1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-10-11 19:01:06 +02:00
commit 0aa16666ae
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
6 changed files with 455 additions and 186 deletions

View File

@ -228,7 +228,9 @@ if(ENABLE_UNIT_TESTING_EXTRA OR ENABLE_SYSTEM_TESTING_EXTRA OR ENABLE_FPGA)
find_package(GPSTK) find_package(GPSTK)
if(NOT GPSTK_FOUND OR ENABLE_OWN_GPSTK) if(NOT GPSTK_FOUND OR ENABLE_OWN_GPSTK)
message(STATUS "GPSTk v${GNSSSDR_GPSTK_LOCAL_VERSION} will be automatically downloaded and built when doing 'make'.") message(STATUS "GPSTk v${GNSSSDR_GPSTK_LOCAL_VERSION} will be automatically downloaded and built when doing 'make'.")
if ("${TOOLCHAIN_ARG}" STREQUAL "")
set(${TOOLCHAIN_ARG} "-DCMAKE_CXX_FLAGS=-Wno-deprecated")
endif("${TOOLCHAIN_ARG}" STREQUAL "")
# if(NOT ENABLE_FPGA) # if(NOT ENABLE_FPGA)
if(CMAKE_VERSION VERSION_LESS 3.2) if(CMAKE_VERSION VERSION_LESS 3.2)
ExternalProject_Add( ExternalProject_Add(
@ -322,7 +324,7 @@ else(ENABLE_INSTALL_TESTS)
file(COPY ${CMAKE_SOURCE_DIR}/src/tests/signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/signal_samples) file(COPY ${CMAKE_SOURCE_DIR}/src/tests/signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/signal_samples)
file(COPY ${CMAKE_SOURCE_DIR}/src/tests/signal_samples/NT1065_GLONASS_L1_20160831_fs6625e6_if0e3_4ms.bin DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/signal_samples) file(COPY ${CMAKE_SOURCE_DIR}/src/tests/signal_samples/NT1065_GLONASS_L1_20160831_fs6625e6_if0e3_4ms.bin DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/signal_samples)
file(COPY ${CMAKE_SOURCE_DIR}/src/tests/data/rtklib_test/obs_test1.xml DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/data/rtklib_test) file(COPY ${CMAKE_SOURCE_DIR}/src/tests/data/rtklib_test/obs_test1.xml DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/data/rtklib_test)
file(COPY ${CMAKE_SOURCE_DIR}/src/tests/data/rtklib_test/eph_GPS_L1CA_test1.xml DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/data/rtklib_test) file(COPY ${CMAKE_SOURCE_DIR}/src/tests/data/rtklib_test/eph_GPS_L1CA_test1.xml DESTINATION ${CMAKE_SOURCE_DIR}/thirdparty/data/rtklib_test)
add_definitions(-DTEST_PATH="${CMAKE_SOURCE_DIR}/thirdparty/") add_definitions(-DTEST_PATH="${CMAKE_SOURCE_DIR}/thirdparty/")
endif(ENABLE_INSTALL_TESTS) endif(ENABLE_INSTALL_TESTS)
@ -512,7 +514,7 @@ if(ENABLE_SYSTEM_TESTING)
${GTEST_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES} ${GTEST_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES} ${GNURADIO_FILTER_LIBRARIES} ${GNURADIO_BLOCKS_LIBRARIES} ${GNURADIO_FILTER_LIBRARIES}
${GNURADIO_ANALOG_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${GNURADIO_ANALOG_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES}
gnss_sp_libs gnss_rx gnss_system_parameters gnss_sp_libs gnss_rx gnss_system_parameters
system_testing_lib) system_testing_lib)
add_system_test(position_test) add_system_test(position_test)

View File

@ -77,7 +77,7 @@ DEFINE_double(skip_trk_transitory_s, 1.0, "Skip the initial tracking output sign
//Tracking configuration //Tracking configuration
DEFINE_int32(extend_correlation_symbols, 1, "Set the tracking coherent correlation to N symbols (up to 20 for GPS L1 C/A)"); DEFINE_int32(extend_correlation_symbols, 1, "Set the tracking coherent correlation to N symbols (up to 20 for GPS L1 C/A)");
DEFINE_uint32(smoother_length, 10, "Set the moving average size for the carrier phase and code phase in case of high dynamics"); DEFINE_int32(smoother_length, 10, "Set the moving average size for the carrier phase and code phase in case of high dynamics");
DEFINE_bool(high_dyn, false, "Activates the code resampler and NCO generator for high dynamics"); DEFINE_bool(high_dyn, false, "Activates the code resampler and NCO generator for high dynamics");
//Test output configuration //Test output configuration

View File

@ -29,6 +29,7 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "geofunctions.h" #include "geofunctions.h"
#include <iomanip>
const double STRP_G_SI = 9.80665; const double STRP_G_SI = 9.80665;
const double STRP_PI = 3.1415926535898; //!< Pi as defined in IS-GPS-200E const double STRP_PI = 3.1415926535898; //!< Pi as defined in IS-GPS-200E
@ -363,7 +364,7 @@ arma::vec cart2geo(const arma::vec &XYZ, int elipsoid_selection)
break; break;
} }
} }
while (std::abs(h - oldh) > 1.0e-12); while (std::fabs(h - oldh) > 1.0e-12);
arma::vec LLH = {{phi, lambda, h}}; //radians arma::vec LLH = {{phi, lambda, h}}; //radians
return LLH; return LLH;
@ -473,3 +474,340 @@ double great_circle_distance(double lat1, double lon1, double lat2, double lon2)
double d = R * c; double d = R * c;
return d * 1000.0; // meters return d * 1000.0; // meters
} }
void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu)
{
//%CART2UTM Transformation of (X,Y,Z) to (E,N,U) in UTM, zone 'zone'.
