1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 04:00:34 +00:00

Merge branch 'next' into testing

This commit is contained in:
Unknown 2017-10-17 11:10:00 +02:00
commit 0aa178b3ab
12 changed files with 455 additions and 434 deletions

View File

@ -29,6 +29,8 @@ include_directories(
${GNURADIO_RUNTIME_INCLUDE_DIRS} ${GNURADIO_RUNTIME_INCLUDE_DIRS}
${GNURADIO_BLOCKS_INCLUDE_DIRS} ${GNURADIO_BLOCKS_INCLUDE_DIRS}
${VOLK_GNSSSDR_INCLUDE_DIRS} ${VOLK_GNSSSDR_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}
) )
file(GLOB INPUT_FILTER_GR_BLOCKS_HEADERS "*.h") file(GLOB INPUT_FILTER_GR_BLOCKS_HEADERS "*.h")
@ -39,5 +41,7 @@ source_group(Headers FILES ${INPUT_FILTER_GR_BLOCKS_HEADERS})
target_link_libraries(input_filter_gr_blocks ${GNURADIO_FILTER_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${LOG4CPP_LIBRARIES}) target_link_libraries(input_filter_gr_blocks ${GNURADIO_FILTER_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${LOG4CPP_LIBRARIES})
if(NOT VOLK_GNSSSDR_FOUND) if(NOT VOLK_GNSSSDR_FOUND)
add_dependencies(input_filter_gr_blocks volk_gnsssdr_module) add_dependencies(input_filter_gr_blocks volk_gnsssdr_module glog-${glog_RELEASE})
else(NOT VOLK_GNSSSDR_FOUND)
add_dependencies(input_filter_gr_blocks glog-${glog_RELEASE})
endif(NOT VOLK_GNSSSDR_FOUND) endif(NOT VOLK_GNSSSDR_FOUND)

View File

@ -48,6 +48,7 @@ notch_sptr make_notch_filter(float pfa, float p_c_factor,
return notch_sptr(new Notch(pfa, p_c_factor, length_, n_segments_est, n_segments_reset)); return notch_sptr(new Notch(pfa, p_c_factor, length_, n_segments_est, n_segments_reset));
} }
Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n_segments_reset) : gr::block("Notch", Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n_segments_reset) : gr::block("Notch",
gr::io_signature::make (1, 1, sizeof(gr_complex)), gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex))) gr::io_signature::make (1, 1, sizeof(gr_complex)))
@ -73,6 +74,7 @@ Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n
last_out = gr_complex(0,0); last_out = gr_complex(0,0);
} }
Notch::~Notch() Notch::~Notch()
{ {
volk_free(c_samples); volk_free(c_samples);
@ -95,8 +97,9 @@ int Notch::general_work(int noutput_items __attribute__((unused)), gr_vector_int
float sig2dB = 0.0; float sig2dB = 0.0;
float sig2lin = 0.0; float sig2lin = 0.0;
lv_32fc_t dot_prod_; lv_32fc_t dot_prod_;
gr_complex* in = (gr_complex *) input_items[0]; const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex* out = (gr_complex *) output_items[0]; gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
in++; in++;
arma::cx_fvec signal_segment; arma::cx_fvec signal_segment;
arma::cx_fvec signal_segment_fft; arma::cx_fvec signal_segment_fft;
@ -104,12 +107,12 @@ int Notch::general_work(int noutput_items __attribute__((unused)), gr_vector_int
{ {
if((n_segments < n_segments_est) && (filter_state_ == false)) if((n_segments < n_segments_est) && (filter_state_ == false))
{ {
signal_segment = arma::cx_fvec(in, length_, false, false); signal_segment = arma::cx_fvec(in, length_);
signal_segment_fft = arma::fft(signal_segment); signal_segment_fft = arma::fft(signal_segment);
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_); volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_); volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / ((float) n_deg_fred); sig2lin = std::pow(10.0, (sig2dB / 10.0)) / (static_cast<float>(n_deg_fred) );
noise_pow_est = (((float) n_segments) * noise_pow_est + sig2lin) / ((float)(n_segments + 1)); noise_pow_est = (static_cast<float>(n_segments) * noise_pow_est + sig2lin) / (static_cast<float>(n_segments + 1));
memcpy(out, in, sizeof(gr_complex) * length_); memcpy(out, in, sizeof(gr_complex) * length_);
} }
else else
@ -123,7 +126,7 @@ int Notch::general_work(int noutput_items __attribute__((unused)), gr_vector_int
last_out = gr_complex(0,0); last_out = gr_complex(0,0);
} }
volk_32fc_x2_multiply_conjugate_32fc(c_samples, in, (in - 1), length_); volk_32fc_x2_multiply_conjugate_32fc(c_samples, in, (in - 1), length_);
volk_32fc_s32f_atan2_32f(angle_, c_samples, ((float)1.0), length_); volk_32fc_s32f_atan2_32f(angle_, c_samples, static_cast<float>(1.0), length_);
for(int aux = 0; aux < length_; aux++) for(int aux = 0; aux < length_; aux++)
{ {
z_0 = std::exp(gr_complex(0,1) * (*(angle_ + aux))); z_0 = std::exp(gr_complex(0,1) * (*(angle_ + aux)));

