mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-21 06:27:01 +00:00
- New NCO library for carrier signal generation: Provides a fixed point optimized wrapper for GNU Radio fxp CORDIC and SSE2 floating point implementation ( sse_mathfunc.h implementation). The library is available as nco_lib.h
- Updated Unit Test to benchmark all the current NCO implementations (./run_tests --gtest_filter=Cordic_Test.StandardCIsFasterThanCordic) -Gps_L1_Ca_Dll_Pll_Optim_Tracking algorithm updated with new NCO library for carrier wipeoff and some other optimizations. git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@281 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
parent
54df5928ab
commit
0760fa0f3e
433
conf/gnss-sdr_optim_tracking.conf
Normal file
433
conf/gnss-sdr_optim_tracking.conf
Normal file
@ -0,0 +1,433 @@
|
||||
; Default configuration file
|
||||
; You can define your own receiver and invoke it by doing
|
||||
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
|
||||
;
|
||||
|
||||
[GNSS-SDR]
|
||||
|
||||
;######### GLOBAL OPTIONS ##################
|
||||
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||
GNSS-SDR.internal_fs_hz=4000000
|
||||
|
||||
;######### CONTROL_THREAD CONFIG ############
|
||||
ControlThread.wait_for_flowgraph=false
|
||||
|
||||
;######### SIGNAL_SOURCE CONFIG ############
|
||||
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
||||
SignalSource.implementation=File_Signal_Source
|
||||
|
||||
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||
SignalSource.filename=/media/DATALOGGER_/signals/Agilent GPS Generator/cap2/agilent_cap2.dat
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
SignalSource.item_type=gr_complex
|
||||
|
||||
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
||||
SignalSource.sampling_frequency=4000000
|
||||
|
||||
;#freq: RF front-end center frequency in [Hz]
|
||||
SignalSource.freq=1575420000
|
||||
|
||||
;#gain: Front-end Gain in [dB]
|
||||
SignalSource.gain=60
|
||||
|
||||
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
|
||||
SignalSource.subdevice=B:0
|
||||
|
||||
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
|
||||
SignalSource.samples=250000000
|
||||
|
||||
;#repeat: Repeat the processing file. Disable this option in this version
|
||||
SignalSource.repeat=false
|
||||
|
||||
;#dump: Dump the Signal source data to a file. Disable this option in this version
|
||||
SignalSource.dump=false
|
||||
|
||||
SignalSource.dump_filename=../data/signal_source.dat
|
||||
|
||||
|
||||
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
|
||||
; it helps to not overload the CPU, but the processing time will be longer.
|
||||
SignalSource.enable_throttle_control=false
|
||||
|
||||
|
||||
;######### SIGNAL_CONDITIONER CONFIG ############
|
||||
;## It holds blocks to change data type, filter and resample input data.
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
|
||||
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||
;SignalConditioner.implementation=Signal_Conditioner
|
||||
SignalConditioner.implementation=Pass_Through
|
||||
|
||||
;######### DATA_TYPE_ADAPTER CONFIG ############
|
||||
;## Changes the type of input data. Please disable it in this version.
|
||||
;#implementation: [Pass_Through] disables this block
|
||||
DataTypeAdapter.implementation=Pass_Through
|
||||
|
||||
;######### INPUT_FILTER CONFIG ############
|
||||
;## Filter the input data. Can be combined with frequency translation for IF signals
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
|
||||
;#[Pass_Through] disables this block
|
||||
;#[Fir_Filter] enables a FIR Filter
|
||||
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
|
||||
|
||||
;InputFilter.implementation=Fir_Filter
|
||||
;InputFilter.implementation=Freq_Xlating_Fir_Filter
|
||||
InputFilter.implementation=Pass_Through
|
||||
|
||||
;#dump: Dump the filtered data to a file.
|
||||
InputFilter.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename.
|
||||
InputFilter.dump_filename=../data/input_filter.dat
|
||||
|
||||
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
|
||||
;#These options are based on parameters of gnuradio's function: gr_remez.
|
||||
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
|
||||
|
||||
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
|
||||
InputFilter.input_item_type=gr_complex
|
||||
|
||||
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
|
||||
InputFilter.output_item_type=gr_complex
|
||||
|
||||
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
|
||||
InputFilter.taps_item_type=float
|
||||
|
||||
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
|
||||
InputFilter.number_of_taps=5
|
||||
|
||||
;#number_of _bands: Number of frequency bands in the filter.
|
||||
InputFilter.number_of_bands=2
|
||||
|
||||
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
|
||||
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
|
||||
;#The number of band_begin and band_end elements must match the number of bands
|
||||
|
||||
InputFilter.band1_begin=0.0
|
||||
InputFilter.band1_end=0.45
|
||||
InputFilter.band2_begin=0.55
|
||||
InputFilter.band2_end=1.0
|
||||
|
||||
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
|
||||
;#The number of ampl_begin and ampl_end elements must match the number of bands
|
||||
|
||||
InputFilter.ampl1_begin=1.0
|
||||
InputFilter.ampl1_end=1.0
|
||||
InputFilter.ampl2_begin=0.0
|
||||
InputFilter.ampl2_end=0.0
|
||||
|
||||
;#band_error: weighting applied to each band (usually 1).
|
||||
;#The number of band_error elements must match the number of bands
|
||||
InputFilter.band1_error=1.0
|
||||
InputFilter.band2_error=1.0
|
||||
|
||||
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
|
||||
InputFilter.filter_type=bandpass
|
||||
|
||||
;#grid_density: determines how accurately the filter will be constructed.
|
||||
;The minimum value is 16; higher values are slower to compute the filter.
|
||||
InputFilter.grid_density=16
|
||||
|
||||
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
||||
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
||||
|
||||
InputFilter.sampling_frequency=4000000
|
||||
InputFilter.IF=0
|
||||
|
||||
|
||||
|
||||
;######### RESAMPLER CONFIG ############
|
||||
;## Resamples the input data.