//%
//%[E, N, U] = cart2utm(X, Y, Z, zone);
//%
//% Inputs:
//% X,Y,Z - Cartesian coordinates. Coordinates are referenced
//% with respect to the International Terrestrial Reference
//% Frame 1996 (ITRF96)
//% zone - UTM zone of the given position
//%
//% Outputs:
//% E, N, U - UTM coordinates (Easting, Northing, Uping)
//
//%Kai Borre -11-1994
//%Copyright (c) by Kai Borre
//%
//% CVS record:
//% $Id: cart2utm.m,v 1.1.1.1.2.6 2007/01/30 09:45:12 dpl Exp $
//
//%This implementation is based upon
//%O. Andersson & K. Poder (1981) Koordinattransformationer
//% ved Geod\ae{}tisk Institut. Landinspekt\oe{}ren
//% Vol. 30: 552--571 and Vol. 31: 76
//%
//%An excellent, general reference (KW) is
//%R. Koenig & K.H. Weise (1951) Mathematische Grundlagen der
//% h\"oheren Geod\"asie und Kartographie.
//% Erster Band, Springer Verlag
//
//% Explanation of variables used:
//% f flattening of ellipsoid
//% a semi major axis in m
//% m0 1 - scale at central meridian; for UTM 0.0004
//% Q_n normalized meridian quadrant
//% E0 Easting of central meridian
//% L0 Longitude of central meridian
//% bg constants for ellipsoidal geogr. to spherical geogr.
//% gb constants for spherical geogr. to ellipsoidal geogr.
//% gtu constants for ellipsoidal N, E to spherical N, E
//% utg constants for spherical N, E to ellipoidal N, E
//% tolutm tolerance for utm, 1.2E-10*meridian quadrant
//% tolgeo tolerance for geographical, 0.00040 second of arc
//
//% B, L refer to latitude and longitude. Southern latitude is negative
//% International ellipsoid of 1924, valid for ED50
double a = 6378388.0;
double f = 1.0 / 297.0;
double ex2 = (2.0 - f) * f / ((1.0 - f) * (1.0 - f));
double c = a * sqrt(1.0 + ex2);
arma::vec vec = r_eb_e;
vec(2) = vec(2) - 4.5;
double alpha = 0.756e-6;
arma::mat R = {{1.0, -alpha, 0.0}, {alpha, 1.0, 0.0}, {0.0, 0.0, 1.0}};
arma::vec trans = {89.5, 93.8, 127.6};
double scale = 0.9999988;
arma::vec v = scale * R * vec + trans; // coordinate vector in ED50
double L = atan2(v(1), v(0));
double N1 = 6395000; // preliminary value
double B = atan2(v(2) / ((1 - f) * (1 - f) * N1), arma::norm(v.subvec(0, 1)) / N1); // preliminary value
double U = 0.1;
double oldU = 0;
int iterations = 0;
while (fabs(U - oldU) > 1.0E-4)
{
oldU = U;
N1 = c / sqrt(1.0 + ex2 * (cos(B) * cos(B)));
B = atan2(v(2) / ((1.0 - f) * (1.0 - f) * N1 + U), arma::norm(v.subvec(0, 1)) / (N1 + U));
U = arma::norm(v.subvec(0, 1)) / cos(B) - N1;
iterations = iterations + 1;
if (iterations > 100)
{
std::cout << "Failed to approximate U with desired precision. U-oldU:" << U - oldU << std::endl;
break;
}
}
//%Normalized meridian quadrant, KW p. 50 (96), p. 19 (38b), p. 5 (21)
double m0 = 0.0004;
double n = f / (2.0 - f);
double m = n * n * (1 / 4 + n * n / 64);
double w = (a * (-n - m0 + m * (1 - m0))) / (1 + n);
double Q_n = a + w;
//%Easting and longitude of central meridian
double E0 = 500000;
double L0 = (zone - 30.0) * 6.0 - 3.0;
//%Check tolerance for reverse transformation
//double tolutm = STRP_PI / 2.0 * 1.2e-10 * Q_n;
//double tolgeo = 0.000040;
// % Coefficients of trigonometric series
// % ellipsoidal to spherical geographical, KW p .186 --187, (51) - (52)
// % bg[1] = n * (-2 + n * (2 / 3 + n * (4 / 3 + n * (-82 / 45))));
// % bg[2] = n ^ 2 * (5 / 3 + n * (-16 / 15 + n * (-13 / 9)));
// % bg[3] = n ^ 3 * (-26 / 15 + n * 34 / 21);
// % bg[4] = n ^ 4 * 1237 / 630;
//
// % spherical to ellipsoidal geographical, KW p.190 --191, (61) - (62) % gb[1] = n * (2 + n * (-2 / 3 + n * (-2 + n * 116 / 45)));
// % gb[2] = n ^ 2 * (7 / 3 + n * (-8 / 5 + n * (-227 / 45)));
// % gb[3] = n ^ 3 * (56 / 15 + n * (-136 / 35));
// % gb[4] = n ^ 4 * 4279 / 630;
//
// % spherical to ellipsoidal N, E, KW p.196, (69) % gtu[1] = n * (1 / 2 + n * (-2 / 3 + n * (5 / 16 + n * 41 / 180)));
// % gtu[2] = n ^ 2 * (13 / 48 + n * (-3 / 5 + n * 557 / 1440));
// % gtu[3] = n ^ 3 * (61 / 240 + n * (-103 / 140));
// % gtu[4] = n ^ 4 * 49561 / 161280;
//
// % ellipsoidal to spherical N, E, KW p.194, (65) % utg[1] = n * (-1 / 2 + n * (2 / 3 + n * (-37 / 96 + n * 1 / 360)));
// % utg[2] = n ^ 2 * (-1 / 48 + n * (-1 / 15 + n * 437 / 1440));
// % utg[3] = n ^ 3 * (-17 / 480 + n * 37 / 840);
// % utg[4] = n ^ 4 * (-4397 / 161280);
