mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 04:00:34 +00:00
Merge branch 'next' into testing
This commit is contained in:
commit
0aa178b3ab
@ -17,7 +17,7 @@
|
|||||||
#
|
#
|
||||||
|
|
||||||
|
|
||||||
set(INPUT_FILTER_GR_BLOCKS_SOURCES
|
set(INPUT_FILTER_GR_BLOCKS_SOURCES
|
||||||
beamformer.cc
|
beamformer.cc
|
||||||
pulse_blanking_cc.cc
|
pulse_blanking_cc.cc
|
||||||
notch_cc.cc
|
notch_cc.cc
|
||||||
@ -29,6 +29,8 @@ include_directories(
|
|||||||
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
||||||
${GNURADIO_BLOCKS_INCLUDE_DIRS}
|
${GNURADIO_BLOCKS_INCLUDE_DIRS}
|
||||||
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
||||||
|
${GLOG_INCLUDE_DIRS}
|
||||||
|
${GFlags_INCLUDE_DIRS}
|
||||||
)
|
)
|
||||||
|
|
||||||
file(GLOB INPUT_FILTER_GR_BLOCKS_HEADERS "*.h")
|
file(GLOB INPUT_FILTER_GR_BLOCKS_HEADERS "*.h")
|
||||||
@ -39,5 +41,7 @@ source_group(Headers FILES ${INPUT_FILTER_GR_BLOCKS_HEADERS})
|
|||||||
target_link_libraries(input_filter_gr_blocks ${GNURADIO_FILTER_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${LOG4CPP_LIBRARIES})
|
target_link_libraries(input_filter_gr_blocks ${GNURADIO_FILTER_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${LOG4CPP_LIBRARIES})
|
||||||
|
|
||||||
if(NOT VOLK_GNSSSDR_FOUND)
|
if(NOT VOLK_GNSSSDR_FOUND)
|
||||||
add_dependencies(input_filter_gr_blocks volk_gnsssdr_module)
|
add_dependencies(input_filter_gr_blocks volk_gnsssdr_module glog-${glog_RELEASE})
|
||||||
|
else(NOT VOLK_GNSSSDR_FOUND)
|
||||||
|
add_dependencies(input_filter_gr_blocks glog-${glog_RELEASE})
|
||||||
endif(NOT VOLK_GNSSSDR_FOUND)
|
endif(NOT VOLK_GNSSSDR_FOUND)
|
||||||
|
@ -43,14 +43,15 @@
|
|||||||
using google::LogMessage;
|
using google::LogMessage;
|
||||||
|
|
||||||
notch_sptr make_notch_filter(float pfa, float p_c_factor,
|
notch_sptr make_notch_filter(float pfa, float p_c_factor,
|
||||||
int length_, int n_segments_est, int n_segments_reset)
|
int length_, int n_segments_est, int n_segments_reset)
|
||||||
{
|
{
|
||||||
return notch_sptr(new Notch(pfa, p_c_factor, length_, n_segments_est, n_segments_reset));
|
return notch_sptr(new Notch(pfa, p_c_factor, length_, n_segments_est, n_segments_reset));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n_segments_reset) : gr::block("Notch",
|
Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n_segments_reset) : gr::block("Notch",
|
||||||
gr::io_signature::make (1, 1, sizeof(gr_complex)),
|
gr::io_signature::make (1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make (1, 1, sizeof(gr_complex)))
|
gr::io_signature::make (1, 1, sizeof(gr_complex)))
|
||||||
{
|
{
|
||||||
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
|
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
|
||||||
set_alignment(std::max(1, alignment_multiple));
|
set_alignment(std::max(1, alignment_multiple));
|
||||||
@ -73,6 +74,7 @@ Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n
|
|||||||
last_out = gr_complex(0,0);
|
last_out = gr_complex(0,0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Notch::~Notch()
|
Notch::~Notch()
|
||||||
{
|
{
|
||||||
volk_free(c_samples);
|
volk_free(c_samples);
|
||||||
@ -95,57 +97,58 @@ int Notch::general_work(int noutput_items __attribute__((unused)), gr_vector_int
|
|||||||
float sig2dB = 0.0;
|
float sig2dB = 0.0;
|
||||||
float sig2lin = 0.0;
|
float sig2lin = 0.0;
|
||||||
lv_32fc_t dot_prod_;
|
lv_32fc_t dot_prod_;
|
||||||
gr_complex* in = (gr_complex *) input_items[0];
|
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
|
||||||
gr_complex* out = (gr_complex *) output_items[0];
|
gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
|
||||||
|
|
||||||
in++;
|
in++;
|
||||||
arma::cx_fvec signal_segment;
|
arma::cx_fvec signal_segment;
|
||||||
arma::cx_fvec signal_segment_fft;
|
arma::cx_fvec signal_segment_fft;
|
||||||
while((index_out + length_) < noutput_items)
|
while((index_out + length_) < noutput_items)
|
||||||
{
|
|
||||||
if((n_segments < n_segments_est) && (filter_state_ == false))
|
|
||||||
{
|
{
|
||||||
signal_segment = arma::cx_fvec(in, length_, false, false);
|
if((n_segments < n_segments_est) && (filter_state_ == false))
|
||||||
signal_segment_fft = arma::fft(signal_segment);
|
|
||||||
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
|
|
||||||
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
|
|
||||||
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / ((float) n_deg_fred);
|
|
||||||
noise_pow_est = (((float) n_segments) * noise_pow_est + sig2lin) / ((float)(n_segments + 1));
|
|
||||||
memcpy(out, in, sizeof(gr_complex) * length_);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
|
|
||||||
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
|
|
||||||
{
|
|
||||||
if(filter_state_ == false)
|
|
||||||
{
|
{
|
||||||
filter_state_ = true;
|
signal_segment = arma::cx_fvec(in, length_);
|
||||||
last_out = gr_complex(0,0);
|
signal_segment_fft = arma::fft(signal_segment);
|
||||||
|
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
|
||||||
|
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
|
||||||
|
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / (static_cast<float>(n_deg_fred) );
|
||||||
|
noise_pow_est = (static_cast<float>(n_segments) * noise_pow_est + sig2lin) / (static_cast<float>(n_segments + 1));
|
||||||
|
memcpy(out, in, sizeof(gr_complex) * length_);
|
||||||
}
|
}
|
||||||
volk_32fc_x2_multiply_conjugate_32fc(c_samples, in, (in - 1), length_);
|
|
||||||
volk_32fc_s32f_atan2_32f(angle_, c_samples, ((float)1.0), length_);
|
|
||||||
for(int aux = 0; aux < length_; aux++)
|
|
||||||
{
|
|
||||||
z_0 = std::exp(gr_complex(0,1) * (*(angle_ + aux)));
|
|
||||||
*(out + aux) = *(in + aux) - z_0 * (*(in + aux - 1)) + p_c_factor * z_0 * last_out;
|
|
||||||
last_out = *(out + aux);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
else
|
||||||
