \file cubature_filter.cc | ||||||
|  * \brief Interface of a library with Bayesian noise statistic estimation |  * \brief Interface of a library for nonlinear tracking algorithms | ||||||
|  * |  * | ||||||
|  * Cubature_Filter implements the functionality of the Cubature Kalman |  * Cubature_Filter implements the functionality of the Cubature Kalman | ||||||
|  * Filter, which uses multidimensional cubature rules to estimate the |  * Filter, which uses multidimensional cubature rules to estimate the | ||||||
|  * time evolution of a nonlinear system. |  * time evolution of a nonlinear system. Unscented_filter implements | ||||||
|  |  * an Unscented Kalman Filter which uses Unscented Transform rules to | ||||||
|  |  * perform a similar estimation. | ||||||
|  * |  * | ||||||
|  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  |  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  | ||||||
|  * Transactions on Automatic Control, 54(6):1254–1269,2009. |  * Transactions on Automatic Control, 54(6):1254–1269,2009. | ||||||
| @@ -38,8 +40,9 @@ | |||||||
|  * ------------------------------------------------------------------------- |  * ------------------------------------------------------------------------- | ||||||
|  */ |  */ | ||||||
|  |  | ||||||
| #include "cubature_filter.h" | #include "nonlinear_tracking.h" | ||||||
|  |  | ||||||
|  | /***************** CUBATURE KALMAN FILTER *****************/ | ||||||
|  |  | ||||||
| Cubature_filter::Cubature_filter() | Cubature_filter::Cubature_filter() | ||||||
| { | { | ||||||
| @@ -113,11 +116,11 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma | |||||||
|         P_x_pred = P_x_pred + Xi_pred*Xi_pred.t(); |         P_x_pred = P_x_pred + Xi_pred*Xi_pred.t(); | ||||||
|     } |     } | ||||||
|      |      | ||||||
|     // Estimate predicted state and error covariance |     // Compute predicted mean and error covariance | ||||||
|     x_pred = x_pred / ((float) np); |     x_pred = x_pred / ((float) np); | ||||||
|     P_x_pred = P_x_pred / ((float) np) - x_pred*x_pred.t() + noise_covariance; |     P_x_pred = P_x_pred / ((float) np) - x_pred*x_pred.t() + noise_covariance; | ||||||
|  |  | ||||||
|     // Store predicted state and error covariance |     // Store predicted mean and error covariance | ||||||
|     x_pred_out = x_pred; |     x_pred_out = x_pred; | ||||||
|     P_x_pred_out = P_x_pred; |     P_x_pred_out = P_x_pred; | ||||||
| } | } | ||||||
| @@ -135,7 +138,7 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& | |||||||
|     // Generator Matrix |     // Generator Matrix | ||||||
|     arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx)); |     arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx)); | ||||||
|  |  | ||||||
|     // Evaluate predicted measurement and covariances |     // Initialize estimated predicted measurement and covariances | ||||||
|     arma::mat z_pred = arma::zeros(nz,1); |     arma::mat z_pred = arma::zeros(nz,1); | ||||||
|     arma::mat P_zz_pred = arma::zeros(nz,nz); |     arma::mat P_zz_pred = arma::zeros(nz,nz); | ||||||
|     arma::mat P_xz_pred = arma::zeros(nx,nz); |     arma::mat P_xz_pred = arma::zeros(nx,nz); | ||||||
| @@ -156,15 +159,15 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& | |||||||
|         P_xz_pred = P_xz_pred + Xi_pred*Zi_pred.t(); |         P_xz_pred = P_xz_pred + Xi_pred*Zi_pred.t(); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     // Estimate measurement covariance and cross covariances |     // Compute measurement mean, covariance and cross covariance | ||||||