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Direct_Resampler]
|
||||
;#[Pass_Through] disables this block
|
||||
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
|
||||
;Resampler.implementation=Direct_Resampler
|
||||
Resampler.implementation=Pass_Through
|
||||
|
||||
;#dump: Dump the resamplered data to a file.
|
||||
Resampler.dump=false
|
||||
;#dump_filename: Log path and filename.
|
||||
Resampler.dump_filename=../data/resampler.dat
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Resampler.item_type=gr_complex
|
||||
|
||||
;#sample_freq_in: the sample frequency of the input signal
|
||||
Resampler.sample_freq_in=8000000
|
||||
|
||||
;#sample_freq_out: the desired sample frequency of the output signal
|
||||
Resampler.sample_freq_out=4000000
|
||||
|
||||
|
||||
;######### CHANNELS GLOBAL CONFIG ############
|
||||
;#count: Number of available satellite channels.
|
||||
Channels.count=5
|
||||
;#in_acquisition: Number of channels simultaneously acquiring
|
||||
Channels.in_acquisition=1
|
||||
|
||||
;######### CHANNEL 0 CONFIG ############
|
||||
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
|
||||
;#if the option is disabled by default is assigned GPS
|
||||
Channel0.system=GPS
|
||||
|
||||
;#signal:
|
||||
;# "1C" GPS L1 C/A
|
||||
;# "1P" GPS L1 P
|
||||
;# "1W" GPS L1 Z-tracking and similar (AS on)
|
||||
;# "1Y" GPS L1 Y
|
||||
;# "1M" GPS L1 M
|
||||
;# "1N" GPS L1 codeless
|
||||
;# "2C" GPS L2 C/A
|
||||
;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless
|
||||
;# "2S" GPS L2 L2C (M)
|
||||
;# "2L" GPS L2 L2C (L)
|
||||
;# "2X" GPS L2 L2C (M+L)
|
||||
;# "2P" GPS L2 P
|
||||
;# "2W" GPS L2 Z-tracking and similar (AS on)
|
||||
;# "2Y" GPS L2 Y
|
||||
;# "2M" GPS GPS L2 M
|
||||
;# "2N" GPS L2 codeless
|
||||
;# "5I" GPS L5 I
|
||||
;# "5Q" GPS L5 Q
|
||||
;# "5X" GPS L5 I+Q
|
||||
;# "1C" GLONASS G1 C/A
|
||||
;# "1P" GLONASS G1 P
|
||||
;# "2C" GLONASS G2 C/A (Glonass M)
|
||||
;# "2P" GLONASS G2 P
|
||||
;# "1A" GALILEO E1 A (PRS)
|
||||
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
|
||||
;# "1C" GALILEO E1 C (no data)
|
||||
;# "1X" GALILEO E1 B+C
|
||||
;# "1Z" GALILEO E1 A+B+C
|
||||
;# "5I" GALILEO E5a I (F/NAV OS)
|
||||
;# "5Q" GALILEO E5a Q (no data)
|
||||
;# "5X" GALILEO E5a I+Q
|
||||
;# "7I" GALILEO E5b I
|
||||
;# "7Q" GALILEO E5b Q
|
||||
;# "7X" GALILEO E5b I+Q
|
||||
;# "8I" GALILEO E5 I
|
||||
;# "8Q" GALILEO E5 Q
|
||||
;# "8X" GALILEO E5 I+Q
|
||||
;# "6A" GALILEO E6 A
|
||||
;# "6B" GALILEO E6 B
|
||||
;# "6C" GALILEO E6 C
|
||||
;# "6X" GALILEO E6 B+C
|
||||
;# "6Z" GALILEO E6 A+B+C
|
||||
;# "1C" SBAS L1 C/A
|
||||
;# "5I" SBAS L5 I
|
||||
;# "5Q" SBAS L5 Q
|
||||
;# "5X" SBAS L5 I+Q
|
||||
;# "2I" COMPASS E2 I
|
||||
;# "2Q" COMPASS E2 Q
|
||||
;# "2X" COMPASS E2 IQ
|
||||
;# "7I" COMPASS E5b I
|
||||
;# "7Q" COMPASS E5b Q
|
||||
;# "7X" COMPASS E5b IQ
|
||||
;# "6I" COMPASS E6 I
|
||||
;# "6Q" COMPASS E6 Q
|
||||
;# "6X" COMPASS E6 IQ
|
||||
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
|
||||
Channel0.signal=1C
|
||||
|
||||
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
|
||||
Channel0.satellite=15
|
||||
Channel0.repeat_satellite=false
|
||||
|
||||
;######### CHANNEL 1 CONFIG ############
|
||||
|
||||
Channel1.system=GPS
|
||||
Channel1.signal=1C
|
||||
Channel1.satellite=18
|
||||
Channel1.repeat_satellite=false
|
||||
|
||||
;######### CHANNEL 2 CONFIG ############
|
||||
|
||||
Channel2.system=GPS
|
||||
Channel2.signal=1C
|
||||
Channel2.satellite=16
|
||||
Channel2.repeat_satellite=false
|
||||
|
||||
;######### CHANNEL 3 CONFIG ############
|
||||
|
||||
Channel3.system=GPS
|
||||
Channel3.signal=1C
|
||||
Channel3.satellite=21
|
||||
Channel3.repeat_satellite=false
|
||||
|
||||
;######### CHANNEL 4 CONFIG ############
|
||||
|
||||
Channel4.system=GPS
|
||||
Channel4.signal=1C
|
||||
Channel4.satellite=3
|
||||
Channel4.repeat_satellite=false
|
||||
|
||||
;######### CHANNEL 5 CONFIG ############
|
||||
|
||||
Channel5.system=GPS
|
||||
Channel5.signal=1C
|
||||
;Channel5.satellite=21
|
||||
;Channel5.repeat_satellite=false
|
||||
|
||||
|
||||
;######### ACQUISITION GLOBAL CONFIG ############
|
||||
|
||||
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||