{
|
|
||||||
if (n_segments > n_segments_reset)
|
|
||||||
{
|
{
|
||||||
n_segments = 0;
|
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
|
||||||
|
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
|
||||||
|
{
|
||||||
|
if(filter_state_ == false)
|
||||||
|
{
|
||||||
|
filter_state_ = true;
|
||||||
|
last_out = gr_complex(0,0);
|
||||||
|
}
|
||||||
|
volk_32fc_x2_multiply_conjugate_32fc(c_samples, in, (in - 1), length_);
|
||||||
|
volk_32fc_s32f_atan2_32f(angle_, c_samples, static_cast<float>(1.0), length_);
|
||||||
|
for(int aux = 0; aux < length_; aux++)
|
||||||
|
{
|
||||||
|
z_0 = std::exp(gr_complex(0,1) * (*(angle_ + aux)));
|
||||||
|
*(out + aux) = *(in + aux) - z_0 * (*(in + aux - 1)) + p_c_factor * z_0 * last_out;
|
||||||
|
last_out = *(out + aux);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (n_segments > n_segments_reset)
|
||||||
|
{
|
||||||
|
n_segments = 0;
|
||||||
|
}
|
||||||
|
filter_state_ = false;
|
||||||
|
memcpy(out, in, sizeof(gr_complex) * length_);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
filter_state_ = false;
|
index_out += length_;
|
||||||
memcpy(out, in, sizeof(gr_complex) * length_);
|
n_segments++;
|
||||||
}
|
in += length_;
|
||||||
|
out += length_;
|
||||||
}
|
}
|
||||||
index_out += length_;
|
|
||||||
n_segments++;
|
|
||||||
in += length_;
|
|
||||||
out += length_;
|
|
||||||
}
|
|
||||||
consume_each(index_out);
|
consume_each(index_out);
|
||||||
return index_out;
|
return index_out;
|
||||||
}
|
}
|
||||||
|
@ -47,9 +47,10 @@ notch_lite_sptr make_notch_filter_lite(float p_c_factor, float pfa, int length_,
|
|||||||
return notch_lite_sptr(new NotchLite(p_c_factor, pfa, length_, n_segments_est, n_segments_reset, n_segments_coeff));
|
return notch_lite_sptr(new NotchLite(p_c_factor, pfa, length_, n_segments_est, n_segments_reset, n_segments_coeff));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff) : gr::block("NotchLite",
|
NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff) : gr::block("NotchLite",
|
||||||
gr::io_signature::make (1, 1, sizeof(gr_complex)),
|
gr::io_signature::make (1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make (1, 1, sizeof(gr_complex)))
|
gr::io_signature::make (1, 1, sizeof(gr_complex)))
|
||||||
{
|
{
|
||||||
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
|
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
|
||||||
set_alignment(std::max(1, alignment_multiple));
|
set_alignment(std::max(1, alignment_multiple));
|
||||||
@ -75,82 +76,84 @@ NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_es
|
|||||||
angle1 = 0.0;
|
angle1 = 0.0;
|
||||||
angle2 = 0.0;
|
angle2 = 0.0;
|
||||||
power_spect = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
|
power_spect = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
NotchLite::~NotchLite()
|
NotchLite::~NotchLite()
|
||||||
{
|
{
|
||||||
volk_free(power_spect);
|
volk_free(power_spect);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int NotchLite::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
int NotchLite::general_work(int noutput_items, gr_vector_int &ninput_items __attribute__((unused)),
|
||||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||||
{
|
{
|
||||||
int index_out = 0;
|
int index_out = 0;
|
||||||
float sig2dB = 0.0;
|
float sig2dB = 0.0;
|
||||||
float sig2lin = 0.0;
|
float sig2lin = 0.0;
|
||||||
lv_32fc_t dot_prod_;
|
lv_32fc_t dot_prod_;
|
||||||
gr_complex* in = (gr_complex *) input_items[0];
|
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
|
||||||
gr_complex* out = (gr_complex *) output_items[0];
|
gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
|
||||||
|
|
||||||
in++;
|
in++;
|
||||||
arma::cx_fvec signal_segment;
|
arma::cx_fvec signal_segment;
|
||||||
arma::cx_fvec signal_segment_fft;
|
arma::cx_fvec signal_segment_fft;
|
||||||
while((index_out + length_) < noutput_items)
|
while((index_out + length_) < noutput_items)
|
||||||
{
|
|
||||||
if((n_segments < n_segments_est) && (filter_state_ == false))
|
|
||||||
{
|
{
|
||||||
signal_segment = arma::cx_fvec(in, length_, false, false);
|
if((n_segments < n_segments_est) && (filter_state_ == false))
|
||||||
signal_segment_fft = arma::fft(signal_segment);
|
|
||||||
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
|
|
||||||
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
|
|
||||||
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / ((float) n_deg_fred);
|
|
||||||
noise_pow_est = (((float) n_segments) * noise_pow_est + sig2lin) / ((float)(n_segments + 1));
|
|
||||||
memcpy(out, in, sizeof(gr_complex) * length_);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
|
|
||||||
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
|
|
||||||
{
|
|
||||||
if(filter_state_ == false)
|
|
||||||
{
|
{
|
||||||
filter_state_ = true;
|
signal_segment = arma::cx_fvec(in, length_);
|
||||||
last_out = gr_complex(0,0);
|
signal_segment_fft = arma::fft(signal_segment);
|
||||||
n_segments_coeff = 0;
|
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
|
||||||
|
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
|
||||||
|
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / static_cast<float>(n_deg_fred);
|
||||||
|
noise_pow_est = (static_cast<float>(n_segments) * noise_pow_est + sig2lin) / static_cast<float>(n_segments + 1);
|
||||||
|
memcpy(out, in, sizeof(gr_complex) * length_);
|
||||||
}
|
}
|
||||||
if(n_segments_coeff == 0)
|
|
||||||
{
|
|
||||||
volk_32fc_x2_multiply_conjugate_32fc(&c_samples1, (in + 1), in, 1);
|
|
||||||
volk_32fc_s32f_atan2_32f(&angle1, &c_samples1, ((float)1.0), 1);
|
|
||||||
volk_32fc_x2_multiply_conjugate_32fc(&c_samples2, (in + length_ - 1), (in + length_ - 2), 1);
|
|
||||||
volk_32fc_s32f_atan2_32f(&angle2, &c_samples2, ((float)1.0), 1);
|
|
||||||
float angle_ = (angle1 + angle2) / 2.0;
|
|
||||||
z_0 = std::exp(gr_complex(0,1) * angle_);