|     z_pred = z_pred / ((float) np); |     z_pred = z_pred / ((float) np); | ||||||
|     P_zz_pred = P_zz_pred / ((float) np) - z_pred*z_pred.t() + noise_covariance; |     P_zz_pred = P_zz_pred / ((float) np) - z_pred*z_pred.t() + noise_covariance; | ||||||
|     P_xz_pred = P_xz_pred / ((float) np) - x_pred*z_pred.t(); |     P_xz_pred = P_xz_pred / ((float) np) - x_pred*z_pred.t(); | ||||||
|  |  | ||||||
|     // Estimate cubature Kalman gain |     // Compute cubature Kalman gain | ||||||
|     arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred); |     arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred); | ||||||
|  |  | ||||||
|     // Estimate and store the updated state and error covariance |     // Compute and store the updated mean and error covariance | ||||||
|     x_est = x_pred + W_k*(z_upd - z_pred); |     x_est = x_pred + W_k*(z_upd - z_pred); | ||||||
|     P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t(); |     P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t(); | ||||||
| } | } | ||||||
| @@ -188,3 +191,180 @@ arma::mat Cubature_filter::get_P_x_est() const | |||||||
| { | { | ||||||
|     return P_x_est; |     return P_x_est; | ||||||
| } | } | ||||||
|  | /***************** END CUBATURE KALMAN FILTER *****************/ | ||||||
|  |  | ||||||
|  | /***************** UNSCENTED KALMAN FILTER *****************/ | ||||||
|  |  | ||||||
|  | Unscented_filter::Unscented_filter() | ||||||
|  | { | ||||||
|  |     int nx = 1; | ||||||
|  |     x_pred_out = arma::zeros(nx, 1); | ||||||
|  |     P_x_pred_out = arma::eye(nx, nx) * (nx + 1); | ||||||
|  |  | ||||||
|  |     x_est = x_pred_out; | ||||||
|  |     P_x_est = P_x_pred_out; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | Unscented_filter::Unscented_filter(int nx) | ||||||
|  | { | ||||||
|  |     x_pred_out = arma::zeros(nx, 1); | ||||||
|  |     P_x_pred_out = arma::eye(nx, nx) * (nx + 1); | ||||||
|  |  | ||||||
|  |     x_est = x_pred_out; | ||||||
|  |     P_x_est = P_x_pred_out; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0) | ||||||
|  | { | ||||||
|  |     x_pred_out = x_pred_0; | ||||||
|  |     P_x_pred_out = P_x_pred_0; | ||||||
|  |  | ||||||
|  |     x_est = x_pred_out; | ||||||
|  |     P_x_est = P_x_pred_out; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | Unscented_filter::~Unscented_filter() = default; | ||||||
|  |  | ||||||
|  | void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0) | ||||||
|  | { | ||||||
|  |     x_pred_out = x_pred_0; | ||||||
|  |     P_x_pred_out = P_x_pred_0; | ||||||
|  |  | ||||||
|  |     x_est = x_pred_out; | ||||||
|  |     P_x_est = P_x_pred_out; | ||||||
|  | } | ||||||
|  |  | ||||||
|  |  | ||||||
|  | /* | ||||||
|  |  * Perform the prediction step of the Unscented Kalman filter | ||||||
|  |  */ | ||||||
|  | void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance) | ||||||
|  | { | ||||||
|  |     // Compute number of sigma points | ||||||
|  |     int nx = x_post.n_elem; | ||||||
|  |     int np = 2 * nx + 1; | ||||||
|  |  | ||||||
|  |     float alpha = 0.001; | ||||||
|  |     float kappa = 0.0; | ||||||
|  |     float beta = 2.0; | ||||||
|  |  | ||||||
|  |     float lambda = std::pow(alpha,2.0)*(((float) nx) + kappa) - ((float) nx); | ||||||
|  |  | ||||||
|  |     // Compute UT Weights | ||||||
|  |     float W0_m = lambda / (((float) nx) + lambda); | ||||||