Acquisition.dump=false
|
||||
;#filename: Log path and filename
|
||||
Acquisition.dump_filename=./acq_dump.dat
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Acquisition.item_type=gr_complex
|
||||
;#if: Signal intermediate frequency in [Hz]
|
||||
Acquisition.if=0
|
||||
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||
Acquisition.sampled_ms=1
|
||||
|
||||
;######### ACQUISITION CHANNELS CONFIG ######
|
||||
|
||||
;######### ACQUISITION CH 0 CONFIG ############
|
||||
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition]
|
||||
Acquisition0.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
;#threshold: Acquisition threshold
|
||||
Acquisition0.threshold=70
|
||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||
Acquisition0.doppler_max=10000
|
||||
;#doppler_max: Doppler step in the grid search [Hz]
|
||||
Acquisition0.doppler_step=250
|
||||
;#repeat_satellite: Use only jointly with the satellte PRN ID option.
|
||||
|
||||
|
||||
;######### ACQUISITION CH 1 CONFIG ############
|
||||
Acquisition1.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition1.threshold=70
|
||||
Acquisition1.doppler_max=10000
|
||||
Acquisition1.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 2 CONFIG ############
|
||||
Acquisition2.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition2.threshold=70
|
||||
Acquisition2.doppler_max=10000
|
||||
Acquisition2.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 3 CONFIG ############
|
||||
Acquisition3.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition3.threshold=70
|
||||
Acquisition3.doppler_max=10000
|
||||
Acquisition3.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 4 CONFIG ############
|
||||
Acquisition4.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition4.threshold=70
|
||||
Acquisition4.doppler_max=10000
|
||||
Acquisition4.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 5 CONFIG ############
|
||||
Acquisition5.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition5.threshold=50
|
||||
Acquisition5.doppler_max=10000
|
||||
Acquisition5.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 6 CONFIG ############
|
||||
Acquisition6.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition6.threshold=70
|
||||
Acquisition6.doppler_max=10000
|
||||
Acquisition6.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 7 CONFIG ############
|
||||
Acquisition7.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition7.threshold=70
|
||||
Acquisition7.doppler_max=10000
|
||||
Acquisition7.doppler_step=250
|
||||
|
||||
|
||||
;######### ACQUISITION CH 8 CONFIG ############
|
||||
Acquisition8.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition8.threshold=70
|
||||
Acquisition8.doppler_max=10000
|
||||
Acquisition8.doppler_step=250
|
||||
|
||||
|
||||
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
||||
Tracking.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking.item_type=gr_complex
|
||||
|
||||
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||
Tracking.if=0
|
||||
|
||||
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||
Tracking.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||
Tracking.dump_filename=./tracking_ch_
|
||||
|
||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||
Tracking.pll_bw_hz=50.0;
|
||||
|
||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||
Tracking.dll_bw_hz=2.0;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking.fll_bw_hz=10.0;
|
||||
|
||||
;#order: PLL/DLL loop filter order [2] or [3]
|
||||
Tracking.order=3;
|
||||
|
||||
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
|
||||
Tracking.early_late_space_chips=0.5;
|
||||
|
||||
;######### TELEMETRY DECODER CONFIG ############
|
||||
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A.
|
||||
TelemetryDecoder.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||
TelemetryDecoder.dump=false
|
||||
|
||||
;######### OBSERVABLES CONFIG ############
|
||||
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
|
||||
Observables.implementation=GPS_L1_CA_Observables
|
||||
|
||||
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
|
||||
Observables.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename.