|
|
||||||
}
|
|
||||||
for(int aux = 0; aux < length_; aux++)
|
|
||||||
{
|
|
||||||
*(out + aux) = *(in + aux) - z_0 * (*(in + aux - 1)) + p_c_factor * z_0 * last_out;
|
|
||||||
last_out = *(out + aux);
|
|
||||||
}
|
|
||||||
n_segments_coeff++;
|
|
||||||
n_segments_coeff = n_segments_coeff % n_segments_coeff_reset;
|
|
||||||
}
|
|
||||||
else
|
else
|
||||||
{
|
|
||||||
if (n_segments > n_segments_reset)
|
|
||||||
{
|
{
|
||||||
n_segments = 0;
|
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
|
||||||
|
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
|
||||||
|
{
|
||||||
|
if(filter_state_ == false)
|
||||||
|
{
|
||||||
|
filter_state_ = true;
|
||||||
|
last_out = gr_complex(0,0);
|
||||||
|
n_segments_coeff = 0;
|
||||||
|
}
|
||||||
|
if(n_segments_coeff == 0)
|
||||||
|
{
|
||||||
|
volk_32fc_x2_multiply_conjugate_32fc(&c_samples1, (in + 1), in, 1);
|
||||||
|
volk_32fc_s32f_atan2_32f(&angle1, &c_samples1, static_cast<float>(1.0), 1);
|
||||||
|
volk_32fc_x2_multiply_conjugate_32fc(&c_samples2, (in + length_ - 1), (in + length_ - 2), 1);
|
||||||
|
volk_32fc_s32f_atan2_32f(&angle2, &c_samples2, static_cast<float>(1.0), 1);
|
||||||
|
float angle_ = (angle1 + angle2) / 2.0;
|
||||||
|
z_0 = std::exp(gr_complex(0,1) * angle_);
|
||||||
|
}
|
||||||
|
for(int aux = 0; aux < length_; aux++)
|
||||||
|
{
|
||||||
|
*(out + aux) = *(in + aux) - z_0 * (*(in + aux - 1)) + p_c_factor * z_0 * last_out;
|
||||||
|
last_out = *(out + aux);
|
||||||
|
}
|
||||||
|
n_segments_coeff++;
|
||||||
|
n_segments_coeff = n_segments_coeff % n_segments_coeff_reset;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (n_segments > n_segments_reset)
|
||||||
|
{
|
||||||
|
n_segments = 0;
|
||||||
|
}
|
||||||
|
filter_state_ = false;
|
||||||
|
memcpy(out, in, sizeof(gr_complex) * length_);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
filter_state_ = false;
|
index_out += length_;
|
||||||
memcpy(out, in, sizeof(gr_complex) * length_);
|
n_segments++;
|
||||||
}
|
in += length_;
|
||||||
|
out += length_;
|
||||||
}
|
}
|
||||||
index_out += length_;
|
|
||||||
n_segments++;
|
|
||||||
in += length_;
|
|
||||||
out += length_;
|
|
||||||
}
|
|
||||||
consume_each(index_out);
|
consume_each(index_out);
|
||||||
return index_out;
|
return index_out;
|
||||||
}
|
}
|
||||||
|
@ -39,14 +39,15 @@
|
|||||||
using google::LogMessage;
|
using google::LogMessage;
|
||||||
|
|
||||||
pulse_blanking_cc_sptr make_pulse_blanking_cc(float pfa, int length_,
|
pulse_blanking_cc_sptr make_pulse_blanking_cc(float pfa, int length_,
|
||||||
int n_segments_est, int n_segments_reset)
|
int n_segments_est, int n_segments_reset)
|
||||||
{
|
{
|
||||||
return pulse_blanking_cc_sptr(new pulse_blanking_cc(pfa, length_, n_segments_est, n_segments_reset));
|
return pulse_blanking_cc_sptr(new pulse_blanking_cc(pfa, length_, n_segments_est, n_segments_reset));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset) : gr::block("pulse_blanking_cc",
|
pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset) : gr::block("pulse_blanking_cc",
|
||||||
gr::io_signature::make (1, 1, sizeof(gr_complex)),
|
gr::io_signature::make (1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make (1, 1, sizeof(gr_complex)))
|
gr::io_signature::make (1, 1, sizeof(gr_complex)))
|
||||||
{
|
{
|
||||||
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
|
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
|
||||||
set_alignment(std::max(1, alignment_multiple));
|
set_alignment(std::max(1, alignment_multiple));
|
||||||
@ -57,16 +58,17 @@ pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est,
|
|||||||
this->n_segments_est = n_segments_est;
|
this->n_segments_est = n_segments_est;
|
||||||
this->n_segments_reset = n_segments_reset;
|
this->n_segments_reset = n_segments_reset;
|
||||||
noise_power_estimation = 0.0;
|
noise_power_estimation = 0.0;
|
||||||
n_deg_fred = 2*length_;
|
n_deg_fred = 2 * length_;
|
||||||
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
|
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
|
||||||
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
|
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
|
||||||
zeros_ = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment()));
|
zeros_ = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment()));
|
||||||
for (int aux = 0; aux < length_; aux++)
|
for (int aux = 0; aux < length_; aux++)
|
||||||
{
|
{
|
||||||
zeros_[aux] = gr_complex(0, 0);
|
zeros_[aux] = gr_complex(0, 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
pulse_blanking_cc::~pulse_blanking_cc()
|
pulse_blanking_cc::~pulse_blanking_cc()
|
||||||
{
|
{
|
||||||
volk_free(zeros_);
|
volk_free(zeros_);
|
||||||
@ -83,42 +85,42 @@ void pulse_blanking_cc::forecast(int noutput_items __attribute__((unused)), gr_v
|
|||||||
int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
||||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||||
{
|
{
|
||||||
gr_complex *in = (gr_complex *) input_items[0];
|
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
|
||||||
gr_complex *out = (gr_complex *) output_items[0];
|
gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
|
||||||
float* magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment()));
|
float* magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment()));
|
||||||
volk_32fc_magnitude_squared_32f(magnitude, in, noutput_items);
|
volk_32fc_magnitude_squared_32f(magnitude, in, noutput_items);
|
||||||
int sample_index = 0;
|
int sample_index = 0;
|
||||||
float segment_energy;
|
float segment_energy;
|
||||||
while((sample_index + length_) < noutput_items)
|
while((sample_index + length_) < noutput_items)
|
||||||
{
|
|
||||||
volk_32f_accumulator_s32f(&segment_energy, (magnitude + sample_index), length_);
|
|
||||||
if((n_segments < n_segments_est) && (last_filtered == false))