// % With f = 1 / 297 we get
arma::colvec bg = {-3.37077907e-3,
4.73444769e-6,
-8.29914570e-9,
1.58785330e-11};
arma::colvec gb = {3.37077588e-3,
6.62769080e-6,
1.78718601e-8,
5.49266312e-11};
arma::colvec gtu = {8.41275991e-4,
7.67306686e-7,
1.21291230e-9,
2.48508228e-12};
arma::colvec utg = {-8.41276339e-4,
-5.95619298e-8,
-1.69485209e-10,
-2.20473896e-13};
// % Ellipsoidal latitude, longitude to spherical latitude, longitude
bool neg_geo = false;
if (B < 0) neg_geo = true;
double Bg_r = fabs(B);
double res_clensin = clsin(bg, 4, 2 * Bg_r);
Bg_r = Bg_r + res_clensin;
L0 = L0 * STRP_PI / 180.0;
double Lg_r = L - L0;
// % Spherical latitude, longitude to complementary spherical latitude % i.e.spherical N, E
double cos_BN = cos(Bg_r);
double Np = atan2(sin(Bg_r), cos(Lg_r) * cos_BN);
double Ep = atanh(sin(Lg_r) * cos_BN);
// % Spherical normalized N, E to ellipsoidal N, E
Np = 2.0 * Np;
Ep = 2.0 * Ep;
double dN;
double dE;
clksin(gtu, 4, Np, Ep, &dN, &dE);
Np = Np / 2.0;
Ep = Ep / 2.0;
Np = Np + dN;
Ep = Ep + dE;
double N = Q_n * Np;
double E = Q_n * Ep + E0;
if (neg_geo)
{
N = -N + 20000000.0;
}
r_enu(0) = E;
r_enu(1) = N;
r_enu(2) = U;
}
double clsin(arma::colvec ar, int degree, double argument)
{
//%Clenshaw summation of sinus of argument.
//%
//%result = clsin(ar, degree, argument);
//
//% Written by Kai Borre
//% December 20, 1995
//%
//% See also WGS2UTM or CART2UTM
//%
//% CVS record:
//% $Id: clsin.m,v 1.1.1.1.2.4 2006/08/22 13:45:59 dpl Exp $
//%==========================================================================
double cos_arg = 2.0 * cos(argument);
double hr1 = 0;
double hr = 0;
double hr2;
for (int t = degree; t > 0; t--)
{
hr2 = hr1;
hr1 = hr;
hr = ar(t - 1) + cos_arg * hr1 - hr2;
}
return (hr * sin(argument));
}
void clksin(arma::colvec ar, int degree, double arg_real, double arg_imag, double *re, double *im)
{
//%Clenshaw summation of sinus with complex argument
//%[re, im] = clksin(ar, degree, arg_real, arg_imag);
//
//% Written by Kai Borre
//% December 20, 1995
//%
//% See also WGS2UTM or CART2UTM
//%
//% CVS record:
//% $Id: clksin.m,v 1.1.1.1.2.4 2006/08/22 13:45:59 dpl Exp $
//%==========================================================================
double sin_arg_r = sin(arg_real);
double cos_arg_r = cos(arg_real);
double sinh_arg_i = sinh(arg_imag);
double cosh_arg_i = cosh(arg_imag);
double r = 2 * cos_arg_r * cosh_arg_i;
double i = -2 * sin_arg_r * sinh_arg_i;
double hr1 = 0;
double hr = 0;
double hi1 = 0;
double hi = 0;
double hi2;
double hr2;
for (int t = degree; t > 0; t--)
{
hr2 = hr1;
hr1 = hr;
hi2 = hi1;
hi1 = hi;
double z = ar(t - 1) + r * hr1 - i * hi - hr2;
hi = i * hr1 + r * hi1 - hi2;
hr = z;
}
r = sin_arg_r * cosh_arg_i;
i = cos_arg_r * sinh_arg_i;
*re = r * hr - i * hi;
*im = r * hi + i * hr;
}
int findUtmZone(double latitude_deg, double longitude_deg)
{
//%Function finds the UTM zone number for given longitude and latitude.
//%The longitude value must be between -180 (180 degree West) and 180 (180
//%degree East) degree. The latitude must be within -80 (80 degree South) and
//%84 (84 degree North).
//%
//%utmZone = findUtmZone(latitude, longitude);
//%
//%Latitude and longitude must be in decimal degrees (e.g. 15.5 degrees not
//%15 deg 30 min).
//
//%--------------------------------------------------------------------------
//% SoftGNSS v3.0
//%
//% Copyright (C) Darius Plausinaitis
//% Written by Darius Plausinaitis
//%--------------------------------------------------------------------------
//%This program is free software; you can redistribute it and/or
//%modify it under the terms of the GNU General Public License
//%as published by the Free Software Foundation; either version 2
//%of the License, or (at your option) any later version.
//%
//%This program is distributed in the hope that it will be useful,
//%but WITHOUT ANY WARRANTY; without even the implied warranty of
//%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//%GNU General Public License for more details.
//%
//%You should have received a copy of the GNU General Public License
//%along with this program; if not, write to the Free Software
//%Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
//%USA.