|
||||
Observables.dump_filename=./observables.dat
|
||||
|
||||
|
||||
;######### PVT CONFIG ############
|
||||
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
|
||||
PVT.implementation=GPS_L1_CA_PVT
|
||||
|
||||
;#averaging_depth: Number of PVT observations in the moving average algorithm
|
||||
PVT.averaging_depth=10
|
||||
|
||||
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
|
||||
PVT.flag_averaging=true
|
||||
|
||||
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
|
||||
PVT.output_rate_ms=100;
|
||||
|
||||
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
|
||||
PVT.display_rate_ms=500;
|
||||
|
||||
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
||||
PVT.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
||||
PVT.dump_filename=./PVT
|
||||
|
||||
;######### OUTPUT_FILTER CONFIG ############
|
||||
;# Receiver output filter: Leave this block disabled in this version
|
||||
OutputFilter.implementation=Null_Sink_Output_Filter
|
||||
OutputFilter.filename=data/gnss-sdr.dat
|
||||
OutputFilter.item_type=gr_complex
|
@ -45,7 +45,7 @@ project
|
||||
|
||||
project : requirements
|
||||
<define>OMNITHREAD_POSIX
|
||||
<cxxflags>"-std=c++0x -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free"
|
||||
<cxxflags>"-msse2 -mfpmath=sse -std=c++0x -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free"
|
||||
<linkflags>"-larmadillo -lboost_system -lboost_filesystem -lboost_thread -lboost_date_time -llapack -lblas -lprofiler -ltcmalloc -lvolk"
|
||||
<include>src/algorithms/acquisition/adapters
|
||||
<include>src/algorithms/acquisition/gnuradio_blocks
|
||||
|
@ -5,6 +5,8 @@ obj gps_sdr_signal_processing : gps_sdr_signal_processing.cc ;
|
||||
obj galileo_e1_signal_processing : galileo_e1_signal_processing.cc ;
|
||||
obj gnss_sdr_valve : gnss_sdr_valve.cc ;
|
||||
obj pass_through : pass_through.cc ;
|
||||
obj nco_lib : nco_lib.cc ;
|
||||
|
||||
#obj gps_sdr_fft : gps_sdr_fft.cc : <toolset>darwin:<define>NO_SIMD <toolset>gcc:<define>USE_SIMD ;
|
||||
#obj gps_sdr_simd : gps_sdr_simd.cc : <toolset>darwin:<define>NO_SIMD <toolset>gcc:<define>USE_SIMD ;
|
||||
#obj gps_sdr_x86 : gps_sdr_x86.cc ;
|
||||
|
122
src/algorithms/libs/nco_lib.cc
Normal file
122
src/algorithms/libs/nco_lib.cc
Normal file
@ -0,0 +1,122 @@
|
||||
/*!
|
||||
* \file nco_lib.cc
|
||||
* \brief A set of Numeric Controlled Oscillator (NCO) functions to generate the carrier wipeoff signal,
|
||||
* regardless of system used
|
||||
*
|
||||
* \author Javier Arribas 2012, jarribas(at)cttc.es
|
||||
*
|
||||
* Detailed description of the file here if needed.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "nco_lib.h"
|
||||
|
||||
|
||||
typedef ALIGN16_BEG union {
|
||||
float f[4];
|
||||
int i[4];
|
||||
v4sf v;
|
||||
} ALIGN16_END V4SF;
|
||||
|
||||
void sse_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad)
|
||||
{
|
||||
//SSE NCO
|
||||
int sse_loops_four_op;
|
||||
int remnant_ops;
|
||||
sse_loops_four_op=(int)n_samples/4;
|
||||
remnant_ops=n_samples%4;
|
||||
V4SF vx, sin4, cos4;
|
||||
float phase_rad;
|
||||
phase_rad=start_phase_rad;
|
||||
|
||||
int index=0;
|
||||
for(int i=0;i<sse_loops_four_op;i++)
|
||||
{
|
||||
vx.f[0]=phase_rad;
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
vx.f[1]=phase_rad;
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
vx.f[2]=phase_rad;
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
vx.f[3]=phase_rad;
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
sincos_ps(vx.v, &sin4.v, &cos4.v);
|
||||
dest[index] = std::complex<float>(cos4.f[0], -sin4.f[0]);
|
||||
index++;
|
||||
dest[index] = std::complex<float>(cos4.f[1], -sin4.f[1]);
|
||||
index++;
|
||||
dest[index] = std::complex<float>(cos4.f[2], -sin4.f[2]);
|
||||
index++;
|
||||
dest[index] = std::complex<float>(cos4.f[3], -sin4.f[3]);
|
||||
index++;
|
||||
}
|
||||
for(int i=0;i<remnant_ops;i++)
|
||||
{
|
||||
vx.f[i]=phase_rad;
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
}
|
||||
sincos_ps(vx.v, &sin4.v, &cos4.v);
|
||||
for(int i=0;i<remnant_ops;i++)
|
||||
{
|
||||
dest[index] = std::complex<float>(cos4.f[i], -sin4.f[i]);
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
void fxp_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad)
|
||||
{
|
||||
int phase_rad_i;
|
||||
phase_rad_i=gr_fxpt::float_to_fixed(start_phase_rad);
|
||||
int phase_step_rad_i;
|
||||
phase_step_rad_i=gr_fxpt::float_to_fixed(phase_step_rad);
|
||||
|
||||
float sin_f,cos_f;
|
||||
|
||||
for(int i = 0; i < n_samples; i++)
|
||||
{
|
||||
//using temp variables
|
||||
gr_fxpt::sincos(phase_rad_i,&sin_f,&cos_f);
|
||||
dest[i] = gr_complex(cos_f, -sin_f);
|
||||
//using references (may be it can be a problem for c++11 standard
|
||||
//gr_fxpt::sincos(phase_rad_i,&d_carr_sign[i].imag(),&d_carr_sign[i].real());
|
||||
|
||||
phase_rad_i += phase_step_rad_i;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void std_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad)
|
||||
{
|
||||
float phase_rad;
|
||||
phase_rad=start_phase_rad;
|
||||
|
||||
for(int i = 0; i < n_samples; i++)
|
||||
{
|
||||
// Using std::cos and std::sin
|
||||
dest[i] = gr_complex(std::cos(phase_rad), -std::sin(phase_rad));
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
}
|
||||
}
|
55
src/algorithms/libs/nco_lib.h
Normal file
55
src/algorithms/libs/nco_lib.h
Normal file
@ -0,0 +1,55 @@
|
||||
/*!
|
||||
* \file nco_lib.h
|
||||
* \brief A set of Numeric Controlled Oscillator (NCO) functions to generate the carrier wipeoff signal,
|
||||
* regardless of system used
|
||||
*
|
||||
* \author Javier Arribas 2012, jarribas(at)cttc.es
|
||||
*
|
||||
* Detailed description of the file here if needed.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/*!
|
||||
* \brief Implements a conjugate complex exponential vector in std::complex<float> *d_carr_sign
|
||||
* containing int n_samples, with the starting phase .
