1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Add work on acq performance test

This commit is contained in:
Carles Fernandez 2018-06-27 08:07:42 +02:00
parent bc0b267acc
commit 09ef8dc1f1
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D

View File

@ -49,6 +49,7 @@ DEFINE_int32(acq_test_PRN, 1, "PRN number");
DEFINE_int32(acq_test_fake_PRN, 33, "Fake PRN number"); DEFINE_int32(acq_test_fake_PRN, 33, "Fake PRN number");
DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration"); DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration");
DEFINE_bool(acq_test_bit_transition_flag, false, "Bit transition flag"); DEFINE_bool(acq_test_bit_transition_flag, false, "Bit transition flag");
DEFINE_int32(acq_test_iterations, 1, "Number of iterations");
// ######## GNURADIO BLOCK MESSAGE RECEVER ######### // ######## GNURADIO BLOCK MESSAGE RECEVER #########
class AcqPerfTest_msg_rx; class AcqPerfTest_msg_rx;
@ -122,9 +123,11 @@ protected:
acquisition = 0; acquisition = 0;
init(); init();
Pd.resize(cn0_.size()); Pd.resize(cn0_.size());
for (int i = 0; i < cn0_.size(); i++) Pd[i].reserve(num_thresholds); for (int i = 0; i < static_cast<int>(cn0_.size()); i++) Pd[i].reserve(num_thresholds);
Pfa.resize(cn0_.size()); Pfa.resize(cn0_.size());
for (int i = 0; i < cn0_.size(); i++) Pfa[i].reserve(num_thresholds); for (int i = 0; i < static_cast<int>(cn0_.size()); i++) Pfa[i].reserve(num_thresholds);
Pd_correct.resize(cn0_.size());
for (int i = 0; i < static_cast<int>(cn0_.size()); i++) Pd_correct[i].reserve(num_thresholds);
} }
~AcquisitionPerformanceTest() ~AcquisitionPerformanceTest()
@ -132,7 +135,8 @@ protected:
} }
std::vector<double> cn0_ = {35.0, 38.0, 43.0}; std::vector<double> cn0_ = {35.0, 38.0, 43.0};
int N_iterations = 1; std::vector<float> pfa_local = {0.01, 0.1}; //{FLAGS_acq_test_pfa}; //{0.001, 0.01, 0.1, 1};
int N_iterations = FLAGS_acq_test_iterations;
void init(); void init();
//void plot_grid(); //void plot_grid();
@ -144,7 +148,6 @@ protected:
void process_message(); void process_message();
void stop_queue(); void stop_queue();
int run_receiver(); int run_receiver();
int run_receiver2();
int count_executions(const std::string& basename, unsigned int sat); int count_executions(const std::string& basename, unsigned int sat);
void check_results(); void check_results();
@ -182,13 +185,11 @@ protected:
unsigned int observed_satellite = FLAGS_acq_test_PRN; unsigned int observed_satellite = FLAGS_acq_test_PRN;
std::string path_str = "./acq-perf-test"; std::string path_str = "./acq-perf-test";
//std::vector<std::vector<double>> meas_Pd; int num_thresholds = pfa_local.size();
//std::vector<std::vector<float>> meas_Pd_correct;
//std::vector<std::vector<float>> meas_Pfa;
int num_thresholds = 1;
std::vector<std::vector<float>> Pd; std::vector<std::vector<float>> Pd;
std::vector<std::vector<float>> Pfa; std::vector<std::vector<float>> Pfa;
std::vector<std::vector<float>> Pd_correct;
private: private:
@ -317,91 +318,8 @@ int AcquisitionPerformanceTest::configure_receiver(double cn0, float pfa, unsign
config = std::make_shared<InMemoryConfiguration>(); config = std::make_shared<InMemoryConfiguration>();
const int sampling_rate_internal = baseband_sampling_freq; const int sampling_rate_internal = baseband_sampling_freq;
const int number_of_taps = 11;
const int number_of_bands = 2;
const float band1_begin = 0.0;
const float band1_end = 0.48;
const float band2_begin = 0.52;
const float band2_end = 1.0;
const float ampl1_begin = 1.0;
const float ampl1_end = 1.0;
const float ampl2_begin = 0.0;
const float ampl2_end = 0.0;
const float band1_error = 1.0;
const float band2_error = 1.0;
const int grid_density = 16;
const float zero = 0.0;
const float pll_bw_hz = 30.0;
const float dll_bw_hz = 4.0;
const float early_late_space_chips = 0.5;
const float pll_bw_narrow_hz = 20.0;
const float dll_bw_narrow_hz = 2.0;
const int extend_correlation_ms = 1;
const int display_rate_ms = 500;
const int output_rate_ms = 100;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_rate_internal)); config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_rate_internal));
// Set the assistance system parameters
config->set_property("GNSS-SDR.SUPL_read_gps_assistance_xml", "false");