|
|
||||||
{
|
{
|
||||||
noise_power_estimation = (((float) n_segments) * noise_power_estimation + segment_energy / ((float)n_deg_fred)) / ((float)(n_segments + 1));
|
volk_32f_accumulator_s32f(&segment_energy, (magnitude + sample_index), length_);
|
||||||
memcpy(out, in, sizeof(gr_complex)*length_);
|
if((n_segments < n_segments_est) && (last_filtered == false))
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
if((segment_energy/noise_power_estimation) > thres_)
|
|
||||||
{
|
|
||||||
memcpy(out, zeros_, sizeof(gr_complex)*length_);
|
|
||||||
last_filtered = true;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
memcpy(out, in, sizeof(gr_complex)*length_);
|
|
||||||
last_filtered = false;
|
|
||||||
if (n_segments > n_segments_reset)
|
|
||||||
{
|
{
|
||||||
n_segments = 0;
|
noise_power_estimation = ( static_cast<float>(n_segments) * noise_power_estimation + segment_energy / static_cast<float>(n_deg_fred) ) / static_cast<float>(n_segments + 1);
|
||||||
|
memcpy(out, in, sizeof(gr_complex) * length_);
|
||||||
}
|
}
|
||||||
}
|
else
|
||||||
|
{
|
||||||
|
if((segment_energy / noise_power_estimation) > thres_)
|
||||||
|
{
|
||||||
|
memcpy(out, zeros_, sizeof(gr_complex) * length_);
|
||||||
|
last_filtered = true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
memcpy(out, in, sizeof(gr_complex) * length_);
|
||||||
|
last_filtered = false;
|
||||||
|
if (n_segments > n_segments_reset)
|
||||||
|
{
|
||||||
|
n_segments = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
in += length_;
|
||||||
|
out += length_;
|
||||||
|
sample_index += length_;
|
||||||
|
n_segments++;
|
||||||
}
|
}
|
||||||
in+=length_;
|
|
||||||
out+=length_;
|
|
||||||
sample_index+=length_;
|
|
||||||
n_segments++;
|
|
||||||
}
|
|
||||||
volk_free(magnitude);
|
volk_free(magnitude);
|
||||||
consume_each(sample_index);
|
consume_each(sample_index);
|
||||||
return sample_index;
|
return sample_index;
|
||||||
|
@ -192,7 +192,9 @@ install(FILES
|
|||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_prefs.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_prefs.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_complex.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_complex.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
|
||||||
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/saturation_arithmetic.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
|
||||||
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse_intrinsics.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
|
||||||
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h
|
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h
|
||||||
|
@ -49,6 +49,8 @@
|
|||||||
# define __VOLK_ATTR_UNUSED __attribute__((unused))
|
# define __VOLK_ATTR_UNUSED __attribute__((unused))
|
||||||
# define __VOLK_ATTR_INLINE __attribute__((always_inline))
|
# define __VOLK_ATTR_INLINE __attribute__((always_inline))
|
||||||
# define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
|
# define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
|
||||||
|
# define __VOLK_ASM __asm__
|
||||||
|
# define __VOLK_VOLATILE __volatile__
|
||||||
# if __GNUC__ >= 4
|
# if __GNUC__ >= 4
|
||||||
# define __VOLK_ATTR_EXPORT __attribute__((visibility("default")))
|
# define __VOLK_ATTR_EXPORT __attribute__((visibility("default")))
|
||||||
# define __VOLK_ATTR_IMPORT __attribute__((visibility("default")))
|
# define __VOLK_ATTR_IMPORT __attribute__((visibility("default")))
|
||||||
@ -63,6 +65,8 @@
|
|||||||
# define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
|
# define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
|
||||||
# define __VOLK_ATTR_EXPORT __declspec(dllexport)
|
# define __VOLK_ATTR_EXPORT __declspec(dllexport)
|
||||||
# define __VOLK_ATTR_IMPORT __declspec(dllimport)
|
# define __VOLK_ATTR_IMPORT __declspec(dllimport)
|
||||||
|
# define __VOLK_ASM __asm
|
||||||
|
# define __VOLK_VOLATILE
|
||||||
#else
|
#else
|
||||||
# define __VOLK_ATTR_ALIGNED(x)
|
# define __VOLK_ATTR_ALIGNED(x)
|
||||||
# define __VOLK_ATTR_UNUSED
|
# define __VOLK_ATTR_UNUSED
|
||||||
@ -70,6 +74,8 @@
|
|||||||
# define __VOLK_ATTR_DEPRECATED
|
# define __VOLK_ATTR_DEPRECATED
|
||||||
# define __VOLK_ATTR_EXPORT
|
# define __VOLK_ATTR_EXPORT
|
||||||
# define __VOLK_ATTR_IMPORT
|
# define __VOLK_ATTR_IMPORT
|
||||||
|
# define __VOLK_ASM __asm__
|
||||||
|
# define __VOLK_VOLATILE __volatile__
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
@ -717,11 +717,11 @@ bool run_volk_gnsssdr_tests(volk_gnsssdr_func_desc_t desc,
|
|||||||
{
|
{
|
||||||
if(both_sigs[j].is_signed)
|
if(both_sigs[j].is_signed)
|
||||||
{
|
{
|
||||||
fail = icompare((int16_t *) test_data[generic_offset][j], (int16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
|
fail = icompare((int8_t *) test_data[generic_offset][j], (int8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
fail = icompare((uint16_t *) test_data[generic_offset][j], (uint16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
|
fail = icompare((uint8_t *) test_data[generic_offset][j], (uint8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
|
@ -19,6 +19,10 @@
|
|||||||
#ifndef GNSS_SDR_VOLK_QA_UTILS_H
|
#ifndef GNSS_SDR_VOLK_QA_UTILS_H
|
||||||
#define GNSS_SDR_VOLK_QA_UTILS_H
|
#define GNSS_SDR_VOLK_QA_UTILS_H
|
||||||
|
|
||||||
|
#ifdef __APPLE__
|
||||||
|
#define _DARWIN_C_SOURCE
|
||||||
|
#endif
|
||||||
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
|
@ -42,7 +42,7 @@ struct VOLK_CPU volk_gnsssdr_cpu;
|
|||||||
#if ((__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 2) || (__clang_major__ >= 3)) && defined(HAVE_XGETBV)
|
#if ((__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 2) || (__clang_major__ >= 3)) && defined(HAVE_XGETBV)
|
||||||
static inline unsigned long long _xgetbv(unsigned int index){