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef NCO_LIB_CC_H
|
||||
#define NCO_LIB_CC_H
|
||||
|
||||
#include <gr_fxpt.h>
|
||||
#include <xmmintrin.h>
|
||||
#include <sse_mathfun.h>
|
||||
#include <cmath>
|
||||
|
||||
void sse_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
||||
|
||||
void fxp_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
||||
|
||||
void std_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
||||
|
||||
#endif //NCO_LIB_CC_H
|
766
src/algorithms/libs/sse_mathfun.h
Normal file
766
src/algorithms/libs/sse_mathfun.h
Normal file
@ -0,0 +1,766 @@
|
||||
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
|
||||
|
||||
Inspired by Intel Approximate Math library, and based on the
|
||||
corresponding algorithms of the cephes math library
|
||||
|
||||
The default is to use the SSE1 version. If you define USE_SSE2 the
|
||||
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
|
||||
not expect any significant performance improvement with SSE2.
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2007 Julien Pommier
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
(this is the zlib license)
|
||||
*/
|
||||
|
||||
#ifndef SSE_MATHFUN_H
|
||||
#define SSE_MATHFUN_H
|
||||
|
||||
#include <xmmintrin.h>
|
||||
|
||||
#define USE_SSE2
|
||||
/* yes I know, the top of this file is quite ugly */
|
||||
|
||||
#ifdef _MSC_VER /* visual c++ */
|
||||
# define ALIGN16_BEG __declspec(align(16))
|
||||
# define ALIGN16_END
|
||||
#else /* gcc or icc */
|
||||
# define ALIGN16_BEG
|
||||
# define ALIGN16_END __attribute__((aligned(16)))
|
||||
#endif
|
||||
|
||||
/* __m128 is ugly to write */
|
||||
typedef __m128 v4sf; // vector of 4 float (sse1)
|
||||
|
||||
#ifdef USE_SSE2
|
||||
# include <emmintrin.h>
|
||||
typedef __m128i v4si; // vector of 4 int (sse2)
|
||||
#else
|
||||
typedef __m64 v2si; // vector of 2 int (mmx)
|
||||
#endif
|
||||
|
||||
/* declare some SSE constants -- why can't I figure a better way to do that? */
|
||||
#define _PS_CONST(Name, Val) \
|
||||
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
#define _PI32_CONST(Name, Val) \
|
||||
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
#define _PS_CONST_TYPE(Name, Type, Val) \
|
||||
static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
|
||||
_PS_CONST(1 , 1.0f);
|
||||
_PS_CONST(0p5, 0.5f);
|
||||
/* the smallest non denormalized float number */
|
||||
_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
|
||||
_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
|
||||
_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
|
||||
|
||||
_PS_CONST_TYPE(sign_mask, int, 0x80000000);
|
||||
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
|
||||
|
||||
_PI32_CONST(1, 1);
|
||||
_PI32_CONST(inv1, ~1);
|
||||
_PI32_CONST(2, 2);
|
||||
_PI32_CONST(4, 4);
|
||||
_PI32_CONST(0x7f, 0x7f);
|
||||
|
||||
_PS_CONST(cephes_SQRTHF, 0.707106781186547524);
|
||||
_PS_CONST(cephes_log_p0, 7.0376836292E-2);
|
||||
_PS_CONST(cephes_log_p1, - 1.1514610310E-1);
|
||||
_PS_CONST(cephes_log_p2, 1.1676998740E-1);
|
||||
_PS_CONST(cephes_log_p3, - 1.2420140846E-1);
|
||||
_PS_CONST(cephes_log_p4, + 1.4249322787E-1);
|
||||
_PS_CONST(cephes_log_p5, - 1.6668057665E-1);
|
||||
_PS_CONST(cephes_log_p6, + 2.0000714765E-1);
|
||||
_PS_CONST(cephes_log_p7, - 2.4999993993E-1);
|
||||
_PS_CONST(cephes_log_p8, + 3.3333331174E-1);
|
||||
_PS_CONST(cephes_log_q1, -2.12194440e-4);
|
||||
_PS_CONST(cephes_log_q2, 0.693359375);
|
||||
|
||||
#if defined (__MINGW32__)
|
||||
|
||||
/* the ugly part below: many versions of gcc used to be completely buggy with respect to some intrinsics
|
||||
The movehl_ps is fixed in mingw 3.4.5, but I found out that all the _mm_cmp* intrinsics were completely
|
||||
broken on my mingw gcc 3.4.5 ...