config->set_property("GNSS-SDR.SUPL_gps_enabled", "false");
config->set_property("GNSS-SDR.SUPL_gps_ephemeris_server", "supl.google.com");
config->set_property("GNSS-SDR.SUPL_gps_ephemeris_port", std::to_string(7275));
config->set_property("GNSS-SDR.SUPL_gps_acquisition_server", "supl.google.com");
config->set_property("GNSS-SDR.SUPL_gps_acquisition_port", std::to_string(7275));
config->set_property("GNSS-SDR.SUPL_MCC", std::to_string(244));
config->set_property("GNSS-SDR.SUPL_MNS", std::to_string(5));
config->set_property("GNSS-SDR.SUPL_LAC", "0x59e2");
config->set_property("GNSS-SDR.SUPL_CI", "0x31b0");
// Set the Signal Source
config->set_property("SignalSource.implementation", "File_Signal_Source");
config->set_property("SignalSource.filename", "./" + filename_raw_data);
config->set_property("SignalSource.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("SignalSource.item_type", "ibyte");
config->set_property("SignalSource.samples", std::to_string(zero));
// Set the Signal Conditioner
config->set_property("SignalConditioner.implementation", "Signal_Conditioner");
config->set_property("DataTypeAdapter.implementation", "Ibyte_To_Complex");
//config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.implementation", "Pass_Through");
config->set_property("InputFilter.dump", "false");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", std::to_string(number_of_taps));
config->set_property("InputFilter.number_of_bands", std::to_string(number_of_bands));
config->set_property("InputFilter.band1_begin", std::to_string(band1_begin));
config->set_property("InputFilter.band1_end", std::to_string(band1_end));
config->set_property("InputFilter.band2_begin", std::to_string(band2_begin));
config->set_property("InputFilter.band2_end", std::to_string(band2_end));
config->set_property("InputFilter.ampl1_begin", std::to_string(ampl1_begin));
config->set_property("InputFilter.ampl1_end", std::to_string(ampl1_end));
config->set_property("InputFilter.ampl2_begin", std::to_string(ampl2_begin));
config->set_property("InputFilter.ampl2_end", std::to_string(ampl2_end));
config->set_property("InputFilter.band1_error", std::to_string(band1_error));
config->set_property("InputFilter.band2_error", std::to_string(band2_error));
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", std::to_string(grid_density));
config->set_property("InputFilter.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("InputFilter.IF", std::to_string(zero));
config->set_property("Resampler.implementation", "Pass_Through");
config->set_property("Resampler.dump", "false");
config->set_property("Resampler.item_type", "gr_complex");
config->set_property("Resampler.sample_freq_in", std::to_string(sampling_rate_internal));
config->set_property("Resampler.sample_freq_out", std::to_string(sampling_rate_internal));
// Set the number of Channels
config->set_property("Channels_1C.count", std::to_string(number_of_channels));
config->set_property("Channels.in_acquisition", std::to_string(in_acquisition));
config->set_property("Channel.signal", "1C");
//config->set_property("Channel1.satellite", std::to_string(FLAGS_acq_test_PRN));
// Set Acquisition // Set Acquisition
config->set_property("Acquisition_1C.implementation", implementation); config->set_property("Acquisition_1C.implementation", implementation);
config->set_property("Acquisition_1C.item_type", "gr_complex"); config->set_property("Acquisition_1C.item_type", "gr_complex");
@ -409,7 +327,7 @@ int AcquisitionPerformanceTest::configure_receiver(double cn0, float pfa, unsign
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step)); config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.threshold", std::to_string(threshold)); config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
if (FLAGS_acq_test_pfa > 0.0) config->force_set_property("Acquisition_1C.pfa", std::to_string(pfa)); if (FLAGS_acq_test_pfa > 0.0) config->supersede_property("Acquisition_1C.pfa", std::to_string(pfa));
config->set_property("Acquisition_1C.use_CFAR_algorithm", "true"); config->set_property("Acquisition_1C.use_CFAR_algorithm", "true");
@ -437,50 +355,6 @@ int AcquisitionPerformanceTest::configure_receiver(double cn0, float pfa, unsign