|  |     float W0_c = lambda / (((float) nx) + lambda) + (1 - std::pow(alpha,2.0) + beta); | ||||||
|  |     float Wi_m = 1.0 / (2.0 * (((float) nx) + lambda)); | ||||||
|  |  | ||||||
|  |     // Propagate and evaluate sigma points | ||||||
|  |     arma::mat Xi_fact = arma::zeros(nx,nx); | ||||||
|  |     arma::mat Xi_post = arma::zeros(nx,np); | ||||||
|  |     arma::mat Xi_pred = arma::zeros(nx,np); | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     Xi_post.col(0) = x_post; | ||||||
|  |     Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0)); | ||||||
|  |     for (uint8_t i = 1; i <= nx; i++) | ||||||
|  |     { | ||||||
|  |         Xi_fact = std::sqrt(((float) nx) + lambda) * arma::sqrtmat_sympd(P_x_post); | ||||||
|  |         Xi_post.col(i) = x_post + Xi_fact.col(i-1); | ||||||
|  |         Xi_post.col(i+nx) = x_post - Xi_fact.col(i-1); | ||||||
|  |  | ||||||
|  |         Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));  | ||||||
|  |         Xi_pred.col(i+nx) = (*transition_fcn)(Xi_post.col(i+nx));  | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     // Compute predicted mean | ||||||
|  |     arma::vec x_pred = W0_m*Xi_pred.col(0) + Wi_m*arma::sum(Xi_pred.cols(1,np-1),1); | ||||||
|  |  | ||||||
|  |     // Compute predicted error covariance | ||||||
|  |     arma::mat P_x_pred = W0_c*((Xi_pred.col(0)-x_pred) * (Xi_pred.col(0).t()-x_pred.t())); | ||||||
|  |     for (uint8_t i = 1; i < np; i++) | ||||||
|  |     { | ||||||
|  |         P_x_pred = P_x_pred + Wi_m*((Xi_pred.col(i)-x_pred) * (Xi_pred.col(i).t()-x_pred.t())); | ||||||
|  |     } | ||||||
|  |     P_x_pred = P_x_pred + noise_covariance; | ||||||
|  |  | ||||||
|  |     // Store predicted mean and error covariance | ||||||
|  |     x_pred_out = x_pred; | ||||||
|  |     P_x_pred_out = P_x_pred; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | /* | ||||||
|  |  * Perform the update step of the Unscented Kalman filter | ||||||
|  |  */ | ||||||
|  | void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance) | ||||||
|  | { | ||||||
|  |     // Compute number of sigma points | ||||||
|  |     int nx = x_pred.n_elem; | ||||||
|  |     int nz = z_upd.n_elem; | ||||||
|  |     int np = 2 * nx + 1; | ||||||
|  |  | ||||||
|  |     float alpha = 0.001; | ||||||
|  |     float kappa = 0.0; | ||||||
|  |     float beta = 2.0; | ||||||
|  |  | ||||||
|  |     float lambda = std::pow(alpha,2.0)*(((float) nx) + kappa) - ((float) nx); | ||||||
|  |  | ||||||
|  |     // Compute UT Weights | ||||||
|  |     float W0_m = lambda / (((float) nx) + lambda); | ||||||
|  |     float W0_c = lambda / (((float) nx) + lambda) + (1 - std::pow(alpha,2.0) + beta); | ||||||
|  |     float Wi_m = 1.0 / (2.0 * (((float) nx) + lambda)); | ||||||
|  |  | ||||||
|  |     // Propagate and evaluate sigma points | ||||||
|  |     arma::mat Xi_fact = arma::zeros(nx,nx); | ||||||
|  |     arma::mat Xi_pred = arma::zeros(nx,np); | ||||||
|  |     arma::mat Zi_pred = arma::zeros(nz,np); | ||||||
|  |  | ||||||
|  |     Xi_pred.col(0) = x_pred; | ||||||
|  |     Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0)); | ||||||
|  |     for (uint8_t i = 1; i <= nx; i++) | ||||||
|  |     { | ||||||
|  |         Xi_fact = std::sqrt(((float) nx) + lambda) * arma::sqrtmat_sympd(P_x_pred); | ||||||
|  |         Xi_pred.col(i) = x_pred + Xi_fact.col(i-1); | ||||||
|  |         Xi_pred.col(i+nx) = x_pred - Xi_fact.col(i-1); | ||||||
|  |  | ||||||
|  |         Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));  | ||||||