//%==========================================================================
//
//%CVS record:
//%$Id: findUtmZone.m,v 1.1.2.2 2006/08/22 13:45:59 dpl Exp $
//
// % % Check value bounds == == == == == == == == == == == == == == == == == == == == == == == == == == =
if ((longitude_deg > 180) || (longitude_deg < -180))
std::cout << "Longitude value exceeds limits (-180:180).\n";
if ((latitude_deg > 84) || (latitude_deg < -80))
std::cout << "Latitude value exceeds limits (-80:84).\n";
//
// % % Find zone ==
// == == == == == == == == == == == == == == == == == == == == == == == == == == == == == ==
// % Start at 180 deg west = -180 deg
int utmZone = floor((180 + longitude_deg) / 6) + 1;
//%% Correct zone numbers for particular areas ==============================
if (latitude_deg > 72)
{
// % Corrections for zones 31 33 35 37
if ((longitude_deg >= 0) && (longitude_deg < 9))
{
utmZone = 31;
}
else if ((longitude_deg >= 9) && (longitude_deg < 21))
{
utmZone = 33;
}
else if ((longitude_deg >= 21) && (longitude_deg < 33))
{
utmZone = 35;
}
else if ((longitude_deg >= 33) && (longitude_deg < 42))
{
utmZone = 37;
}
}
else if ((latitude_deg >= 56) && (latitude_deg < 64))
{
// % Correction for zone 32
if ((longitude_deg >= 3) && (longitude_deg < 12))
utmZone = 32;
}
return utmZone;
}

View File

@ -156,5 +156,30 @@ void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_
*/ */
double great_circle_distance(double lat1, double lon1, double lat2, double lon2); double great_circle_distance(double lat1, double lon1, double lat2, double lon2);
/*!
* \brief Transformation of ECEF (X,Y,Z) to (E,N,U) in UTM, zone 'zone'.
*/
void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu);
/*!
* \brief Function finds the UTM zone number for given longitude and latitude.
*/
int findUtmZone(double latitude_deg, double longitude_deg);
/*!
* \brief Clenshaw summation of sinus of argument.
*/
double clsin(arma::colvec ar, int degree, double argument);
/*!
* \brief Clenshaw summation of sinus with complex argument.
*/
void clksin(arma::colvec ar, int degree, double arg_real, double arg_imag, double *re, double *im);
#endif #endif

View File

@ -32,6 +32,7 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "geofunctions.h"
#include "position_test_flags.h" #include "position_test_flags.h"
#include "rtklib_solver_dump_reader.h" #include "rtklib_solver_dump_reader.h"
#include "spirent_motion_csv_dump_reader.h" #include "spirent_motion_csv_dump_reader.h"
@ -54,6 +55,7 @@
#include <fstream> #include <fstream>
#include <numeric> #include <numeric>
#include <thread> #include <thread>
#include <armadillo>
// For GPS NAVIGATION (L1) // For GPS NAVIGATION (L1)
concurrent_queue<Gps_Acq_Assist> global_gps_acq_assist_queue; concurrent_queue<Gps_Acq_Assist> global_gps_acq_assist_queue;
@ -82,118 +84,13 @@ private:
std::string filename_rinex_obs = FLAGS_filename_rinex_obs; std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data; std::string filename_raw_data = FLAGS_filename_raw_data;
void print_results(const std::vector<double>& east, void print_results(arma::mat R_eb_enu);
const std::vector<double>& north,
const std::vector<double>& up);
double compute_stdev_precision(const std::vector<double>& vec);
double compute_stdev_accuracy(const std::vector<double>& vec, double ref);
void geodetic2Enu(const double latitude, const double longitude, const double altitude,
double* east, double* north, double* up);
void geodetic2Ecef(const double latitude, const double longitude, const double altitude,
double* x, double* y, double* z);
std::shared_ptr<InMemoryConfiguration> config; std::shared_ptr<InMemoryConfiguration> config;
std::shared_ptr<FileConfiguration> config_f; std::shared_ptr<FileConfiguration> config_f;
std::string generated_kml_file; std::string generated_kml_file;
}; };
void PositionSystemTest::geodetic2Ecef(const double latitude, const double longitude, const double altitude,
double* x, double* y, double* z)
{
const double a = 6378137.0; // WGS84
const double b = 6356752.314245; // WGS84
double aux_x, aux_y, aux_z;
// Convert to ECEF (See https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#From_geodetic_to_ECEF_coordinates )
const double cLat = cos(latitude);
const double cLon = cos(longitude);
const double sLon = sin(longitude);
const double sLat = sin(latitude);
double N = std::pow(a, 2.0) / sqrt(std::pow(a, 2.0) * std::pow(cLat, 2.0) + std::pow(b, 2.0) * std::pow(sLat, 2.0));
aux_x = (N + altitude) * cLat * cLon;
aux_y = (N + altitude) * cLat * sLon;
aux_z = ((std::pow(b, 2.0) / std::pow(a, 2.0)) * N + altitude) * sLat;
*x = aux_x;
*y = aux_y;
*z = aux_z;
}
void PositionSystemTest::geodetic2Enu(double latitude, double longitude, double altitude,
double* east, double* north, double* up)
{
double x, y, z;
const double d2r = PI / 180.0;
geodetic2Ecef(latitude * d2r, longitude * d2r, altitude, &x, &y, &z);
double aux_north, aux_east, aux_down;
std::istringstream iss2(FLAGS_static_position);
std::string str_aux;
std::getline(iss2, str_aux, ',');
double ref_long = std::stod(str_aux);
std::getline(iss2, str_aux, ',');
double ref_lat = std::stod(str_aux);
std::getline(iss2, str_aux, '\n');
