1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-07 16:00:35 +00:00

New ultra-fast All-In-One Carrier wipe-off and Early-Prompt-Late correlator using Intel AVX SSE3 intrinsics.

Try it using the GPS_L1_CA_DLL_PLL_Optim_Tracking implementatioin for tracking operation!




git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@283 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Javier Arribas 2012-11-25 19:37:31 +00:00
parent 818d9e14b5
commit 080305cee8
8 changed files with 323 additions and 13 deletions

View File

@ -45,7 +45,7 @@ project
project : requirements
<define>OMNITHREAD_POSIX
<cxxflags>"-msse2 -mfpmath=sse -std=c++0x -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free"
<cxxflags>"-msse2 -msse3 -mfpmath=sse -std=c++0x -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free"
<linkflags>"-lgnuradio-blocks -lgnuradio-fft -lgnuradio-filter -larmadillo -lboost_system -lboost_filesystem -lboost_thread -lboost_date_time -llapack -lblas -lprofiler -ltcmalloc -lvolk"
<include>src/algorithms/acquisition/adapters
<include>src/algorithms/acquisition/gnuradio_blocks

View File

@ -98,16 +98,52 @@ void fxp_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, flo
for(int i = 0; i < n_samples; i++)
{
//using temp variables
gr_fxpt::sincos(phase_rad_i,&sin_f,&cos_f);
dest[i] = gr_complex(cos_f, -sin_f);
//using references (may be it can be a problem for c++11 standard
//gr_fxpt::sincos(phase_rad_i,&d_carr_sign[i].imag(),&d_carr_sign[i].real());
gr_fxpt::sincos(-phase_rad_i,&sin_f,&cos_f);
dest[i] = gr_complex(cos_f, sin_f);
phase_rad_i += phase_step_rad_i;
}
}
void fxp_nco_cpyref(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad)
{
int phase_rad_i;
phase_rad_i=gr_fxpt::float_to_fixed(start_phase_rad);
int phase_step_rad_i;
phase_step_rad_i=gr_fxpt::float_to_fixed(phase_step_rad);
float* vector_cpx;
vector_cpx=(float*)dest;
for(int i = 0; i < n_samples; i++)
{
//using references (may be it can be a problem for c++11 standard
//gr_fxpt::sincos(phase_rad_i,&d_carr_sign[i].imag(),&d_carr_sign[i].real());
gr_fxpt::sincos(-phase_rad_i,&vector_cpx[i*2+1],&vector_cpx[i*2]);
phase_rad_i += phase_step_rad_i;
}
}
void fxp_nco_IQ_split(float* I, float* Q , int n_samples,float start_phase_rad, float phase_step_rad)
{
int phase_rad_i;
phase_rad_i=gr_fxpt::float_to_fixed(start_phase_rad);
int phase_step_rad_i;
phase_step_rad_i=gr_fxpt::float_to_fixed(phase_step_rad);
float sin_f,cos_f;
for(int i = 0; i < n_samples; i++)
{
gr_fxpt::sincos(-phase_rad_i,&sin_f,&cos_f);
I[i]=cos_f;
Q[i]=sin_f;
phase_rad_i += phase_step_rad_i;
}
}
void std_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad)
{
float phase_rad;

View File

@ -32,11 +32,7 @@
* -------------------------------------------------------------------------
*/
/*!
* \brief Implements a conjugate complex exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase .
*
*/
#ifndef GNSS_SDR_NCO_LIB_CC_H_
#define GNSS_SDR_NCO_LIB_CC_H_
@ -46,10 +42,48 @@
#include <sse_mathfun.h>
#include <cmath>
/*!
* \brief Implements a conjugate complex exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses a SSE CORDIC implementation.
*
*/
void sse_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a conjugate complex exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
*
*/
void fxp_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a conjugate complex exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the stdlib sin() and cos() implementation.
*
*/
void std_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a conjugate complex exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
*
*/
void fxp_nco_cpyref(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a conjugate complex exponential vector in two separated float arrays (In-phase and Quadrature)
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
*
*/
void fxp_nco_IQ_split(float* I, float* Q, int n_samples,float start_phase_rad, float phase_step_rad);
#endif //NCO_LIB_CC_H

View File

@ -397,7 +397,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
update_local_carrier();
// perform Early, Prompt and Late correlation
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
d_correlator.Carrier_wipeoff_and_EPL_volk_custom(d_current_prn_length_samples,
in,
d_carr_sign,
d_early_code,