|  |         Zi_pred.col(i+nx) = (*measurement_fcn)(Xi_pred.col(i+nx));  | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     // Compute measurement mean | ||||||
|  |     arma::mat z_pred = W0_m*Zi_pred.col(0) + Wi_m*arma::sum(Zi_pred.cols(1,np-1),1); | ||||||
|  |  | ||||||
|  |     // Compute measurement covariance and cross covariance | ||||||
|  |     arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t())); | ||||||
|  |     arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t())); | ||||||
|  |     for (uint8_t i = 0; i < np; i++) | ||||||
|  |     { | ||||||
|  |         P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t())); | ||||||
|  |         P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t())); | ||||||
|  |     } | ||||||
|  |     P_zz_pred = P_zz_pred + noise_covariance; | ||||||
|  |  | ||||||
|  |     // Estimate cubature Kalman gain | ||||||
|  |     arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred); | ||||||
|  |  | ||||||
|  |     // Estimate and store the updated mean and error covariance | ||||||
|  |     x_est = x_pred + W_k*(z_upd - z_pred); | ||||||
|  |     P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t(); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | arma::mat Unscented_filter::get_x_pred() const | ||||||
|  | { | ||||||
|  |     return x_pred_out; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | arma::mat Unscented_filter::get_P_x_pred() const | ||||||
|  | { | ||||||
|  |     return P_x_pred_out; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | arma::mat Unscented_filter::get_x_est() const | ||||||
|  | { | ||||||
|  |     return x_est; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | arma::mat Unscented_filter::get_P_x_est() const | ||||||
|  | { | ||||||
|  |     return P_x_est; | ||||||
|  | } | ||||||
|  | /***************** END UNSCENTED KALMAN FILTER *****************/ | ||||||
|   | |||||||
| @@ -1,10 +1,12 @@ | |||||||
| /*! | /*! | ||||||
|  * \file cubature_filter.h |  * \file nonlinear_tracking.h | ||||||
|  * \brief Interface of a library with Bayesian noise statistic estimation |  * \brief Interface of a library for nonlinear tracking algorithms | ||||||
|  * |  * | ||||||
|  * Cubature_Filter implements the functionality of the Cubature Kalman |  * Cubature_Filter implements the functionality of the Cubature Kalman | ||||||
|  * Filter, which uses multidimensional cubature rules to estimate the |  * Filter, which uses multidimensional cubature rules to estimate the | ||||||
|  * time evolution of a nonlinear system. |  * time evolution of a nonlinear system. Unscented_filter implements | ||||||
|  |  * an Unscented Kalman Filter which uses Unscented Transform rules to | ||||||
|  |  * perform a similar estimation. | ||||||
|  * |  * | ||||||
|  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  |  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  | ||||||
|  * Transactions on Automatic Control, 54(6):1254–1269,2009. |  * Transactions on Automatic Control, 54(6):1254–1269,2009. | ||||||
| @@ -38,8 +40,8 @@ | |||||||
|  * ------------------------------------------------------------------------- |  * ------------------------------------------------------------------------- | ||||||
|  */ |  */ | ||||||
|  |  | ||||||
| #ifndef GNSS_SDR_CUBATURE_FILTER_H_ | #ifndef GNSS_SDR_NONLINEAR_TRACKING_H_ | ||||||
| #define GNSS_SDR_CUBATURE_FILTER_H_ | #define GNSS_SDR_NONLINEAR_TRACKING_H_ | ||||||
|  |  | ||||||