double ref_h = std::stod(str_aux);
double ref_x, ref_y, ref_z;
geodetic2Ecef(ref_lat * d2r, ref_long * d2r, ref_h, &ref_x, &ref_y, &ref_z);
double aux_x = x; // - ref_x;
double aux_y = y; // - ref_y;
double aux_z = z; // - ref_z;
// ECEF to NED matrix
double phiP = atan2(ref_z, sqrt(std::pow(ref_x, 2.0) + std::pow(ref_y, 2.0)));
const double sLat = sin(phiP);
const double sLon = sin(ref_long * d2r);
const double cLat = cos(phiP);
const double cLon = cos(ref_long * d2r);
aux_north = -aux_x * sLat * cLon - aux_y * sLon + aux_z * cLat * cLon;
aux_east = -aux_x * sLat * sLon + aux_y * cLon + aux_z * cLat * sLon;
aux_down = aux_x * cLat + aux_z * sLat;
*east = aux_east;
*north = aux_north;
*up = -aux_down;
}
double PositionSystemTest::compute_stdev_precision(const std::vector<double>& vec)
{
double sum__ = std::accumulate(vec.begin(), vec.end(), 0.0);
double mean__ = sum__ / vec.size();
double accum__ = 0.0;
std::for_each(std::begin(vec), std::end(vec), [&](const double d) {
accum__ += (d - mean__) * (d - mean__);
});
double stdev__ = std::sqrt(accum__ / (vec.size() - 1));
return stdev__;
}
double PositionSystemTest::compute_stdev_accuracy(const std::vector<double>& vec, const double ref)
{
const double mean__ = ref;
double accum__ = 0.0;
std::for_each(std::begin(vec), std::end(vec), [&](const double d) {
accum__ += (d - mean__) * (d - mean__);
});
double stdev__ = std::sqrt(accum__ / (vec.size() - 1));
return stdev__;
}
int PositionSystemTest::configure_generator() int PositionSystemTest::configure_generator()
{ {
// Configure signal generator // Configure signal generator
@ -261,23 +158,23 @@ int PositionSystemTest::configure_receiver()
const int grid_density = 16; const int grid_density = 16;
const float zero = 0.0; const float zero = 0.0;
const int number_of_channels = 12; const int number_of_channels = 11;
const int in_acquisition = 1; const int in_acquisition = 1;
const float threshold = 0.01; const float threshold = 2.5;
const float doppler_max = 8000.0; const float doppler_max = 5000.0;
const float doppler_step = 500.0; const float doppler_step = 250.0;
const int max_dwells = 1; const int max_dwells = 10;
const int tong_init_val = 2; const int tong_init_val = 2;
const int tong_max_val = 10; const int tong_max_val = 10;
const int tong_max_dwells = 30; const int tong_max_dwells = 30;
const int coherent_integration_time_ms = 1; const int coherent_integration_time_ms = 1;
const float pll_bw_hz = 30.0; const float pll_bw_hz = 35.0;
const float dll_bw_hz = 4.0; const float dll_bw_hz = 1.5;
const float early_late_space_chips = 0.5; const float early_late_space_chips = 0.5;
const float pll_bw_narrow_hz = 20.0; const float pll_bw_narrow_hz = 1.0;
const float dll_bw_narrow_hz = 2.0; const float dll_bw_narrow_hz = 0.1;
const int extend_correlation_ms = 1; const int extend_correlation_ms = 1;
const int display_rate_ms = 500; const int display_rate_ms = 500;
@ -307,7 +204,7 @@ int PositionSystemTest::configure_receiver()
// Set the Signal Conditioner // Set the Signal Conditioner
config->set_property("SignalConditioner.implementation", "Signal_Conditioner"); config->set_property("SignalConditioner.implementation", "Signal_Conditioner");
config->set_property("DataTypeAdapter.implementation", "Ibyte_To_Complex"); config->set_property("DataTypeAdapter.implementation", "Ibyte_To_Complex");
config->set_property("InputFilter.implementation", "Fir_Filter"); config->set_property("InputFilter.implementation", "Freq_Xlating_Fir_Filter");
config->set_property("InputFilter.dump", "false"); config->set_property("InputFilter.dump", "false");
config->set_property("InputFilter.input_item_type", "gr_complex"); config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex"); config->set_property("InputFilter.output_item_type", "gr_complex");
@ -324,7 +221,7 @@ int PositionSystemTest::configure_receiver()
config->set_property("InputFilter.ampl2_end", std::to_string(ampl2_end)); config->set_property("InputFilter.ampl2_end", std::to_string(ampl2_end));
config->set_property("InputFilter.band1_error", std::to_string(band1_error)); config->set_property("InputFilter.band1_error", std::to_string(band1_error));
config->set_property("InputFilter.band2_error", std::to_string(band2_error)); config->set_property("InputFilter.band2_error", std::to_string(band2_error));
config->set_property("InputFilter.filter_type", "bandpass"); config->set_property("InputFilter.filter_type", "lowpass");
config->set_property("InputFilter.grid_density", std::to_string(grid_density)); config->set_property("InputFilter.grid_density", std::to_string(grid_density));
config->set_property("InputFilter.sampling_frequency", std::to_string(sampling_rate_internal)); config->set_property("InputFilter.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("InputFilter.IF", std::to_string(zero)); config->set_property("InputFilter.IF", std::to_string(zero));
@ -358,7 +255,6 @@ int PositionSystemTest::configure_receiver()
// Set Tracking // Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking"); config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
//config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_C_Aid_Tracking");