View File

@ -47,6 +47,7 @@ notch_lite_sptr make_notch_filter_lite(float p_c_factor, float pfa, int length_,
return notch_lite_sptr(new NotchLite(p_c_factor, pfa, length_, n_segments_est, n_segments_reset, n_segments_coeff)); return notch_lite_sptr(new NotchLite(p_c_factor, pfa, length_, n_segments_est, n_segments_reset, n_segments_coeff));
} }
NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff) : gr::block("NotchLite", NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff) : gr::block("NotchLite",
gr::io_signature::make (1, 1, sizeof(gr_complex)), gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex))) gr::io_signature::make (1, 1, sizeof(gr_complex)))
@ -78,21 +79,23 @@ NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_es
} }
NotchLite::~NotchLite() NotchLite::~NotchLite()
{ {
volk_free(power_spect); volk_free(power_spect);
} }
int NotchLite::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), int NotchLite::general_work(int noutput_items, gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{ {
int index_out = 0; int index_out = 0;
float sig2dB = 0.0; float sig2dB = 0.0;
float sig2lin = 0.0; float sig2lin = 0.0;
lv_32fc_t dot_prod_; lv_32fc_t dot_prod_;
gr_complex* in = (gr_complex *) input_items[0]; const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex* out = (gr_complex *) output_items[0]; gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
in++; in++;
arma::cx_fvec signal_segment; arma::cx_fvec signal_segment;
arma::cx_fvec signal_segment_fft; arma::cx_fvec signal_segment_fft;
@ -100,12 +103,12 @@ int NotchLite::general_work(int noutput_items __attribute__((unused)), gr_vector
{ {
if((n_segments < n_segments_est) && (filter_state_ == false)) if((n_segments < n_segments_est) && (filter_state_ == false))
{ {
signal_segment = arma::cx_fvec(in, length_, false, false); signal_segment = arma::cx_fvec(in, length_);
signal_segment_fft = arma::fft(signal_segment); signal_segment_fft = arma::fft(signal_segment);
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_); volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_); volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / ((float) n_deg_fred); sig2lin = std::pow(10.0, (sig2dB / 10.0)) / static_cast<float>(n_deg_fred);
noise_pow_est = (((float) n_segments) * noise_pow_est + sig2lin) / ((float)(n_segments + 1)); noise_pow_est = (static_cast<float>(n_segments) * noise_pow_est + sig2lin) / static_cast<float>(n_segments + 1);
memcpy(out, in, sizeof(gr_complex) * length_); memcpy(out, in, sizeof(gr_complex) * length_);
} }
else else
@ -122,9 +125,9 @@ int NotchLite::general_work(int noutput_items __attribute__((unused)), gr_vector
if(n_segments_coeff == 0) if(n_segments_coeff == 0)
{ {
volk_32fc_x2_multiply_conjugate_32fc(&c_samples1, (in + 1), in, 1); volk_32fc_x2_multiply_conjugate_32fc(&c_samples1, (in + 1), in, 1);
volk_32fc_s32f_atan2_32f(&angle1, &c_samples1, ((float)1.0), 1); volk_32fc_s32f_atan2_32f(&angle1, &c_samples1, static_cast<float>(1.0), 1);
volk_32fc_x2_multiply_conjugate_32fc(&c_samples2, (in + length_ - 1), (in + length_ - 2), 1); volk_32fc_x2_multiply_conjugate_32fc(&c_samples2, (in + length_ - 1), (in + length_ - 2), 1);
volk_32fc_s32f_atan2_32f(&angle2, &c_samples2, ((float)1.0), 1); volk_32fc_s32f_atan2_32f(&angle2, &c_samples2, static_cast<float>(1.0), 1);
float angle_ = (angle1 + angle2) / 2.0; float angle_ = (angle1 + angle2) / 2.0;
z_0 = std::exp(gr_complex(0,1) * angle_); z_0 = std::exp(gr_complex(0,1) * angle_);
} }