| #include <armadillo> | #include <armadillo> | ||||||
| #include <gnuradio/gr_complex.h> | #include <gnuradio/gr_complex.h> | ||||||
| @@ -81,4 +83,33 @@ private: | |||||||
|     arma::mat P_x_est; |     arma::mat P_x_est; | ||||||
| }; | }; | ||||||
|  |  | ||||||
|  | class Unscented_filter | ||||||
|  | { | ||||||
|  | public: | ||||||
|  |     // Constructors and destructors | ||||||
|  |     Unscented_filter(); | ||||||
|  |     Unscented_filter(int nx); | ||||||
|  |     Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0); | ||||||
|  |     ~Unscented_filter(); | ||||||
|  |  | ||||||
|  |     // Reinitialization function | ||||||
|  |     void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0); | ||||||
|  |  | ||||||
|  |     // Prediction and estimation | ||||||
|  |     void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance); | ||||||
|  |     void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance); | ||||||
|  |  | ||||||
|  |     // Getters | ||||||
|  |     arma::mat get_x_pred() const; | ||||||
|  |     arma::mat get_P_x_pred() const; | ||||||
|  |     arma::mat get_x_est() const; | ||||||
|  |     arma::mat get_P_x_est() const; | ||||||
|  |  | ||||||
|  | private: | ||||||
|  |     arma::vec x_pred_out; | ||||||
|  |     arma::mat P_x_pred_out; | ||||||
|  |     arma::vec x_est; | ||||||
|  |     arma::mat P_x_est; | ||||||
|  | }; | ||||||
|  |  | ||||||
| #endif | #endif | ||||||
|   | |||||||
| @@ -782,6 +782,7 @@ if(NOT ENABLE_PACKAGING AND NOT ENABLE_FPGA) | |||||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc |         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc | ||||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc |         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc | ||||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc |         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc | ||||||
|  |         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/unscented_filter_test.cc | ||||||
|     ) |     ) | ||||||
|     if(${FILESYSTEM_FOUND}) |     if(${FILESYSTEM_FOUND}) | ||||||
|         target_compile_definitions(trk_test PRIVATE -DHAS_STD_FILESYSTEM=1) |         target_compile_definitions(trk_test PRIVATE -DHAS_STD_FILESYSTEM=1) | ||||||
|   | |||||||
| @@ -100,6 +100,7 @@ DECLARE_string(log_dir); | |||||||
|  |  | ||||||
| #include "unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc" | #include "unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc" | ||||||
| #include "unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc" | #include "unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc" | ||||||
|  | #include "unit-tests/signal-processing-blocks/tracking/unscented_filter_test.cc" | ||||||
| #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc" | #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc" | ||||||
| #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_test.cc" | #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_test.cc" | ||||||
| #include "unit-tests/signal-processing-blocks/tracking/galileo_e1_dll_pll_veml_tracking_test.cc" | #include "unit-tests/signal-processing-blocks/tracking/galileo_e1_dll_pll_veml_tracking_test.cc" | ||||||
|   | |||||||
| @@ -0,0 +1,157 @@ | |||||||
|  | /*! | ||||||
|  |  * \file unscented_filter_test.cc | ||||||
|  |  * \brief  This file implements numerical accuracy test for the CKF library. | ||||||
|  |  * \author Gerald LaMountain, 2019. gerald(at)ece.neu.edu | ||||||
|  |  * | ||||||