|
||||
|
||||
Note that the bug on _mm_cmp* does occur only at -O0 optimization level
|
||||
*/
|
||||
|
||||
inline __m128 my_movehl_ps(__m128 a, const __m128 b) {
|
||||
asm (
|
||||
"movhlps %2,%0\n\t"
|
||||
: "=x" (a)
|
||||
: "0" (a), "x"(b)
|
||||
);
|
||||
return a; }
|
||||
#warning "redefined _mm_movehl_ps (see gcc bug 21179)"
|
||||
#define _mm_movehl_ps my_movehl_ps
|
||||
|
||||
inline __m128 my_cmplt_ps(__m128 a, const __m128 b) {
|
||||
asm (
|
||||
"cmpltps %2,%0\n\t"
|
||||
: "=x" (a)
|
||||
: "0" (a), "x"(b)
|
||||
);
|
||||
return a;
|
||||
}
|
||||
inline __m128 my_cmpgt_ps(__m128 a, const __m128 b) {
|
||||
asm (
|
||||
"cmpnleps %2,%0\n\t"
|
||||
: "=x" (a)
|
||||
: "0" (a), "x"(b)
|
||||
);
|
||||
return a;
|
||||
}
|
||||
inline __m128 my_cmpeq_ps(__m128 a, const __m128 b) {
|
||||
asm (
|
||||
"cmpeqps %2,%0\n\t"
|
||||
: "=x" (a)
|
||||
: "0" (a), "x"(b)
|
||||
);
|
||||
return a;
|
||||
}
|
||||
#warning "redefined _mm_cmpxx_ps functions..."
|
||||
#define _mm_cmplt_ps my_cmplt_ps
|
||||
#define _mm_cmpgt_ps my_cmpgt_ps
|
||||
#define _mm_cmpeq_ps my_cmpeq_ps
|
||||
#endif
|
||||
|
||||
#ifndef USE_SSE2
|
||||
typedef union xmm_mm_union {
|
||||
__m128 xmm;
|
||||
__m64 mm[2];
|
||||
} xmm_mm_union;
|
||||
|
||||
#define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) { \
|
||||
xmm_mm_union u; u.xmm = xmm_; \
|
||||
mm0_ = u.mm[0]; \
|
||||
mm1_ = u.mm[1]; \
|
||||
}
|
||||
|
||||
#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { \
|
||||
xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; \
|
||||
}
|
||||
|
||||
#endif // USE_SSE2
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
inline v4sf log_ps(v4sf x) {
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0;
|
||||
#else
|
||||
v2si mm0, mm1;
|
||||
#endif
|
||||
v4sf one = *(v4sf*)_ps_1;
|
||||
|
||||
v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
|
||||
|
||||
x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */
|
||||
|
||||
#ifndef USE_SSE2
|
||||
/* part 1: x = frexpf(x, &e); */
|
||||
COPY_XMM_TO_MM(x, mm0, mm1);
|
||||
mm0 = _mm_srli_pi32(mm0, 23);
|
||||
mm1 = _mm_srli_pi32(mm1, 23);
|
||||
#else
|
||||
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
|
||||
#endif
|
||||
/* keep only the fractional part */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
|
||||
x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
|
||||
|
||||
#ifndef USE_SSE2
|
||||
/* now e=mm0:mm1 contain the really base-2 exponent */
|
||||
mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f);
|
||||
mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f);
|
||||
v4sf e = _mm_cvtpi32x2_ps(mm0, mm1);
|
||||
_mm_empty(); /* bye bye mmx */
|
||||
#else
|
||||
emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
|
||||
v4sf e = _mm_cvtepi32_ps(emm0);
|
||||
#endif
|
||||
|
||||
e = _mm_add_ps(e, one);
|
||||
|
||||
/* part2:
|
||||
if( x < SQRTHF ) {
|
||||
e -= 1;
|
||||
x = x + x - 1.0;
|
||||
} else { x = x - 1.0; }
|
||||
*/
|
||||
v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
|
||||
v4sf tmp = _mm_and_ps(x, mask);
|
||||
x = _mm_sub_ps(x, one);
|
||||
e = _mm_sub_ps(e, _mm_and_ps(one, mask));
|
||||
x = _mm_add_ps(x, tmp);
|
||||
|
||||
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
|
||||
v4sf y = *(v4sf*)_ps_cephes_log_p0;
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
|
||||
y = _mm_mul_ps(y, x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
|
||||
|
||||
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
|
||||
y = _mm_add_ps(y, tmp);
|
||||
|
||||
|
||||
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
|
||||
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
|
||||
x = _mm_add_ps(x, y);
|
||||
x = _mm_add_ps(x, tmp);
|
||||
x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
|
||||
return x;
|
||||
}
|
||||
|
||||
_PS_CONST(exp_hi, 88.3762626647949f);
|
||||
_PS_CONST(exp_lo, -88.3762626647949f);
|
||||
|
||||
_PS_CONST(cephes_LOG2EF, 1.44269504088896341);
|
||||
_PS_CONST(cephes_exp_C1, 0.693359375);
|
||||
_PS_CONST(cephes_exp_C2, -2.12194440e-4);
|
||||
|
||||
_PS_CONST(cephes_exp_p0, 1.9875691500E-4);
|
||||