View File

@ -44,6 +44,7 @@ pulse_blanking_cc_sptr make_pulse_blanking_cc(float pfa, int length_,
return pulse_blanking_cc_sptr(new pulse_blanking_cc(pfa, length_, n_segments_est, n_segments_reset)); return pulse_blanking_cc_sptr(new pulse_blanking_cc(pfa, length_, n_segments_est, n_segments_reset));
} }
pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset) : gr::block("pulse_blanking_cc", pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset) : gr::block("pulse_blanking_cc",
gr::io_signature::make (1, 1, sizeof(gr_complex)), gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex))) gr::io_signature::make (1, 1, sizeof(gr_complex)))
@ -57,7 +58,7 @@ pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est,
this->n_segments_est = n_segments_est; this->n_segments_est = n_segments_est;
this->n_segments_reset = n_segments_reset; this->n_segments_reset = n_segments_reset;
noise_power_estimation = 0.0; noise_power_estimation = 0.0;
n_deg_fred = 2*length_; n_deg_fred = 2 * length_;
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred); boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa)); thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
zeros_ = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment())); zeros_ = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment()));
@ -67,6 +68,7 @@ pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est,
} }
} }
pulse_blanking_cc::~pulse_blanking_cc() pulse_blanking_cc::~pulse_blanking_cc()
{ {
volk_free(zeros_); volk_free(zeros_);
@ -83,8 +85,8 @@ void pulse_blanking_cc::forecast(int noutput_items __attribute__((unused)), gr_v
int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{ {
gr_complex *in = (gr_complex *) input_items[0]; const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = (gr_complex *) output_items[0]; gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
float* magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment())); float* magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment()));
volk_32fc_magnitude_squared_32f(magnitude, in, noutput_items); volk_32fc_magnitude_squared_32f(magnitude, in, noutput_items);
int sample_index = 0; int sample_index = 0;
@ -94,19 +96,19 @@ int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)),
volk_32f_accumulator_s32f(&segment_energy, (magnitude + sample_index), length_); volk_32f_accumulator_s32f(&segment_energy, (magnitude + sample_index), length_);
if((n_segments < n_segments_est) && (last_filtered == false)) if((n_segments < n_segments_est) && (last_filtered == false))
{ {
noise_power_estimation = (((float) n_segments) * noise_power_estimation + segment_energy / ((float)n_deg_fred)) / ((float)(n_segments + 1)); noise_power_estimation = ( static_cast<float>(n_segments) * noise_power_estimation + segment_energy / static_cast<float>(n_deg_fred) ) / static_cast<float>(n_segments + 1);
memcpy(out, in, sizeof(gr_complex)*length_); memcpy(out, in, sizeof(gr_complex) * length_);
} }
else else
{ {
if((segment_energy/noise_power_estimation) > thres_) if((segment_energy / noise_power_estimation) > thres_)
{ {
memcpy(out, zeros_, sizeof(gr_complex)*length_); memcpy(out, zeros_, sizeof(gr_complex) * length_);
last_filtered = true; last_filtered = true;
} }
else else
{ {
memcpy(out, in, sizeof(gr_complex)*length_); memcpy(out, in, sizeof(gr_complex) * length_);
last_filtered = false; last_filtered = false;
if (n_segments > n_segments_reset) if (n_segments > n_segments_reset)
{ {
@ -114,9 +116,9 @@ int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)),
} }
} }
} }
in+=length_; in += length_;
out+=length_; out += length_;
sample_index+=length_; sample_index += length_;
n_segments++; n_segments++;
} }
volk_free(magnitude); volk_free(magnitude);

View File

@ -192,7 +192,9 @@ install(FILES
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_prefs.h ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_prefs.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_complex.h ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_complex.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/saturation_arithmetic.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse_intrinsics.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h ${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h ${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h