config->set_property("Tracking_1C.item_type", "gr_complex"); config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.dump", "false"); config->set_property("Tracking_1C.dump", "false");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_"); config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
@ -460,13 +356,10 @@ int PositionSystemTest::run_receiver()
void PositionSystemTest::check_results() void PositionSystemTest::check_results()
{ {
std::vector<double> pos_e; arma::mat R_eb_e; //ECEF position (x,y,z) estimation in the Earth frame (Nx3)
std::vector<double> pos_n; arma::mat R_eb_enu; //ENU position (N,E,U) estimation in UTM (Nx3)
std::vector<double> pos_u; arma::mat V_eb_e; //ECEF velocity (x,y,z) estimation in the Earth frame (Nx3)
arma::mat LLH; //Geodetic coordinates (latitude, longitude, height) estimation in WGS84 datum
arma::mat R_eb_e; //ECEF position (x,y,z) estimation in the Earth frame (Nx3)
arma::mat V_eb_e; //ECEF velocity (x,y,z) estimation in the Earth frame (Nx3)
arma::mat LLH; //Geodetic coordinates (latitude, longitude, height) estimation in WGS84 datum
arma::vec receiver_time_s; arma::vec receiver_time_s;
arma::mat ref_R_eb_e; //ECEF position (x,y,z) reference in the Earth frame (Nx3) arma::mat ref_R_eb_e; //ECEF position (x,y,z) reference in the Earth frame (Nx3)
@ -482,10 +375,15 @@ void PositionSystemTest::check_results()
double ref_long = std::stod(str_aux); double ref_long = std::stod(str_aux);
std::getline(iss2, str_aux, '\n'); std::getline(iss2, str_aux, '\n');
double ref_h = std::stod(str_aux); double ref_h = std::stod(str_aux);
double ref_e, ref_n, ref_u; int utm_zone = findUtmZone(ref_lat, ref_long);
geodetic2Enu(ref_lat, ref_long, ref_h,
&ref_e, &ref_n, &ref_u);
arma::vec v_eb_n = {0.0, 0.0, 0.0};
arma::vec true_r_eb_e = {0.0, 0.0, 0.0};
arma::vec true_v_eb_e = {0.0, 0.0, 0.0};
pv_Geo_to_ECEF(degtorad(ref_lat), degtorad(ref_long), ref_h, v_eb_n, true_r_eb_e, true_v_eb_e);
ref_R_eb_e.insert_cols(0, true_r_eb_e);
arma::vec ref_r_enu = {0, 0, 0};
cart2utm(true_r_eb_e, utm_zone, ref_r_enu);
if (!FLAGS_use_pvt_solver_dump) if (!FLAGS_use_pvt_solver_dump)
{ {
//fall back to read receiver KML output (position only) //fall back to read receiver KML output (position only)
@ -503,8 +401,8 @@ void PositionSystemTest::check_results()
if (found != std::string::npos) is_header = false; if (found != std::string::npos) is_header = false;
} }
bool is_data = true; bool is_data = true;
//read data //read data
int64_t current_epoch = 0;
while (is_data) while (is_data)
{ {
if (!std::getline(myfile, line)) if (!std::getline(myfile, line))
@ -532,18 +430,20 @@ void PositionSystemTest::check_results()
if (i == 2) h = value; if (i == 2) h = value;
} }
double north, east, up; arma::vec tmp_v_ecef;
geodetic2Enu(lat, longitude, h, &east, &north, &up); arma::vec tmp_r_ecef;
pv_Geo_to_ECEF(degtorad(lat), degtorad(longitude), h, arma::vec{0, 0, 0}, tmp_r_ecef, tmp_v_ecef);
R_eb_e.insert_cols(current_epoch, tmp_r_ecef);
arma::vec tmp_r_enu = {0, 0, 0};
cart2utm(tmp_r_ecef, utm_zone, tmp_r_enu);
R_eb_enu.insert_cols(current_epoch, tmp_r_enu);
// std::cout << "lat = " << lat << ", longitude = " << longitude << " h = " << h << std::endl; // std::cout << "lat = " << lat << ", longitude = " << longitude << " h = " << h << std::endl;
// std::cout << "E = " << east << ", N = " << north << " U = " << up << std::endl; // std::cout << "E = " << east << ", N = " << north << " U = " << up << std::endl;
pos_e.push_back(east);
pos_n.push_back(north);
pos_u.push_back(up);
// getchar(); // getchar();
} }
} }
myfile.close(); myfile.close();
ASSERT_FALSE(pos_e.size() == 0) << "KML file is empty"; ASSERT_FALSE(R_eb_e.n_cols == 0) << "KML file is empty";
} }
else else
{ {
@ -558,16 +458,6 @@ void PositionSystemTest::check_results()
int64_t current_epoch = 0; int64_t current_epoch = 0;
while (pvt_reader.read_binary_obs()) while (pvt_reader.read_binary_obs())
{ {
double north, east, up;
geodetic2Enu(pvt_reader.latitude, pvt_reader.longitude, pvt_reader.height, &east, &north, &up);
// std::cout << "lat = " << pvt_reader.latitude << ", longitude = " << pvt_reader.longitude << " h = " << pvt_reader.height << std::endl;
// std::cout << "E = " << east << ", N = " << north << " U = " << up << std::endl;
pos_e.push_back(east);
pos_n.push_back(north);
pos_u.push_back(up);
// getchar();
// receiver_time_s(current_epoch) = static_cast<double>(pvt_reader.TOW_at_current_symbol_ms) / 1000.0;
receiver_time_s(current_epoch) = pvt_reader.RX_time - pvt_reader.clk_offset_s; receiver_time_s(current_epoch) = pvt_reader.RX_time - pvt_reader.clk_offset_s;
R_eb_e(current_epoch, 0) = pvt_reader.rr[0]; R_eb_e(current_epoch, 0) = pvt_reader.rr[0];
R_eb_e(current_epoch, 1) = pvt_reader.rr[1]; R_eb_e(current_epoch, 1) = pvt_reader.rr[1];
@ -578,6 +468,9 @@ void PositionSystemTest::check_results()
LLH(current_epoch, 0) = pvt_reader.latitude; LLH(current_epoch, 0) = pvt_reader.latitude;
LLH(current_epoch, 1) = pvt_reader.longitude; LLH(current_epoch, 1) = pvt_reader.longitude;
LLH(current_epoch, 2) = pvt_reader.height; LLH(current_epoch, 2) = pvt_reader.height;
arma::vec tmp_r_enu;
cart2utm(R_eb_e.col(current_epoch), utm_zone, tmp_r_enu);