config->set_property("Acquisition_1C.dump_filename", dump_file); config->set_property("Acquisition_1C.dump_filename", dump_file);
config->set_property("Acquisition_1C.dump_channel", std::to_string(dump_channel)); config->set_property("Acquisition_1C.dump_channel", std::to_string(dump_channel));
// Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
//config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_C_Aid_Tracking");
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.dump", "false");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
config->set_property("Tracking_1C.pll_bw_hz", std::to_string(pll_bw_hz));
config->set_property("Tracking_1C.dll_bw_hz", std::to_string(dll_bw_hz));
config->set_property("Tracking_1C.early_late_space_chips", std::to_string(early_late_space_chips));
config->set_property("Tracking_1C.pll_bw_narrow_hz", std::to_string(pll_bw_narrow_hz));
config->set_property("Tracking_1C.dll_bw_narrow_hz", std::to_string(dll_bw_narrow_hz));
config->set_property("Tracking_1C.extend_correlation_symbols", std::to_string(extend_correlation_ms));
config->set_property("Tracking_1C.cn0_min", std::to_string(50));
config->set_property("Tracking_1C.max_lock_fail", std::to_string(1));
config->set_property("Tracking_1C.cn0_samples", std::to_string(1));
// Set Telemetry
config->set_property("TelemetryDecoder_1C.implementation", "GPS_L1_CA_Telemetry_Decoder");
config->set_property("TelemetryDecoder_1C.dump", "false");
// Set Observables
config->set_property("Observables.implementation", "Hybrid_Observables");
config->set_property("Observables.dump", "false");
config->set_property("Observables.dump_filename", "./observables.dat");
// Set PVT
config->set_property("PVT.implementation", "RTKLIB_PVT");
config->set_property("PVT.positioning_mode", "PPP_Static");
config->set_property("PVT.output_rate_ms", std::to_string(output_rate_ms));
config->set_property("PVT.display_rate_ms", std::to_string(display_rate_ms));
config->set_property("PVT.dump_filename", "./PVT");
config->set_property("PVT.nmea_dump_filename", "./gnss_sdr_pvt.nmea");
config->set_property("PVT.flag_nmea_tty_port", "false");
config->set_property("PVT.nmea_dump_devname", "/dev/pts/4");
config->set_property("PVT.flag_rtcm_server", "false");
config->set_property("PVT.flag_rtcm_tty_port", "false");
config->set_property("PVT.rtcm_dump_devname", "/dev/pts/1");
config->set_property("PVT.dump", "false");
config->set_property("PVT.rinex_version", std::to_string(2));
config->set_property("PVT.iono_model", "OFF");
config->set_property("PVT.trop_model", "OFF");
config->set_property("PVT.AR_GPS", "PPP-AR");
config_f = 0; config_f = 0;
} }
else else
@ -542,35 +416,6 @@ int AcquisitionPerformanceTest::run_receiver()
} }
int AcquisitionPerformanceTest::run_receiver2()
{
std::shared_ptr<ControlThread> control_thread;
if (FLAGS_config_file_ptest.empty())
{
control_thread = std::make_shared<ControlThread>(config);
}
else
{
control_thread = std::make_shared<ControlThread>(config_f);
}
// start receiver
try
{
control_thread->run();
}
catch (const boost::exception& e)
{
std::cout << "Boost exception: " << boost::diagnostic_information(e);
}
catch (const std::exception& ex)
{
std::cout << "STD exception: " << ex.what();
}
return 0;
}
int AcquisitionPerformanceTest::count_executions(const std::string& basename, unsigned int sat) int AcquisitionPerformanceTest::count_executions(const std::string& basename, unsigned int sat)
{ {
FILE* fp; FILE* fp;
@ -603,35 +448,34 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
boost::filesystem::remove_all(path_str); boost::filesystem::remove_all(path_str);
} }
boost::system::error_code ec; boost::system::error_code ec;
if (!boost::filesystem::create_directory(path_str, ec)) ASSERT_TRUE(boost::filesystem::create_directory(path_str, ec)) << "Could not create the " << path_str << " folder.";
{
std::cout << "Could not create the " << path_str << " folder." << std::endl;
// error
}
unsigned int cn0_index = 0; unsigned int cn0_index = 0;
//for (unsigned iter = 0; iter < N_iterations; iter++)
//unsigned iter = 0;
//{
for (std::vector<double>::const_iterator it = cn0_.cbegin(); it != cn0_.cend(); ++it) for (std::vector<double>::const_iterator it = cn0_.cbegin(); it != cn0_.cend(); ++it)