View File

@ -49,6 +49,8 @@
# define __VOLK_ATTR_UNUSED __attribute__((unused)) # define __VOLK_ATTR_UNUSED __attribute__((unused))
# define __VOLK_ATTR_INLINE __attribute__((always_inline)) # define __VOLK_ATTR_INLINE __attribute__((always_inline))
# define __VOLK_ATTR_DEPRECATED __attribute__((deprecated)) # define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
# define __VOLK_ASM __asm__
# define __VOLK_VOLATILE __volatile__
# if __GNUC__ >= 4 # if __GNUC__ >= 4
# define __VOLK_ATTR_EXPORT __attribute__((visibility("default"))) # define __VOLK_ATTR_EXPORT __attribute__((visibility("default")))
# define __VOLK_ATTR_IMPORT __attribute__((visibility("default"))) # define __VOLK_ATTR_IMPORT __attribute__((visibility("default")))
@ -63,6 +65,8 @@
# define __VOLK_ATTR_DEPRECATED __declspec(deprecated) # define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
# define __VOLK_ATTR_EXPORT __declspec(dllexport) # define __VOLK_ATTR_EXPORT __declspec(dllexport)
# define __VOLK_ATTR_IMPORT __declspec(dllimport) # define __VOLK_ATTR_IMPORT __declspec(dllimport)
# define __VOLK_ASM __asm
# define __VOLK_VOLATILE
#else #else
# define __VOLK_ATTR_ALIGNED(x) # define __VOLK_ATTR_ALIGNED(x)
# define __VOLK_ATTR_UNUSED # define __VOLK_ATTR_UNUSED
@ -70,6 +74,8 @@
# define __VOLK_ATTR_DEPRECATED # define __VOLK_ATTR_DEPRECATED
# define __VOLK_ATTR_EXPORT # define __VOLK_ATTR_EXPORT
# define __VOLK_ATTR_IMPORT # define __VOLK_ATTR_IMPORT
# define __VOLK_ASM __asm__
# define __VOLK_VOLATILE __volatile__
#endif #endif
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////

View File

@ -717,11 +717,11 @@ bool run_volk_gnsssdr_tests(volk_gnsssdr_func_desc_t desc,
{ {
if(both_sigs[j].is_signed) if(both_sigs[j].is_signed)
{ {
fail = icompare((int16_t *) test_data[generic_offset][j], (int16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i); fail = icompare((int8_t *) test_data[generic_offset][j], (int8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
} }
else else
{ {
fail = icompare((uint16_t *) test_data[generic_offset][j], (uint16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i); fail = icompare((uint8_t *) test_data[generic_offset][j], (uint8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
} }
} }
else else

View File

@ -19,6 +19,10 @@
#ifndef GNSS_SDR_VOLK_QA_UTILS_H #ifndef GNSS_SDR_VOLK_QA_UTILS_H
#define GNSS_SDR_VOLK_QA_UTILS_H #define GNSS_SDR_VOLK_QA_UTILS_H
#ifdef __APPLE__
#define _DARWIN_C_SOURCE
#endif
#include <string> #include <string>
#include <iostream> #include <iostream>
#include <fstream> #include <fstream>

View File

@ -42,7 +42,7 @@ struct VOLK_CPU volk_gnsssdr_cpu;
#if ((__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 2) || (__clang_major__ >= 3)) && defined(HAVE_XGETBV) #if ((__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 2) || (__clang_major__ >= 3)) && defined(HAVE_XGETBV)
static inline unsigned long long _xgetbv(unsigned int index){ static inline unsigned long long _xgetbv(unsigned int index){
unsigned int eax, edx; unsigned int eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index)); __VOLK_ASM __VOLK_VOLATILE ("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((unsigned long long)edx << 32) | eax; return ((unsigned long long)edx << 32) | eax;
} }
#define __xgetbv() _xgetbv(0) #define __xgetbv() _xgetbv(0)