|
static inline unsigned long long _xgetbv(unsigned int index){
|
||||||
unsigned int eax, edx;
|
unsigned int eax, edx;
|
||||||
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
|
__VOLK_ASM __VOLK_VOLATILE ("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
|
||||||
return ((unsigned long long)edx << 32) | eax;
|
return ((unsigned long long)edx << 32) | eax;
|
||||||
}
|
}
|
||||||
#define __xgetbv() _xgetbv(0)
|
#define __xgetbv() _xgetbv(0)
|
||||||
|
@ -46,345 +46,342 @@ using google::LogMessage;
|
|||||||
|
|
||||||
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history)
|
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history)
|
||||||
{
|
{
|
||||||
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
|
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
|
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
|
||||||
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
|
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
|
||||||
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
d_nchannels = nchannels;
|
d_nchannels = nchannels;
|
||||||
d_dump_filename = dump_filename;
|
d_dump_filename = dump_filename;
|
||||||
history_deep = deep_history;
|
history_deep = deep_history;
|
||||||
T_rx_s = 0.0;
|
T_rx_s = 0.0;
|
||||||
T_rx_step_s = 1e-3;// todo: move to gnss-sdr config
|
T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
{
|
|
||||||
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
|
|
||||||
}
|
|
||||||
//todo: this is a gnuradio scheduler hack.
|
|
||||||
// Migrate the queues to gnuradio set_history to see if the scheduler can handle
|
|
||||||
// the multiple output flow
|
|
||||||
d_max_noutputs = 100;
|
|
||||||
this->set_min_noutput_items(100);
|
|
||||||
|
|
||||||
// ############# ENABLE DATA FILE LOG #################
|
|
||||||
if (d_dump == true)
|
|
||||||
{
|
|
||||||
if (d_dump_file.is_open() == false)
|
|
||||||
{
|
{
|
||||||
try
|
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
|
||||||
{
|
}
|
||||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
|
// todo: this is a gnuradio scheduler hack.
|
||||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
// Migrate the queues to gnuradio set_history to see if the scheduler can handle
|
||||||
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
|
// the multiple output flow
|
||||||
}
|
d_max_noutputs = 100;
|
||||||
catch (const std::ifstream::failure & e)
|
this->set_min_noutput_items(100);
|
||||||
{
|
|
||||||
LOG(WARNING) << "Exception opening observables dump file " << e.what();
|
// ############# ENABLE DATA FILE LOG #################
|
||||||
}
|
if (d_dump == true)
|
||||||
|
{
|
||||||
|
if (d_dump_file.is_open() == false)
|
||||||
|
{
|
||||||
|
try
|
||||||
|
{
|
||||||
|
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
|
||||||
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||||
|
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
|
||||||
|
}
|
||||||
|
catch (const std::ifstream::failure & e)
|
||||||
|
{
|
||||||
|
LOG(WARNING) << "Exception opening observables dump file " << e.what();
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
hybrid_observables_cc::~hybrid_observables_cc()
|
hybrid_observables_cc::~hybrid_observables_cc()
|
||||||
{
|
{
|
||||||
if (d_dump_file.is_open() == true)
|
if (d_dump_file.is_open() == true)
|
||||||
{
|
{
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
d_dump_file.close();
|
d_dump_file.close();
|
||||||
}
|
}
|
||||||
catch(const std::exception & ex)
|
catch(const std::exception & ex)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
|
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
|
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
|
||||||
{
|
{
|
||||||
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
|
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
|
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
|
||||||
{
|
{
|
||||||
return (a.Tracking_sample_counter) < (b);
|
return (a.Tracking_sample_counter) < (b);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
|
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
|
||||||
{
|
{
|
||||||
return (((double)a.Tracking_sample_counter+a.Code_phase_samples)/(double)a.fs) < (b);
|
return (((double)a.Tracking_sample_counter+a.Code_phase_samples)/(double)a.fs) < (b);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
|
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
|
||||||
{
|
{
|
||||||
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
|
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
|
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
|
||||||
{
|
{
|
||||||
return (a.TOW_at_current_symbol_s) < (b);
|
return (a.TOW_at_current_symbol_s) < (b);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int hybrid_observables_cc::general_work (int noutput_items,
|
int hybrid_observables_cc::general_work (int noutput_items __attribute__((unused)),
|
||||||
gr_vector_int &ninput_items,
|
gr_vector_int &ninput_items,
|
||||||
gr_vector_const_void_star &input_items,
|
gr_vector_const_void_star &input_items,
|
||||||
gr_vector_void_star &output_items)
|
gr_vector_void_star &output_items)
|
||||||
{
|
{
|
||||||
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer
|
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
|
||||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Get the output pointer
|
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
|
||||||
int n_outputs = 0;
|
int n_outputs = 0;
|
||||||
int n_consume[d_nchannels];
|
int n_consume[d_nchannels];
|
||||||
double past_history_s = 100e-3;
|
double past_history_s = 100e-3;
|
||||||
|
|
||||||
Gnss_Synchro current_gnss_synchro[d_nchannels];
|
Gnss_Synchro current_gnss_synchro[d_nchannels];
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* 1. Read the GNSS SYNCHRO objects from available channels.