_PS_CONST(cephes_exp_p1, 1.3981999507E-3);
|
||||
_PS_CONST(cephes_exp_p2, 8.3334519073E-3);
|
||||
_PS_CONST(cephes_exp_p3, 4.1665795894E-2);
|
||||
_PS_CONST(cephes_exp_p4, 1.6666665459E-1);
|
||||
_PS_CONST(cephes_exp_p5, 5.0000001201E-1);
|
||||
|
||||
inline v4sf exp_ps(v4sf x) {
|
||||
v4sf tmp = _mm_setzero_ps(), fx;
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0;
|
||||
#else
|
||||
v2si mm0, mm1;
|
||||
#endif
|
||||
v4sf one = *(v4sf*)_ps_1;
|
||||
|
||||
x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
|
||||
x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
|
||||
|
||||
/* express exp(x) as exp(g + n*log(2)) */
|
||||
fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
|
||||
fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
|
||||
|
||||
/* how to perform a floorf with SSE: just below */
|
||||
#ifndef USE_SSE2
|
||||
/* step 1 : cast to int */
|
||||
tmp = _mm_movehl_ps(tmp, fx);
|
||||
mm0 = _mm_cvttps_pi32(fx);
|
||||
mm1 = _mm_cvttps_pi32(tmp);
|
||||
/* step 2 : cast back to float */
|
||||
tmp = _mm_cvtpi32x2_ps(mm0, mm1);
|
||||
#else
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
tmp = _mm_cvtepi32_ps(emm0);
|
||||
#endif
|
||||
/* if greater, substract 1 */
|
||||
v4sf mask = _mm_cmpgt_ps(tmp, fx);
|
||||
mask = _mm_and_ps(mask, one);
|
||||
fx = _mm_sub_ps(tmp, mask);
|
||||
|
||||
tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
|
||||
v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
|
||||
x = _mm_sub_ps(x, tmp);
|
||||
x = _mm_sub_ps(x, z);
|
||||
|
||||
z = _mm_mul_ps(x,x);
|
||||
|
||||
v4sf y = *(v4sf*)_ps_cephes_exp_p0;
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, x);
|
||||
y = _mm_add_ps(y, one);
|
||||
|
||||
/* build 2^n */
|
||||
#ifndef USE_SSE2
|
||||
z = _mm_movehl_ps(z, fx);
|
||||
mm0 = _mm_cvttps_pi32(fx);
|
||||
mm1 = _mm_cvttps_pi32(z);
|
||||
mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f);
|
||||
mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f);
|
||||
mm0 = _mm_slli_pi32(mm0, 23);
|
||||
mm1 = _mm_slli_pi32(mm1, 23);
|
||||
|
||||
v4sf pow2n;
|
||||
COPY_MM_TO_XMM(mm0, mm1, pow2n);
|
||||
_mm_empty();
|
||||
#else
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
|
||||
emm0 = _mm_slli_epi32(emm0, 23);
|
||||
v4sf pow2n = _mm_castsi128_ps(emm0);
|
||||
#endif
|
||||
y = _mm_mul_ps(y, pow2n);
|
||||
return y;
|
||||
}
|
||||
|
||||
_PS_CONST(minus_cephes_DP1, -0.78515625);
|
||||
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
|
||||
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
|
||||
_PS_CONST(sincof_p0, -1.9515295891E-4);
|
||||
_PS_CONST(sincof_p1, 8.3321608736E-3);
|
||||
_PS_CONST(sincof_p2, -1.6666654611E-1);
|
||||
_PS_CONST(coscof_p0, 2.443315711809948E-005);
|
||||
_PS_CONST(coscof_p1, -1.388731625493765E-003);
|
||||
_PS_CONST(coscof_p2, 4.166664568298827E-002);
|
||||
_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
|
||||
|
||||
|
||||
/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
|
||||
it runs also on old athlons XPs and the pentium III of your grand
|
||||
mother.
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
take into account the special handling they have for greater values
|
||||
-- it does not return garbage for arguments over 8192, though, but
|
||||
the extra precision is missing).
|
||||
|
||||
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
||||
surprising but correct result.
|
||||
|
||||
Performance is also surprisingly good, 1.33 times faster than the
|
||||
macos vsinf SSE2 function, and 1.5 times faster than the
|
||||
__vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
|
||||
too bad for an SSE1 function (with no special tuning) !
|
||||
However the latter libraries probably have a much better handling of NaN,
|
||||
Inf, denormalized and other special arguments..
|
||||
|
||||
On my core 1 duo, the execution of this function takes approximately 95 cycles.
|
||||
|
||||
From what I have observed on the experiments with Intel AMath lib, switching to an
|
||||
SSE2 version would improve the perf by only 10%.
|
||||
|
||||
Since it is based on SSE intrinsics, it has to be compiled at -O2 to
|
||||
deliver full speed.