R_eb_enu.insert_cols(current_epoch, tmp_r_enu);
//debug check //debug check
// std::cout << "t1: " << pvt_reader.RX_time << std::endl; // std::cout << "t1: " << pvt_reader.RX_time << std::endl;
@ -593,20 +486,21 @@ void PositionSystemTest::check_results()
if (FLAGS_static_scenario) if (FLAGS_static_scenario)
{ {
double sigma_E_2_precision = std::pow(compute_stdev_precision(pos_e), 2.0); double sigma_E_2_precision = arma::var(R_eb_enu.row(0));
double sigma_N_2_precision = std::pow(compute_stdev_precision(pos_n), 2.0); double sigma_N_2_precision = arma::var(R_eb_enu.row(1));
double sigma_U_2_precision = std::pow(compute_stdev_precision(pos_u), 2.0); double sigma_U_2_precision = arma::var(R_eb_enu.row(2));
double sigma_E_2_accuracy = std::pow(compute_stdev_accuracy(pos_e, ref_e), 2.0); arma::rowvec tmp_vec;
double sigma_N_2_accuracy = std::pow(compute_stdev_accuracy(pos_n, ref_n), 2.0); tmp_vec = R_eb_enu.row(0) - ref_r_enu(0);
double sigma_U_2_accuracy = std::pow(compute_stdev_accuracy(pos_u, ref_u), 2.0); double sigma_E_2_accuracy = sqrt(arma::sum(arma::square(tmp_vec)) / tmp_vec.n_cols);
tmp_vec = R_eb_enu.row(1) - ref_r_enu(1);
double sigma_N_2_accuracy = sqrt(arma::sum(arma::square(tmp_vec)) / tmp_vec.n_cols);
tmp_vec = R_eb_enu.row(2) - ref_r_enu(2);
double sigma_U_2_accuracy = sqrt(arma::sum(arma::square(tmp_vec)) / tmp_vec.n_cols);
double sum__e = std::accumulate(pos_e.begin(), pos_e.end(), 0.0); double mean__e = arma::mean(R_eb_enu.row(0));
double mean__e = sum__e / pos_e.size(); double mean__n = arma::mean(R_eb_enu.row(1));
double sum__n = std::accumulate(pos_n.begin(), pos_n.end(), 0.0); double mean__u = arma::mean(R_eb_enu.row(2));
double mean__n = sum__n / pos_n.size();
double sum__u = std::accumulate(pos_u.begin(), pos_u.end(), 0.0);
double mean__u = sum__u / pos_u.size();
std::stringstream stm; std::stringstream stm;
std::ofstream position_test_file; std::ofstream position_test_file;
@ -619,20 +513,20 @@ void PositionSystemTest::check_results()
stm << "---- ACCURACY ----" << std::endl; stm << "---- ACCURACY ----" << std::endl;
stm << "2DRMS = " << 2 * sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]" << std::endl; stm << "2DRMS = " << 2 * sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]" << std::endl;
stm << "DRMS = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]" << std::endl; stm << "DRMS = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]" << std::endl;
stm << "CEP = " << 0.62 * compute_stdev_accuracy(pos_n, ref_n) + 0.56 * compute_stdev_accuracy(pos_e, ref_e) << " [m]" << std::endl; stm << "CEP = " << 0.62 * sqrt(sigma_N_2_accuracy) + 0.56 * sqrt(sigma_E_2_accuracy) << " [m]" << std::endl;
stm << "99% SAS = " << 1.122 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl; stm << "99% SAS = " << 1.122 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
stm << "90% SAS = " << 0.833 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl; stm << "90% SAS = " << 0.833 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
stm << "MRSE = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl; stm << "MRSE = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
stm << "SEP = " << 0.51 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl; stm << "SEP = " << 0.51 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
stm << "Bias 2D = " << sqrt(std::pow(abs(mean__e - ref_e), 2.0) + std::pow(abs(mean__n - ref_n), 2.0)) << " [m]" << std::endl; stm << "Bias 2D = " << sqrt(std::pow(fabs(mean__e - ref_r_enu(0)), 2.0) + std::pow(fabs(mean__n - ref_r_enu(1)), 2.0)) << " [m]" << std::endl;
stm << "Bias 3D = " << sqrt(std::pow(abs(mean__e - ref_e), 2.0) + std::pow(abs(mean__n - ref_n), 2.0) + std::pow(abs(mean__u - ref_u), 2.0)) << " [m]" << std::endl; stm << "Bias 3D = " << sqrt(std::pow(fabs(mean__e - ref_r_enu(0)), 2.0) + std::pow(fabs(mean__n - ref_r_enu(1)), 2.0) + std::pow(fabs(mean__u - ref_r_enu(2)), 2.0)) << " [m]" << std::endl;
stm << std::endl; stm << std::endl;
} }
stm << "---- PRECISION ----" << std::endl; stm << "---- PRECISION ----" << std::endl;
stm << "2DRMS = " << 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]" << std::endl; stm << "2DRMS = " << 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]" << std::endl;
stm << "DRMS = " << sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]" << std::endl; stm << "DRMS = " << sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]" << std::endl;
stm << "CEP = " << 0.62 * compute_stdev_precision(pos_n) + 0.56 * compute_stdev_precision(pos_e) << " [m]" << std::endl; stm << "CEP = " << 0.62 * sqrt(sigma_N_2_precision) + 0.56 * sqrt(sigma_E_2_precision) << " [m]" << std::endl;
stm << "99% SAS = " << 1.122 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl; stm << "99% SAS = " << 1.122 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
stm << "90% SAS = " << 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl; stm << "90% SAS = " << 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
stm << "MRSE = " << sqrt(sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl; stm << "MRSE = " << sqrt(sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