|
* 1. Read the GNSS SYNCHRO objects from available channels.
|
||||||
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
|
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
|
||||||
* Record all synchronization data into queues
|
* Record all synchronization data into queues
|
||||||
*/
|
*/
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
{
|
|
||||||
n_consume[i] = ninput_items[i];// full throttle
|
|
||||||
for (int j = 0; j < n_consume[i]; j++)
|
|
||||||
{
|
{
|
||||||
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
n_consume[i] = ninput_items[i];// full throttle
|
||||||
}
|
for (int j = 0; j < n_consume[i]; j++)
|
||||||
//std::cout<<"push["<<i<<"] items "<<n_consume[i]
|
|
||||||
/// <<" latest T_rx: "<<(double)in[i][ninput_items[i]-1].Tracking_sample_counter/(double)in[i][ninput_items[i]-1].fs
|
|
||||||
// <<" [s] q size: "
|
|
||||||
// <<d_gnss_synchro_history_queue[i].size()
|
|
||||||
// <<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool channel_history_ok;
|
|
||||||
do
|
|
||||||
{
|
|
||||||
channel_history_ok = true;
|
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
|
||||||
if (d_gnss_synchro_history_queue[i].size() < history_deep)
|
|
||||||
{
|
|
||||||
channel_history_ok = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
if (channel_history_ok == true)
|
|
||||||
{
|
|
||||||
std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter;
|
|
||||||
std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter;
|
|
||||||
|
|
||||||
//1. If the RX time is not set, set the Rx time
|
|
||||||
if (T_rx_s == 0)
|
|
||||||
{
|
|
||||||
//0. Read a gnss_synchro snapshot from the queue and store it in a map
|
|
||||||
std::map<int,Gnss_Synchro> gnss_synchro_map;
|
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
{
|
||||||
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
|
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
||||||
d_gnss_synchro_history_queue[i].front().Channel_ID,
|
|
||||||
d_gnss_synchro_history_queue[i].front()));
|
|
||||||
}
|
}
|
||||||
gnss_synchro_map_iter = min_element(gnss_synchro_map.begin(),
|
//std::cout<<"push["<<i<<"] items "<<n_consume[i]
|
||||||
gnss_synchro_map.end(),
|
/// <<" latest T_rx: "<<(double)in[i][ninput_items[i]-1].Tracking_sample_counter/(double)in[i][ninput_items[i]-1].fs
|
||||||
Hybrid_pairCompare_gnss_synchro_sample_counter);
|
// <<" [s] q size: "
|
||||||
T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / (double)gnss_synchro_map_iter->second.fs;
|
// <<d_gnss_synchro_history_queue[i].size()
|
||||||
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
// <<std::endl;
|
||||||
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
}
|
||||||
}
|
|
||||||
|
|
||||||
//2. Realign RX time in all valid channels
|
bool channel_history_ok;
|
||||||
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; //container for the aligned set of observables for the selected T_rx
|
do
|
||||||
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; //container for the previous observable values to interpolate
|
{
|
||||||
//shift channels history to match the reference TOW
|
channel_history_ok = true;
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
{
|
|
||||||
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(),
|
|
||||||
d_gnss_synchro_history_queue[i].end(),
|
|
||||||
T_rx_s,
|
|
||||||
Hybrid_valueCompare_gnss_synchro_receiver_time);
|
|
||||||
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].end())
|
|
||||||
{
|
{
|
||||||
if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
if (d_gnss_synchro_history_queue[i].size() < history_deep)
|
||||||
{
|
|
||||||
double T_rx_channel = (double)gnss_synchro_deque_iter->Tracking_sample_counter / (double)gnss_synchro_deque_iter->fs;
|
|
||||||
double delta_T_rx_s = T_rx_channel - T_rx_s;
|
|
||||||
|
|
||||||
//check that T_rx difference is less than a threshold (the correlation interval)
|
|
||||||
if (delta_T_rx_s * 1000.0 < (double)gnss_synchro_deque_iter->correlation_length_ms)
|
|
||||||
{
|
{
|
||||||
//record the word structure in a map for pseudorange computation
|
channel_history_ok = false;
|
||||||
//save the previous observable
|
}
|
||||||
int distance = std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
|
|
||||||
if (distance > 0)
|
}
|
||||||
{
|
if (channel_history_ok == true)
|
||||||
if (d_gnss_synchro_history_queue[i].at(distance-1).Flag_valid_word)
|
{
|
||||||
|
std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter;
|
||||||
|
std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter;
|
||||||
|
|
||||||
|
// 1. If the RX time is not set, set the Rx time
|
||||||
|
if (T_rx_s == 0)
|
||||||
|
{
|
||||||
|
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
|
||||||
|
std::map<int,Gnss_Synchro> gnss_synchro_map;
|
||||||
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
{
|
{
|
||||||
double T_rx_channel_prev = (double)d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter / (double)gnss_synchro_deque_iter->fs;
|
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].front().Channel_ID,
|
||||||
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
d_gnss_synchro_history_queue[i].front()));
|
||||||
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
}
|
||||||
|
gnss_synchro_map_iter = min_element(gnss_synchro_map.begin(),
|
||||||
|
gnss_synchro_map.end(),
|
||||||
|
Hybrid_pairCompare_gnss_synchro_sample_counter);
|
||||||
|
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||||
|
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
||||||
|
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
||||||
|
}
|
||||||
|
|
||||||
|
// 2. Realign RX time in all valid channels
|
||||||
|
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
|
||||||
|
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
|
||||||
|
// shift channels history to match the reference TOW
|
||||||
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
|
{
|
||||||
|
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(),
|
||||||
|
d_gnss_synchro_history_queue[i].end(),
|
||||||
|
T_rx_s,
|
||||||
|
Hybrid_valueCompare_gnss_synchro_receiver_time);
|
||||||
|
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].end())
|
||||||
|
{
|
||||||
|
if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
||||||
|
{
|
||||||
|
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
||||||
|
double delta_T_rx_s = T_rx_channel - T_rx_s;
|
||||||
|
|
||||||
|
// check that T_rx difference is less than a threshold (the correlation interval)
|
||||||
|
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
|
||||||
|
{
|
||||||
|
// record the word structure in a map for pseudorange computation
|
||||||
|
// save the previous observable
|
||||||
|
int distance = std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
|
||||||
|
if (distance > 0)
|
||||||
|
{
|
||||||
|
if (d_gnss_synchro_history_queue[i].at(distance-1).Flag_valid_word)
|
||||||
|
{
|
||||||
|
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
||||||
|
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
||||||
|
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
||||||
|
{
|
||||||
|
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
|
||||||
|
d_gnss_synchro_history_queue[i].at(distance - 1)));
|
||||||
|
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||||
|
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
|
||||||
|
d_gnss_synchro_history_queue[i].at(distance - 1)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
//std::cout<<"ch["<<i<<"] delta_T_rx:"<<delta_T_rx_s*1000.0<<std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!realigned_gnss_synchro_map.empty())
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* 2.1 Use CURRENT set of measurements and find the nearest satellite
|
||||||
|
* common RX time algorithm