|  |  * ------------------------------------------------------------------------- | ||||||
|  |  * | ||||||
|  |  * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors) | ||||||
|  |  * | ||||||
|  |  * GNSS-SDR is a software defined Global Navigation | ||||||
|  |  *          Satellite Systems receiver | ||||||
|  |  * | ||||||
|  |  * This file is part of GNSS-SDR. | ||||||
|  |  * | ||||||
|  |  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||||
|  |  * it under the terms of the GNU General Public License as published by | ||||||
|  |  * the Free Software Foundation, either version 3 of the License, or | ||||||
|  |  * (at your option) any later version. | ||||||
|  |  * | ||||||
|  |  * GNSS-SDR is distributed in the hope that it will be useful, | ||||||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||||
|  |  * GNU General Public License for more details. | ||||||
|  |  * | ||||||
|  |  * You should have received a copy of the GNU General Public License | ||||||
|  |  * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>. | ||||||
|  |  * | ||||||
|  |  * ------------------------------------------------------------------------- | ||||||
|  |  */ | ||||||
|  |  | ||||||
|  | #include "nonlinear_tracking.h" | ||||||
|  | #include <armadillo> | ||||||
|  | #include <gtest/gtest.h> | ||||||
|  | #include <random> | ||||||
|  |  | ||||||
|  | #define UNSCENTED_TEST_N_TRIALS 10 | ||||||
|  | #define UNSCENTED_TEST_TOLERANCE 10 | ||||||
|  |  | ||||||
|  | class Transition_Model_UKF : public Model_Function { | ||||||
|  |     public: | ||||||
|  |         Transition_Model_UKF(arma::mat kf_F) {coeff_mat = kf_F;}; | ||||||
|  |         virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;}; | ||||||
|  |     private: | ||||||
|  |         arma::mat coeff_mat; | ||||||
|  | }; | ||||||
|  |  | ||||||
|  | class Measurement_Model_UKF : public Model_Function { | ||||||
|  |     public: | ||||||
|  |         Measurement_Model_UKF(arma::mat kf_H) {coeff_mat = kf_H;}; | ||||||
|  |         virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;}; | ||||||
|  |     private: | ||||||
|  |         arma::mat coeff_mat; | ||||||
|  | }; | ||||||
|  |  | ||||||
|  | TEST(UnscentedFilterComputationTest, UnscentedFilterTest) | ||||||
|  | { | ||||||
|  |     Unscented_filter kf_unscented; | ||||||
|  |  | ||||||
|  |     arma::vec kf_x; | ||||||
|  |     arma::mat kf_P_x; | ||||||
|  |  | ||||||
|  |     arma::vec kf_x_pre; | ||||||
|  |     arma::mat kf_P_x_pre; | ||||||
|  |  | ||||||
|  |     arma::vec ukf_x_pre; | ||||||
|  |     arma::mat ukf_P_x_pre; | ||||||
|  |  | ||||||
|  |     arma::vec kf_x_post; | ||||||
|  |     arma::mat kf_P_x_post; | ||||||
|  |  | ||||||
|  |     arma::vec ukf_x_post; | ||||||
|  |     arma::mat ukf_P_x_post; | ||||||
|  |  | ||||||
|  |     arma::mat kf_F; | ||||||
|  |     arma::mat kf_H; | ||||||
|  |  | ||||||
|  |     arma::mat kf_Q; | ||||||
|  |     arma::mat kf_R; | ||||||
|  |  | ||||||
|  |     arma::vec eta; | ||||||
|  |     arma::vec nu; | ||||||
|  |  | ||||||
|  |     arma::vec kf_y; | ||||||
|  |     arma::mat kf_P_y; | ||||||
|  |     arma::mat kf_K; | ||||||
|  |  | ||||||
|  |     Model_Function* transition_function; | ||||||
|  |     Model_Function* measurement_function; | ||||||
|  |  | ||||||
|  |     //--- Perform initializations ------------------------------ | ||||||
|  |  | ||||||
|  |     std::random_device r; | ||||||
|  |     std::default_random_engine e1(r()); | ||||||