View File

@ -37,6 +37,9 @@
#include <gnuradio/gr_block.h>
#include "correlator.h"
#define LV_HAVE_SSE3
#include "volk_cw_epl_corr.h"
unsigned long Correlator::next_power_2(unsigned long v)
{
v--;
@ -109,6 +112,11 @@ void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples,const gr
//}
}
void Correlator::Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned)
{
volk_cw_epl_corr_u(input, carrier, E_code, P_code, L_code, E_out, P_out, L_out, signal_length_samples);
}
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* VE_code,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* VL_code,gr_complex* VE_out,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,gr_complex* VL_out,bool input_vector_aligned)
{
gr_complex* bb_signal;

View File

@ -54,6 +54,7 @@ class Correlator
public:
void Carrier_wipeoff_and_EPL_generic(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
void Carrier_wipeoff_and_EPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,bool input_vector_aligned);
void Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,bool input_vector_aligned);
void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* VE_code,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* VL_code,gr_complex* VE_out,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,gr_complex* VL_out,bool input_vector_unaligned);
Correlator();
~Correlator();

View File

@ -0,0 +1,203 @@
/*!
* \file volk_cw_epl_corr.h
* \brief Implements the carrier wipeoff function and the Early Prompt Late correlators in a single SSE-enabled loop.
*
* \author Javier Arribas 2012, jarribas(at)cttc.es
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef INCLUDED_volk_cw_epl_corr_H
#define INCLUDED_volk_cw_epl_corr_H
#include <inttypes.h>
#include <stdio.h>
#include <volk/volk_complex.h>
#include <float.h>
#include <string.h>
/*!
* TODO: Code the SSE4 version and benchmark it
*/
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
/*!
\brief Performs the carrier wipe-off mixing and the Early, Prompt, and Late correlation
\param input The input signal input
\param carrier The carrier signal input
\param E_code Early PRN code replica input
\param P_code Early PRN code replica input
\param L_code Early PRN code replica input
\param E_out Early correlation output
\param P_out Early correlation output
\param L_out Early correlation output
\param num_points The number of complex values in vectors
*/
static inline void volk_cw_epl_corr_u(const lv_32fc_t* input, const lv_32fc_t* carrier, const lv_32fc_t* E_code, const lv_32fc_t* P_code, const lv_32fc_t* L_code, lv_32fc_t* E_out, lv_32fc_t* P_out, lv_32fc_t* L_out, unsigned int num_points){
unsigned int number = 0;
const unsigned int halfPoints = num_points / 2;
lv_32fc_t dotProduct_E;
memset(&dotProduct_E, 0x0, 2*sizeof(float));
lv_32fc_t dotProduct_P;
memset(&dotProduct_P, 0x0, 2*sizeof(float));
lv_32fc_t dotProduct_L;
memset(&dotProduct_L, 0x0, 2*sizeof(float));
// Aux vars
__m128 x, y, yl, yh, z, tmp1, tmp2, z_E, z_P, z_L;
z_E=_mm_setzero_ps();
z_P=_mm_setzero_ps();
z_L=_mm_setzero_ps();
//input and output vectors
//lv_32fc_t* _input_BB = input_BB;
const lv_32fc_t* _input = input;
const lv_32fc_t* _carrier = carrier;
const lv_32fc_t* _E_code = E_code;
const lv_32fc_t* _P_code = P_code;
const lv_32fc_t* _L_code = L_code;
for(;number < halfPoints; number++){
// carrier wipe-off (vector point-to-point product)
x = _mm_loadu_ps((float*)_input); // Load the ar + ai, br + bi as ar,ai,br,bi
y = _mm_loadu_ps((float*)_carrier); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//_mm_storeu_ps((float*)_input_BB,z); // Store the results back into the _input_BB container
// correlation E,P,L (3x vector scalar product)
// Early
//x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi
x=z;
y = _mm_load_ps((float*)_E_code); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
z_E = _mm_add_ps(z_E, z); // Add the complex multiplication results together
// Prompt
//x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi
y = _mm_load_ps((float*)_P_code); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
z_P = _mm_add_ps(z_P, z); // Add the complex multiplication results together
// Late
//x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi
y = _mm_load_ps((float*)_L_code); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
z_L = _mm_add_ps(z_L, z); // Add the complex multiplication results together
/*pointer increment*/
_carrier += 2;
_input += 2;
//_input_BB += 2;
_E_code += 2;
_P_code += 2;
_L_code +=2;
}
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_E[2];
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_P[2];
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_L[2];
//__VOLK_ATTR_ALIGNED(16) lv_32fc_t _input_BB;
_mm_store_ps((float*)dotProductVector_E,z_E); // Store the results back into the dot product vector
_mm_store_ps((float*)dotProductVector_P,z_P); // Store the results back into the dot product vector
_mm_store_ps((float*)dotProductVector_L,z_L); // Store the results back into the dot product vector
dotProduct_E += ( dotProductVector_E[0] + dotProductVector_E[1] );
dotProduct_P += ( dotProductVector_P[0] + dotProductVector_P[1] );
dotProduct_L += ( dotProductVector_L[0] + dotProductVector_L[1] );
if((num_points % 2) != 0) {
//_input_BB = (*_input) * (*_carrier);
dotProduct_E += (*_input) * (*_E_code)*(*_carrier);
dotProduct_P += (*_input) * (*_P_code)*(*_carrier);
dotProduct_L += (*_input) * (*_L_code)*(*_carrier);
}
*E_out = dotProduct_E;
*P_out = dotProduct_P;
*L_out = dotProduct_L;
}
#endif /* LV_HAVE_SSE */
#endif /* INCLUDED_volk_cw_epl_corr_H */