|
||||||
|
*/
|
||||||
|
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
||||||
|
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(),
|
||||||
|
realigned_gnss_synchro_map.end(),
|
||||||
|
Hybrid_pairCompare_gnss_synchro_d_TOW);
|
||||||
|
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||||
|
|
||||||
|
// compute interpolated TOW value at T_rx_s
|
||||||
|
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
||||||
|
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
||||||
|
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
||||||
|
|
||||||
|
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
||||||
|
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
||||||
|
|
||||||
|
double selected_T_rx_s = T_rx_s;
|
||||||
|
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
||||||
|
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
|
||||||
|
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
||||||
|
|
||||||
|
// Now compute RX time differences due to the PRN alignment in the correlators
|
||||||
|
double traveltime_ms;
|
||||||
|
double pseudorange_m;
|
||||||
|
double channel_T_rx_s;
|
||||||
|
double channel_fs_hz;
|
||||||
|
double channel_TOW_s;
|
||||||
|
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++)
|
||||||
|
{
|
||||||
|
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
||||||
|
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
||||||
|
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
||||||
|
// compute interpolated observation values
|
||||||
|
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
||||||
|
// TOW at the selected receiver time T_rx_s
|
||||||
|
int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
||||||
|
adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
||||||
|
|
||||||
|
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
||||||
|
|
||||||
|
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
||||||
|
|
||||||
|
// Doppler and Accumulated carrier phase
|
||||||
|
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
||||||
|
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
||||||
|
|
||||||
|
// compute the pseudorange (no rx time offset correction)
|
||||||
|
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
||||||
|
// convert to meters
|
||||||
|
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
||||||
|
// update the pseudorange object
|
||||||
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
||||||
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
||||||
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
||||||
|
// Save the estimated RX time (no RX clock offset correction yet!)
|
||||||
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
||||||
|
|
||||||
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
||||||
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(d_dump == true)
|
||||||
|
{
|
||||||
|
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||||
|
try
|
||||||
{
|
{
|
||||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
|
double tmp_double;
|
||||||
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
d_gnss_synchro_history_queue[i].at(distance-1)));
|
{
|
||||||
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
tmp_double = current_gnss_synchro[i].RX_time;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = current_gnss_synchro[i].PRN;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = current_gnss_synchro[i].Flag_valid_pseudorange;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
else
|
catch (const std::ifstream::failure& e)
|
||||||
{
|
{
|
||||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
||||||
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
|
|
||||||
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
|
|
||||||
d_gnss_synchro_history_queue[i].at(distance-1)));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
|
{
|
||||||
|
out[i][n_outputs] = current_gnss_synchro[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
n_outputs++;
|
||||||
}
|
}
|
||||||
else
|
|
||||||
|
// Move RX time
|
||||||
|
T_rx_s = T_rx_s + T_rx_step_s;
|
||||||
|
// pop old elements from queue
|
||||||
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
{
|
{
|
||||||
//std::cout<<"ch["<<i<<"] delta_T_rx:"<<delta_T_rx_s*1000.0<<std::endl;
|
while (static_cast<double>(d_gnss_synchro_history_queue[i].front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue[i].front().fs) < (T_rx_s - past_history_s))
|
||||||
|
{
|
||||||
|
d_gnss_synchro_history_queue[i].pop_front();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
} while(channel_history_ok == true && d_max_noutputs > n_outputs);
|
||||||
|
|
||||||
if(!realigned_gnss_synchro_map.empty())
|
// Multi-rate consume!
|
||||||
{
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
||||||
/*
|
{
|
||||||
* 2.1 Use CURRENT set of measurements and find the nearest satellite
|
consume(i, n_consume[i]); // which input, how many items
|
||||||
* common RX time algorithm
|
|
||||||
*/
|
|
||||||
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
|
||||||
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(),
|
|
||||||
realigned_gnss_synchro_map.end(),
|
|
||||||
Hybrid_pairCompare_gnss_synchro_d_TOW);
|
|
||||||
double ref_fs_hz = (double)gnss_synchro_map_iter->second.fs;
|
|
||||||
|
|
||||||
// compute interpolated TOW value at T_rx_s
|
|
||||||
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
||||||
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
|
||||||
double ref_adj_T_rx_s = (double)adj_obs.Tracking_sample_counter / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
|
||||||
|
|
||||||
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
||||||
double d_ref_T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
|
||||||
|
|
||||||
double selected_T_rx_s = T_rx_s;
|
|
||||||
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
||||||
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - ref_adj_T_rx_s)
|
|
||||||
* (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
|
||||||
|
|
||||||
// Now compute RX time differences due to the PRN alignment in the correlators
|
|
||||||
double traveltime_ms;
|
|
||||||
double pseudorange_m;
|
|
||||||
double channel_T_rx_s;
|
|
||||||
double channel_fs_hz;
|
|
||||||
double channel_TOW_s;
|
|
||||||
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++)
|
|
||||||
{
|
|
||||||
channel_fs_hz = (double)gnss_synchro_map_iter->second.fs;
|
|
||||||
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
||||||
channel_T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
|
||||||
// compute interpolated observation values
|
|
||||||
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
||||||
// TOW at the selected receiver time T_rx_s
|
|
||||||
int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
||||||
adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
|
||||||
|
|
||||||
double adj_T_rx_s = (double)adj_obs.Tracking_sample_counter / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
|
||||||
|
|
||||||
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
|
||||||
|
|
||||||
//Doppler and Accumulated carrier phase
|
|
||||||
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
|
||||||
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
|
||||||
|
|
||||||
//compute the pseudorange (no rx time offset correction)
|
|
||||||
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
|
||||||
//convert to meters
|
|
||||||
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
|
||||||
// update the pseudorange object
|
|
||||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
|
||||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
|
||||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
|
||||||
// Save the estimated RX time (no RX clock offset correction yet!)