|  |     std::normal_distribution<float> normal_dist(0, 5); | ||||||
|  |     std::uniform_real_distribution<float> uniform_dist(0.1, 5.0); | ||||||
|  |  | ||||||
|  |     uint8_t nx = 0; | ||||||
|  |     uint8_t ny = 0; | ||||||
|  |  | ||||||
|  |     for (uint16_t k = 0; k < UNSCENTED_TEST_N_TRIALS; k++) | ||||||
|  |         { | ||||||
|  |             nx = std::rand() % 5 + 1; | ||||||
|  |             ny = std::rand() % 5 + 1; | ||||||
|  |  | ||||||
|  |             kf_x = arma::randn<arma::vec>(nx,1); | ||||||
|  |  | ||||||
|  |             kf_P_x_post = 5.0 * arma::diagmat(arma::randu<arma::vec>(nx,1)); | ||||||
|  |             kf_x_post = arma::mvnrnd(kf_x, kf_P_x_post); | ||||||
|  |  | ||||||
|  |             kf_unscented.initialize(kf_x_post, kf_P_x_post); | ||||||
|  |  | ||||||
|  |             // Prediction Step | ||||||
|  |             kf_F = arma::randu<arma::mat>(nx,nx); | ||||||
|  |             kf_Q = arma::diagmat(arma::randu<arma::vec>(nx,1)); | ||||||
|  |  | ||||||
|  |             transition_function = new Transition_Model_UKF(kf_F); | ||||||
|  |             arma::mat ttx = (*transition_function)(kf_x_post); | ||||||
|  |  | ||||||
|  |             kf_unscented.predict_sequential(kf_x_post,kf_P_x_post,transition_function,kf_Q); | ||||||
|  |  | ||||||
|  |             ukf_x_pre = kf_unscented.get_x_pred(); | ||||||
|  |             ukf_P_x_pre = kf_unscented.get_P_x_pred(); | ||||||
|  |  | ||||||
|  |             kf_x_pre = kf_F * kf_x_post; | ||||||
|  |             kf_P_x_pre = kf_F * kf_P_x_post * kf_F.t() + kf_Q; | ||||||
|  |  | ||||||
|  |             EXPECT_TRUE(arma::approx_equal(ukf_x_pre, kf_x_pre, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||||
|  |             EXPECT_TRUE(arma::approx_equal(ukf_P_x_pre, kf_P_x_pre, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||||
|  |  | ||||||
|  |             // Update Step | ||||||
|  |             kf_H = arma::randu<arma::mat>(ny,nx); | ||||||
|  |             kf_R = arma::diagmat(arma::randu<arma::vec>(ny,1)); | ||||||
|  |  | ||||||
|  |             eta = arma::mvnrnd(arma::zeros<arma::vec>(nx,1),kf_Q); | ||||||
|  |             nu = arma::mvnrnd(arma::zeros<arma::vec>(ny,1),kf_R); | ||||||
|  |  | ||||||
|  |             kf_y = kf_H*(kf_F*kf_x + eta) + nu; | ||||||
|  |  | ||||||
|  |             measurement_function = new Measurement_Model_UKF(kf_H); | ||||||
|  |             kf_unscented.update_sequential(kf_y,kf_x_pre,kf_P_x_pre,measurement_function,kf_R); | ||||||
|  |  | ||||||
|  |             ukf_x_post = kf_unscented.get_x_est(); | ||||||
|  |             ukf_P_x_post = kf_unscented.get_P_x_est(); | ||||||
|  |  | ||||||
|  |             kf_P_y = kf_H * kf_P_x_pre * kf_H.t() + kf_R; | ||||||
|  |             kf_K = (kf_P_x_pre * kf_H.t()) * arma::inv(kf_P_y); | ||||||
|  |  | ||||||
|  |             kf_x_post = kf_x_pre + kf_K * (kf_y - kf_H * kf_x_pre); | ||||||
|  |             kf_P_x_post = (arma::eye(nx,nx) - kf_K * kf_H) * kf_P_x_pre; | ||||||
|  |  | ||||||
|  |             EXPECT_TRUE(arma::approx_equal(ukf_x_post, kf_x_post, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||||
|  |             EXPECT_TRUE(arma::approx_equal(ukf_P_x_post, kf_P_x_post, "absdiff", UNSCENTED_TEST_TOLERANCE)); | ||||||
|  |  | ||||||
|  |             delete transition_function; | ||||||
|  |             delete measurement_function; | ||||||
|  |         } | ||||||
|  | } | ||||||
		Reference in New Issue
	
	Block a user
	 Gerald LaMountain
					Gerald LaMountain