{ {
// Do N_iterations of the experiment // Do N_iterations of the experiment
std::vector<float> pfa_local = {0.01}; //{FLAGS_acq_test_pfa}; //{0.001, 0.01, 0.1, 1};
std::vector<double> meas_Pd_; std::vector<double> meas_Pd_;
std::vector<double> meas_Pd_correct_; std::vector<double> meas_Pd_correct_;
std::vector<double> meas_Pfa_; std::vector<double> meas_Pfa_;
for (unsigned iter = 0; iter < N_iterations; iter++)
// Set parameter to sweep
std::cout << "Execution for CN0 = " << *it << " dB-Hz" << std::endl;
for (int pfa_iter = 0; pfa_iter < static_cast<int>(pfa_local.size()); pfa_iter++)
{ {
// Set parameter to sweep for (int iter = 0; iter < N_iterations; iter++)
for (int pfa_iter = 0; pfa_iter < pfa_local.size(); pfa_iter++)
{ {
std::string basename = path_str + std::string("/acquisition_") + std::to_string(*it) + "_" + std::to_string(iter) + "_" + std::to_string(pfa_local[pfa_iter]) + "_" + gnss_synchro.System + "_1C"; std::string basename = path_str + std::string("/acquisition_") + std::to_string(*it) + "_" + std::to_string(iter) + "_" + std::to_string(pfa_local[pfa_iter]) + "_" + gnss_synchro.System + "_1C";
// Configure the signal generator // Configure the signal generator
configure_generator(*it); configure_generator(*it);
// Generate signal raw signal samples and observations RINEX file // Generate signal raw signal samples and observations RINEX file
generate_signal(); generate_signal();
std::cout << "Execution for CN0 = " << *it << " dB-Hz" << std::endl; //std::cout << "Execution for CN0 = " << *it << " dB-Hz" << std::endl;
for (unsigned k = 0; k < 2; k++) for (unsigned k = 0; k < 2; k++)
{ {
if (k == 0) if (k == 0)
@ -716,8 +560,7 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
// Process results // Process results
arma::vec clean_doppler_estimation_error; arma::vec clean_doppler_estimation_error;
arma::vec clean_delay_estimation_error; arma::vec clean_delay_estimation_error;
std::vector<double> meas_Pd_;
std::vector<double> meas_Pd_correct_;
if (epoch_counter > 2) if (epoch_counter > 2)
{ {
arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1); arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1);
@ -729,7 +572,7 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - (meas_acq_delay_chips - ((1.0 / baseband_sampling_freq) / GPS_L1_CA_CHIP_PERIOD)); // compensate 1 sample delay arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - (meas_acq_delay_chips - ((1.0 / baseband_sampling_freq) / GPS_L1_CA_CHIP_PERIOD)); // compensate 1 sample delay
// Cut measurements without reference // Cut measurements without reference
for (unsigned int i = 0; i < num_executions; i++) for (int i = 0; i < num_executions; i++)
{ {
if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i))) if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i)))
{ {
@ -739,7 +582,7 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
clean_doppler_estimation_error = arma::zeros(num_clean_executions, 1); clean_doppler_estimation_error = arma::zeros(num_clean_executions, 1);
clean_delay_estimation_error = arma::zeros(num_clean_executions, 1); clean_delay_estimation_error = arma::zeros(num_clean_executions, 1);
num_clean_executions = 0; num_clean_executions = 0;
for (unsigned int i = 0; i < num_executions; i++) for (int i = 0; i < num_executions; i++)
{ {
if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i))) if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i)))
{ {
@ -766,9 +609,17 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
if (k == 0) if (k == 0)
{ {
double detected = arma::accu(positive_acq); double detected = arma::accu(positive_acq);
if (num_executions > 0) meas_Pd_.push_back(static_cast<double>(detected / num_executions)); double computed_Pd = detected / static_cast<double>(num_executions);
if (num_executions > 0)
{
meas_Pd_.push_back(computed_Pd);
}
else
{
meas_Pd_.push_back(0.0);
}
std::cout << TEXT_BOLD_BLACK << "Probability of detection for channel=" << ch << ", CN0=" << *it << " dBHz" std::cout << TEXT_BOLD_BLACK << "Probability of detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? (detected / num_executions) : 0.0) << TEXT_RESET << std::endl; << ": " << (num_executions > 0 ? computed_Pd : 0.0) << TEXT_RESET << std::endl;