|
|
||||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
|
||||||
|
|
||||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
|
||||||
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(d_dump == true)
|
|
||||||
{
|
|
||||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
|
||||||
try
|
|
||||||
{
|
|
||||||
double tmp_double;
|
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
|
||||||
tmp_double = current_gnss_synchro[i].RX_time;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
tmp_double = current_gnss_synchro[i].PRN;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
tmp_double = current_gnss_synchro[i].Flag_valid_pseudorange;
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
catch (const std::ifstream::failure& e)
|
|
||||||
{
|
|
||||||
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
|
||||||
out[i][n_outputs] = current_gnss_synchro[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
n_outputs++;
|
|
||||||
}
|
|
||||||
|
|
||||||
//Move RX time
|
|
||||||
T_rx_s = T_rx_s + T_rx_step_s;
|
|
||||||
//pop old elements from queue
|
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
|
||||||
while (d_gnss_synchro_history_queue[i].front().Tracking_sample_counter / (double)d_gnss_synchro_history_queue[i].front().fs < (T_rx_s - past_history_s))
|
|
||||||
{
|
|
||||||
d_gnss_synchro_history_queue[i].pop_front();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}while(channel_history_ok == true && d_max_noutputs>n_outputs);
|
|
||||||
|
|
||||||
//Multi-rate consume!
|
return n_outputs;
|
||||||
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
|
||||||
consume(i, n_consume[i]); //which input, how many items
|
|
||||||
}
|
|
||||||
|
|
||||||
return n_outputs;
|
|
||||||
}
|
}
|
||||||
|
@ -52,26 +52,26 @@ hybrid_make_observables_cc(unsigned int n_channels, bool dump, std::string dump_
|
|||||||
class hybrid_observables_cc : public gr::block
|
class hybrid_observables_cc : public gr::block
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
~hybrid_observables_cc ();
|
~hybrid_observables_cc ();
|
||||||
int general_work (int noutput_items, gr_vector_int &ninput_items,
|
int general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
|
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
friend hybrid_observables_cc_sptr
|
friend hybrid_observables_cc_sptr
|
||||||
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
|
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
|
||||||
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
|
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
|
||||||
|
|
||||||
//Tracking observable history
|
//Tracking observable history
|
||||||
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
|
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
|
||||||
|
|
||||||
double T_rx_s;
|
double T_rx_s;
|
||||||
double T_rx_step_s;
|
double T_rx_step_s;
|
||||||
int d_max_noutputs;
|
int d_max_noutputs;
|
||||||
bool d_dump;
|
bool d_dump;
|
||||||
unsigned int d_nchannels;
|
unsigned int d_nchannels;
|
||||||
unsigned int history_deep;
|
unsigned int history_deep;
|
||||||
std::string d_dump_filename;
|
std::string d_dump_filename;
|
||||||
std::ofstream d_dump_file;
|
std::ofstream d_dump_file;
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -237,7 +237,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
|
|||||||
if (d_stat == 1)
|
if (d_stat == 1)
|
||||||
{
|
{
|
||||||
preamble_diff_ms = round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0);
|
preamble_diff_ms = round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0);
|
||||||
if (preamble_diff_ms > GPS_SUBFRAME_MS+1)
|
if (preamble_diff_ms > GPS_SUBFRAME_MS + 1)
|
||||||
{
|
{
|
||||||
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms;
|
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms;
|
||||||
d_stat = 0; //lost of frame sync
|
d_stat = 0; //lost of frame sync
|
||||||
@ -344,16 +344,16 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
|
|||||||
}
|
}
|
||||||
|
|
||||||
//2. Add the telemetry decoder information
|
//2. Add the telemetry decoder information
|
||||||
if (this->d_flag_preamble == true and d_flag_new_tow_available==true)
|
if (this->d_flag_preamble == true and d_flag_new_tow_available == true)
|
||||||
{
|
{
|
||||||
//double decoder_latency_ms=(double)(current_symbol.Tracking_sample_counter-d_symbol_history.at(0).Tracking_sample_counter)
|
//double decoder_latency_ms=(double)(current_symbol.Tracking_sample_counter-d_symbol_history.at(0).Tracking_sample_counter)
|
||||||
// /(double)current_symbol.fs;
|
// /(double)current_symbol.fs;
|
||||||
// update TOW at the preamble instant (account with decoder latency)
|
// update TOW at the preamble instant (account with decoder latency)
|
||||||
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + 2*GPS_L1_CA_CODE_PERIOD + GPS_CA_PREAMBLE_DURATION_S;
|
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + 2 * GPS_L1_CA_CODE_PERIOD + GPS_CA_PREAMBLE_DURATION_S;
|
||||||
|
|
||||||
d_TOW_at_current_symbol = floor(d_TOW_at_Preamble*1000.0)/1000.0;
|
d_TOW_at_current_symbol = floor(d_TOW_at_Preamble * 1000.0) / 1000.0;
|
||||||
flag_TOW_set = true;
|
flag_TOW_set = true;
|
||||||
d_flag_new_tow_available=false;
|
d_flag_new_tow_available = false;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
Loading…
Reference in New Issue
Block a user