View File

@ -60,12 +60,12 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump,
d_dump_filename = dump_filename; d_dump_filename = dump_filename;
history_deep = deep_history; history_deep = deep_history;
T_rx_s = 0.0; T_rx_s = 0.0;
T_rx_step_s = 1e-3;// todo: move to gnss-sdr config T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels; i++)
{ {
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>()); d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
} }
//todo: this is a gnuradio scheduler hack. // todo: this is a gnuradio scheduler hack.
// Migrate the queues to gnuradio set_history to see if the scheduler can handle // Migrate the queues to gnuradio set_history to see if the scheduler can handle
// the multiple output flow // the multiple output flow
d_max_noutputs = 100; d_max_noutputs = 100;
@ -137,13 +137,13 @@ bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
} }
int hybrid_observables_cc::general_work (int noutput_items, int hybrid_observables_cc::general_work (int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items) gr_vector_void_star &output_items)
{ {
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Get the output pointer Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
int n_outputs = 0; int n_outputs = 0;
int n_consume[d_nchannels]; int n_consume[d_nchannels];
double past_history_s = 100e-3; double past_history_s = 100e-3;
@ -186,29 +186,28 @@ int hybrid_observables_cc::general_work (int noutput_items,
std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter; std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter; std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter;
//1. If the RX time is not set, set the Rx time // 1. If the RX time is not set, set the Rx time
if (T_rx_s == 0) if (T_rx_s == 0)
{ {
//0. Read a gnss_synchro snapshot from the queue and store it in a map // 0. Read a gnss_synchro snapshot from the queue and store it in a map
std::map<int,Gnss_Synchro> gnss_synchro_map; std::map<int,Gnss_Synchro> gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels; i++)
{ {
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>( gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].front().Channel_ID,
d_gnss_synchro_history_queue[i].front().Channel_ID,
d_gnss_synchro_history_queue[i].front())); d_gnss_synchro_history_queue[i].front()));
} }
gnss_synchro_map_iter = min_element(gnss_synchro_map.begin(), gnss_synchro_map_iter = min_element(gnss_synchro_map.begin(),
gnss_synchro_map.end(), gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_sample_counter); Hybrid_pairCompare_gnss_synchro_sample_counter);
T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / (double)gnss_synchro_map_iter->second.fs; T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
} }
//2. Realign RX time in all valid channels // 2. Realign RX time in all valid channels
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; //container for the aligned set of observables for the selected T_rx std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; //container for the previous observable values to interpolate std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
//shift channels history to match the reference TOW // shift channels history to match the reference TOW
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels; i++)
{ {
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(),
@ -219,34 +218,32 @@ int hybrid_observables_cc::general_work (int noutput_items,
{ {
if (gnss_synchro_deque_iter->Flag_valid_word == true) if (gnss_synchro_deque_iter->Flag_valid_word == true)
{ {
double T_rx_channel = (double)gnss_synchro_deque_iter->Tracking_sample_counter / (double)gnss_synchro_deque_iter->fs; double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s = T_rx_channel - T_rx_s; double delta_T_rx_s = T_rx_channel - T_rx_s;
//check that T_rx difference is less than a threshold (the correlation interval) // check that T_rx difference is less than a threshold (the correlation interval)
if (delta_T_rx_s * 1000.0 < (double)gnss_synchro_deque_iter->correlation_length_ms) if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
{ {
//record the word structure in a map for pseudorange computation // record the word structure in a map for pseudorange computation
//save the previous observable // save the previous observable
int distance = std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter); int distance = std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
if (distance > 0) if (distance > 0)
{ {
if (d_gnss_synchro_history_queue[i].at(distance-1).Flag_valid_word) if (d_gnss_synchro_history_queue[i].at(distance-1).Flag_valid_word)
{ {
double T_rx_channel_prev = (double)d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter / (double)gnss_synchro_deque_iter->fs; double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s; double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s)) if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
{ {
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>( realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID, d_gnss_synchro_history_queue[i].at(distance - 1)));
d_gnss_synchro_history_queue[i].at(distance-1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter)); adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
} }
else else
{ {
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter)); realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>( adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID, d_gnss_synchro_history_queue[i].at(distance - 1)));
d_gnss_synchro_history_queue[i].at(distance-1)));
} }
} }
} }
@ -274,20 +271,20 @@ int hybrid_observables_cc::general_work (int noutput_items,
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(), gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(),
realigned_gnss_synchro_map.end(), realigned_gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_d_TOW); Hybrid_pairCompare_gnss_synchro_d_TOW);
double ref_fs_hz = (double)gnss_synchro_map_iter->second.fs; double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// compute interpolated TOW value at T_rx_s // compute interpolated TOW value at T_rx_s
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID; int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key); Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
double ref_adj_T_rx_s = (double)adj_obs.Tracking_sample_counter / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz; double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s; double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz; double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
double selected_T_rx_s = T_rx_s; double selected_T_rx_s = T_rx_s;
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1) // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - ref_adj_T_rx_s) double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
* (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s); (selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
// Now compute RX time differences due to the PRN alignment in the correlators // Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms; double traveltime_ms;
@ -297,26 +294,26 @@ int hybrid_observables_cc::general_work (int noutput_items,
double channel_TOW_s; double channel_TOW_s;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++) for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++)
{ {
channel_fs_hz = (double)gnss_synchro_map_iter->second.fs; channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s; channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
channel_T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz; channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// compute interpolated observation values // compute interpolated observation values
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1) // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// TOW at the selected receiver time T_rx_s // TOW at the selected receiver time T_rx_s
int element_key = gnss_synchro_map_iter->second.Channel_ID; int element_key = gnss_synchro_map_iter->second.Channel_ID;
adj_obs = adjacent_gnss_synchro_map.at(element_key); adj_obs = adjacent_gnss_synchro_map.at(element_key);
double adj_T_rx_s = (double)adj_obs.Tracking_sample_counter / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz; double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s); double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
//Doppler and Accumulated carrier phase // Doppler and Accumulated carrier phase
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s); double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s); double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
//compute the pseudorange (no rx time offset correction) // compute the pseudorange (no rx time offset correction)
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms; traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
//convert to meters // convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m] pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object // update the pseudorange object
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second; current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
@ -338,19 +335,19 @@ int hybrid_observables_cc::general_work (int noutput_items,
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels; i++)
{ {
tmp_double = current_gnss_synchro[i].RX_time; tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s; tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz; tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI; tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m; tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].PRN; tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Flag_valid_pseudorange; tmp_double = current_gnss_synchro[i].Flag_valid_pseudorange;
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
} }
} }
catch (const std::ifstream::failure& e) catch (const std::ifstream::failure& e)
@ -367,23 +364,23 @@ int hybrid_observables_cc::general_work (int noutput_items,
n_outputs++; n_outputs++;
} }
//Move RX time // Move RX time
T_rx_s = T_rx_s + T_rx_step_s; T_rx_s = T_rx_s + T_rx_step_s;
//pop old elements from queue // pop old elements from queue
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels; i++)
{ {
while (d_gnss_synchro_history_queue[i].front().Tracking_sample_counter / (double)d_gnss_synchro_history_queue[i].front().fs < (T_rx_s - past_history_s)) while (static_cast<double>(d_gnss_synchro_history_queue[i].front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue[i].front().fs) < (T_rx_s - past_history_s))
{ {
d_gnss_synchro_history_queue[i].pop_front(); d_gnss_synchro_history_queue[i].pop_front();
} }
} }
} }
}while(channel_history_ok == true && d_max_noutputs>n_outputs); } while(channel_history_ok == true && d_max_noutputs > n_outputs);
//Multi-rate consume! // Multi-rate consume!
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels; i++)
{ {
consume(i, n_consume[i]); //which input, how many items consume(i, n_consume[i]); // which input, how many items
} }
return n_outputs; return n_outputs;