View File

@ -49,6 +49,8 @@ TEST(Cordic_Test, StandardCIsFasterThanCordic)
cordicPtr = new Cordic(largest_k);
std::complex<float> *d_carr_sign;
float* d_carr_sign_I;
float* d_carr_sign_Q;
// carrier parameters
int d_vector_length=4000;
float phase_rad;
@ -59,6 +61,10 @@ TEST(Cordic_Test, StandardCIsFasterThanCordic)
// space for carrier wipeoff and signal baseband vectors
if (posix_memalign((void**)&d_carr_sign, 16, d_vector_length * sizeof(std::complex<float>) * 2) == 0){};
if (posix_memalign((void**)&d_carr_sign_I, 16, d_vector_length * sizeof(float) * 2) == 0){};
if (posix_memalign((void**)&d_carr_sign_Q, 16, d_vector_length * sizeof(float) * 2) == 0){};
double sin_d,cos_d;
double sin_f,cos_f;
@ -123,6 +129,27 @@ TEST(Cordic_Test, StandardCIsFasterThanCordic)
long long int end4 = tv.tv_sec *1000000 + tv.tv_usec;
//*** GNU RADIO FIXED POINT ARITHMETIC COPY BY REFERENCE********
gettimeofday(&tv, NULL);
long long int begin5 = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i=0; i<niter; i++)
{
fxp_nco_cpyref(d_carr_sign, d_vector_length,0, phase_step_rad);
}
gettimeofday(&tv, NULL);
long long int end5 = tv.tv_sec *1000000 + tv.tv_usec;
//*** GNU RADIO FIXED POINT ARITHMETIC COPY BY REFERENCE SPLIT IQ********
gettimeofday(&tv, NULL);
long long int begin6 = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i=0; i<niter; i++)
{
fxp_nco_IQ_split(d_carr_sign_I, d_carr_sign_Q, d_vector_length,0, phase_step_rad);
}
gettimeofday(&tv, NULL);
long long int end6 = tv.tv_sec *1000000 + tv.tv_usec;
delete cordicPtr;
@ -130,6 +157,7 @@ TEST(Cordic_Test, StandardCIsFasterThanCordic)
std::cout << "STD LIB ARITHM computed " << niter << " times in " << (end2-begin2) << " microseconds" << std::endl;
std::cout << "FXPT CORDIC computed " << niter << " times in " << (end3-begin3) << " microseconds" << std::endl;
std::cout << "SSE CORDIC computed " << niter << " times in " << (end4-begin4) << " microseconds" << std::endl;
std::cout << "FXPT CORDIC CPY REF computed " << niter << " times in " << (end5-begin5) << " microseconds" << std::endl;
std::cout << "FXPT CORDIC CPY REF SPLIT computed " << niter << " times in " << (end6-begin6) << " microseconds" << std::endl;
EXPECT_TRUE((end2-begin2) < (end1-begin1)); // if true, standard C++ is faster than the cordic implementation
}