@ -649,11 +543,11 @@ void PositionSystemTest::check_results()
// Sanity Check // Sanity Check
double precision_SEP = 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision); double precision_SEP = 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
ASSERT_LT(precision_SEP, 20.0); ASSERT_LT(precision_SEP, 1.0);
if (FLAGS_plot_position_test == true) if (FLAGS_plot_position_test == true)
{ {
print_results(pos_e, pos_n, pos_u); print_results(R_eb_enu);
} }
} }
else else
@ -844,9 +738,7 @@ void PositionSystemTest::check_results()
} }
void PositionSystemTest::print_results(const std::vector<double>& east, void PositionSystemTest::print_results(arma::mat R_eb_enu)
const std::vector<double>& north,
const std::vector<double>& up)
{ {
const std::string gnuplot_executable(FLAGS_gnuplot_executable); const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty()) if (gnuplot_executable.empty())
@ -857,29 +749,40 @@ void PositionSystemTest::print_results(const std::vector<double>& east,
} }
else else
{ {
double sigma_E_2_precision = std::pow(compute_stdev_precision(east), 2.0); double sigma_E_2_precision = arma::var(R_eb_enu.row(0));
double sigma_N_2_precision = std::pow(compute_stdev_precision(north), 2.0); double sigma_N_2_precision = arma::var(R_eb_enu.row(1));
double sigma_U_2_precision = std::pow(compute_stdev_precision(up), 2.0); double sigma_U_2_precision = arma::var(R_eb_enu.row(2));
double mean_east = std::accumulate(east.begin(), east.end(), 0.0) / east.size(); double mean_east = arma::mean(R_eb_enu.row(0));
double mean_north = std::accumulate(north.begin(), north.end(), 0.0) / north.size(); double mean_north = arma::mean(R_eb_enu.row(1));
double mean_up = arma::mean(R_eb_enu.row(2));
auto it_max_east = std::max_element(std::begin(east), std::end(east)); double it_max_east = arma::max(R_eb_enu.row(0) - mean_east);
auto it_min_east = std::min_element(std::begin(east), std::end(east)); double it_min_east = arma::min(R_eb_enu.row(0) - mean_east);
auto it_max_north = std::max_element(std::begin(north), std::end(north));
auto it_min_north = std::min_element(std::begin(north), std::end(north));
auto it_max_up = std::max_element(std::begin(up), std::end(up));
auto it_min_up = std::min_element(std::begin(up), std::end(up));
auto east_range = std::max(*it_max_east, std::abs(*it_min_east)); double it_max_north = arma::max(R_eb_enu.row(1) - mean_north);
auto north_range = std::max(*it_max_north, std::abs(*it_min_north)); double it_min_north = arma::min(R_eb_enu.row(1) - mean_north);
auto up_range = std::max(*it_max_up, std::abs(*it_min_up));
double it_max_up = arma::max(R_eb_enu.row(2) - mean_up);
double it_min_up = arma::min(R_eb_enu.row(2) - mean_up);
double east_range = std::max(it_max_east, std::abs(it_min_east));
double north_range = std::max(it_max_north, std::abs(it_min_north));
double up_range = std::max(it_max_up, std::abs(it_min_up));
double range = std::max(east_range, north_range) * 1.1; double range = std::max(east_range, north_range) * 1.1;
double range_3d = std::max(std::max(east_range, north_range), up_range) * 1.1; double range_3d = std::max(std::max(east_range, north_range), up_range) * 1.1;
double two_drms = 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision); double two_drms = 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision);
double ninty_sas = 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision); double ninty_sas = 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
arma::rowvec arma_east = R_eb_enu.row(0) - mean_east;
arma::rowvec arma_north = R_eb_enu.row(1) - mean_north;
arma::rowvec arma_up = R_eb_enu.row(2) - mean_up;
std::vector<double> east(arma_east.colptr(0), arma_east.row(0).colptr(0) + arma_east.row(0).n_cols);
std::vector<double> north(arma_north.colptr(0), arma_north.colptr(0) + arma_north.n_cols);
std::vector<double> up(arma_up.colptr(0), arma_up.colptr(0) + arma_up.n_cols);
try try
{ {
boost::filesystem::path p(gnuplot_executable); boost::filesystem::path p(gnuplot_executable);
@ -903,6 +806,7 @@ void PositionSystemTest::print_results(const std::vector<double>& east,
g1.cmd("set xrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]"); g1.cmd("set xrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]");
g1.cmd("set yrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]"); g1.cmd("set yrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]");
g1.plot_xy(east, north, "2D Position Fixes"); g1.plot_xy(east, north, "2D Position Fixes");
g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms, "2DRMS"); g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms, "2DRMS");
g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms / 2.0, "DRMS"); g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms / 2.0, "DRMS");

View File

@ -452,7 +452,7 @@ TEST(RTKLibSolverTest, test1)
std::cout << "3D positioning error: " << error_3d_m << " [meters]" << std::endl; std::cout << "3D positioning error: " << error_3d_m << " [meters]" << std::endl;
//check results against the test tolerance //check results against the test tolerance
ASSERT_LT(error_3d_m, 1.0); ASSERT_LT(error_3d_m, 0.2);
pvt_valid = true; pvt_valid = true;
} }
} }