View File

@ -237,7 +237,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
if (d_stat == 1) if (d_stat == 1)
{ {
preamble_diff_ms = round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0); preamble_diff_ms = round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0);
if (preamble_diff_ms > GPS_SUBFRAME_MS+1) if (preamble_diff_ms > GPS_SUBFRAME_MS + 1)
{ {
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms; DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms;
d_stat = 0; //lost of frame sync d_stat = 0; //lost of frame sync
@ -344,16 +344,16 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
} }
//2. Add the telemetry decoder information //2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_flag_new_tow_available==true) if (this->d_flag_preamble == true and d_flag_new_tow_available == true)
{ {
//double decoder_latency_ms=(double)(current_symbol.Tracking_sample_counter-d_symbol_history.at(0).Tracking_sample_counter) //double decoder_latency_ms=(double)(current_symbol.Tracking_sample_counter-d_symbol_history.at(0).Tracking_sample_counter)
// /(double)current_symbol.fs; // /(double)current_symbol.fs;
// update TOW at the preamble instant (account with decoder latency) // update TOW at the preamble instant (account with decoder latency)
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + 2*GPS_L1_CA_CODE_PERIOD + GPS_CA_PREAMBLE_DURATION_S; d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + 2 * GPS_L1_CA_CODE_PERIOD + GPS_CA_PREAMBLE_DURATION_S;
d_TOW_at_current_symbol = floor(d_TOW_at_Preamble*1000.0)/1000.0; d_TOW_at_current_symbol = floor(d_TOW_at_Preamble * 1000.0) / 1000.0;
flag_TOW_set = true; flag_TOW_set = true;
d_flag_new_tow_available=false; d_flag_new_tow_available = false;
} }
else else
{ {