} }
if (num_clean_executions > 0) if (num_clean_executions > 0)
{ {
@ -782,8 +633,10 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
correctly_detected = correctly_detected + 1.0; correctly_detected = correctly_detected + 1.0;
} }
} }
double computed_Pd_correct = correctly_detected / static_cast<double>(num_clean_executions);
meas_Pd_correct_.push_back(computed_Pd_correct);
std::cout << TEXT_BOLD_BLACK << "Probability of correct detection for channel=" << ch << ", CN0=" << *it << " dBHz" std::cout << TEXT_BOLD_BLACK << "Probability of correct detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_clean_executions > 0 ? (correctly_detected / num_clean_executions) : 0.0) << TEXT_RESET << std::endl; << ": " << computed_Pd_correct << TEXT_RESET << std::endl;
} }
else else
{ {
@ -791,35 +644,86 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
if (k == 1) if (k == 1)
{ {
double wrongly_detected = arma::accu(positive_acq); double wrongly_detected = arma::accu(positive_acq);
if (num_executions > 0) meas_Pfa_.push_back(static_cast<double>(wrongly_detected / num_executions)); double computed_Pfa = wrongly_detected / static_cast<double>(num_executions);
std::cout if (num_executions > 0)
<< TEXT_BOLD_BLACK << "Probability of false alarm for channel=" << ch << ", CN0=" << *it << " dBHz" {
<< ": " << (num_executions > 0 ? (wrongly_detected / num_executions) : 0.0) << TEXT_RESET << std::endl; meas_Pfa_.push_back(computed_Pfa);
}
else
{
meas_Pfa_.push_back(0.0);
}
std::cout << TEXT_BOLD_BLACK << "Probability of false alarm for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? computed_Pfa : 0.0) << TEXT_RESET << std::endl;
} }
} }
true_trk_data.restart(); true_trk_data.restart();
} }
}
float sum_ = static_cast<float>(std::accumulate(meas_Pd_.begin(), meas_Pd_.end(), 0.0)); true_trk_data.close_obs_file();
Pd[cn0_index][pfa_iter] = sum_ / static_cast<float>(meas_Pd_.size()); float sum_pd = static_cast<float>(std::accumulate(meas_Pd_.begin(), meas_Pd_.end(), 0.0));
sum_ = static_cast<float>(std::accumulate(meas_Pfa_.begin(), meas_Pfa_.end(), 0.0)); float sum_pd_correct = static_cast<float>(std::accumulate(meas_Pd_correct_.begin(), meas_Pd_correct_.end(), 0.0));
Pfa[cn0_index][pfa_iter] = sum_ / static_cast<float>(meas_Pfa_.size()); float sum_pfa = static_cast<float>(std::accumulate(meas_Pfa_.begin(), meas_Pfa_.end(), 0.0));
cn0_index++; if (meas_Pd_.size() > 0 and meas_Pfa_.size() > 0)
{
Pd[cn0_index][pfa_iter] = sum_pd / static_cast<float>(meas_Pd_.size());
Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast<float>(meas_Pfa_.size());
}
else
{
if (meas_Pd_.size() > 0)
{
Pd[cn0_index][pfa_iter] = sum_pd / static_cast<float>(meas_Pd_.size());
}
else
{
Pd[cn0_index][pfa_iter] = 0.0;
}
if (meas_Pfa_.size() > 0)
{
Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast<float>(meas_Pfa_.size());
}
else
{
Pfa[cn0_index][pfa_iter] = 0.0;
}
}
if (meas_Pd_correct_.size() > 0)
{
Pd_correct[cn0_index][pfa_iter] = sum_pd_correct / static_cast<float>(meas_Pd_correct_.size());
}
else
{
Pd_correct[cn0_index][pfa_iter] = 0.0;
} }
} }
true_trk_data.close_obs_file(); cn0_index++;
// Compute results
} }
// Compute results
unsigned int aux_index = 0; unsigned int aux_index = 0;
for (std::vector<double>::const_iterator it = cn0_.cbegin(); it != cn0_.cend(); ++it) for (std::vector<double>::const_iterator it = cn0_.cbegin(); it != cn0_.cend(); ++it)
{ {
std::cout << "Results for CN0 = " << *it << " dBHz:" << std::endl; std::cout << "Results for CN0 = " << *it << " dBHz:" << std::endl;
std::cout << "Pd = "; std::cout << "Pd = ";
for (int pfa_iter = 0; pfa_iter < 1; pfa_iter++) for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{ {
std::cout << Pd[aux_index][pfa_iter] << " "; std::cout << Pd[aux_index][pfa_iter] << " ";
} }
std::cout << std::endl; std::cout << std::endl;
std::cout << "Pd_correct = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pd_correct[aux_index][pfa_iter] << " ";
}
std::cout << std::endl;
std::cout << "Pfa = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pfa[aux_index][pfa_iter] << " ";
}
std::cout << std::endl;
aux_index++; aux_index++;
} }
} }