|
||||
*/
|
||||
inline v4sf sin_ps(v4sf x) { // any x
|
||||
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
|
||||
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0, emm2;
|
||||
#else
|
||||
v2si mm0, mm1, mm2, mm3;
|
||||
#endif
|
||||
sign_bit = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
//printf("plop:"); print4(y);
|
||||
#ifdef USE_SSE2
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
v4sf swap_sign_bit = _mm_castsi128_ps(emm0);
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
|
||||
#else
|
||||
/* store the integer part of y in mm0:mm1 */
|
||||
xmm2 = _mm_movehl_ps(xmm2, y);
|
||||
mm2 = _mm_cvttps_pi32(y);
|
||||
mm3 = _mm_cvttps_pi32(xmm2);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
|
||||
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
|
||||
y = _mm_cvtpi32x2_ps(mm2, mm3);
|
||||
/* get the swap sign flag */
|
||||
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
|
||||
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
|
||||
mm0 = _mm_slli_pi32(mm0, 29);
|
||||
mm1 = _mm_slli_pi32(mm1, 29);
|
||||
/* get the polynom selection mask */
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
|
||||
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
|
||||
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
|
||||
v4sf swap_sign_bit, poly_mask;
|
||||
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit);
|
||||
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
|
||||
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
|
||||
_mm_empty(); /* good-bye mmx */
|
||||
#endif
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
|
||||
y = _mm_andnot_ps(xmm3, y);
|
||||
y = _mm_add_ps(y,y2);
|
||||
/* update the sign */
|
||||
y = _mm_xor_ps(y, sign_bit);
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
/* almost the same as sin_ps */
|
||||
inline v4sf cos_ps(v4sf x) { // any x
|
||||
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0, emm2;
|
||||
#else
|
||||
v2si mm0, mm1, mm2, mm3;
|
||||
#endif
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
|
||||
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask */
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
v4sf sign_bit = _mm_castsi128_ps(emm0);
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
#else
|
||||
/* store the integer part of y in mm0:mm1 */
|
||||
xmm2 = _mm_movehl_ps(xmm2, y);
|
||||
mm2 = _mm_cvttps_pi32(y);
|
||||
mm3 = _mm_cvttps_pi32(xmm2);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
|
||||
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
|
||||
|
||||
y = _mm_cvtpi32x2_ps(mm2, mm3);
|
||||
|
||||
|
||||
mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);
|
||||
|
||||
/* get the swap sign flag in mm0:mm1 and the
|
||||
polynom selection mask in mm2:mm3 */
|
||||
|
||||
mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
|
||||
mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
|
||||
mm0 = _mm_slli_pi32(mm0, 29);
|
||||
mm1 = _mm_slli_pi32(mm1, 29);
|
||||
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
|
||||
|
||||
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
|
||||
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
|
||||
|
||||
v4sf sign_bit, poly_mask;
|
||||
COPY_MM_TO_XMM(mm0, mm1, sign_bit);
|
||||
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
|
||||
_mm_empty(); /* good-bye mmx */
|
||||
#endif
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
|
||||
y = _mm_andnot_ps(xmm3, y);
|
||||
y = _mm_add_ps(y,y2);
|
||||
/* update the sign */
|
||||
y = _mm_xor_ps(y, sign_bit);
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
|
||||
it is almost as fast, and gives you a free cosine with your sine */
|
||||
inline void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
|
||||
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0, emm2, emm4;
|
||||
#else
|
||||
v2si mm0, mm1, mm2, mm3, mm4, mm5;
|
||||
#endif
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
v4sf swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
#else
|
||||
/* store the integer part of y in mm2:mm3 */
|
||||
xmm3 = _mm_movehl_ps(xmm3, y);
|
||||
mm2 = _mm_cvttps_pi32(y);
|
||||
mm3 = _mm_cvttps_pi32(xmm3);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
|
||||
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
|
||||
|
||||
y = _mm_cvtpi32x2_ps(mm2, mm3);
|
||||
|
||||
mm4 = mm2;
|
||||
mm5 = mm3;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
|
||||
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
|
||||
mm0 = _mm_slli_pi32(mm0, 29);
|
||||
mm1 = _mm_slli_pi32(mm1, 29);
|
||||
v4sf swap_sign_bit_sin;
|
||||
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);
|
||||
|
||||
/* get the polynom selection mask for the sine */
|
||||
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
|
||||
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
|
||||
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
|
||||
v4sf poly_mask;
|
||||
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
|
||||
#endif
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
v4sf sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
#else
|
||||
/* get the sign flag for the cosine */
|
||||
mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
|
||||
mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
|
||||
mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
|
||||
mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
|
||||
mm4 = _mm_slli_pi32(mm4, 29);
|
||||
mm5 = _mm_slli_pi32(mm5, 29);
|
||||
v4sf sign_bit_cos;
|
||||
COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
|
||||
_mm_empty(); /* good-bye mmx */
|
||||
#endif
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
v4sf ysin2 = _mm_and_ps(xmm3, y2);
|
||||
v4sf ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2,ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1,ysin2);
|
||||
xmm2 = _mm_add_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
*s = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
*c = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
@ -40,16 +40,15 @@
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "nco_lib.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
#include "math.h"
|
||||
#include <gnuradio/gr_io_signature.h>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <gr_fxpt.h>
|
||||
|
||||
|
||||
/*!
|
||||
* \todo Include in definition header file
|
||||
@ -59,7 +58,6 @@
|
||||
#define MAXIMUM_LOCK_FAIL_COUNTER 50
|
||||
#define CARRIER_LOCK_THRESHOLD 0.85
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l1_ca_dll_pll_optim_tracking_cc_sptr
|
||||
@ -126,9 +124,6 @@ Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc(
|
||||
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2];
|
||||
|
||||
|
||||
|
||||
d_carr_sign = new gr_complex[d_vector_length*2];
|
||||
|
||||
/* If an array is partitioned for more than one thread to operate on,
|
||||
* having the sub-array boundaries unaligned to cache lines could lead
|
||||
* to performance degradation. Here we allocate memory
|
||||
@ -149,7 +144,7 @@ Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc(
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ;
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
@ -204,12 +199,12 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking()
|
||||
float T_chip_mod_seconds;
|
||||
float T_prn_mod_seconds;
|
||||
float T_prn_mod_samples;
|
||||
d_code_freq_hz = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1/d_code_freq_hz;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * (float)d_fs_in;
|
||||
|
||||
d_next_prn_length_samples = round(T_prn_mod_samples);
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
float T_prn_true_samples = T_prn_true_seconds * (float)d_fs_in;
|
||||
@ -242,22 +237,25 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking()
|
||||
// Experimental: pre-sampled local signal replica at nominal code frequency.
|
||||
// No code doppler correction
|
||||
|
||||
// unified loop for E, P, L code vectors
|
||||
double code_phase_step_chips;
|
||||
code_phase_step_chips = (GPS_L1_CA_CODE_RATE_HZ / (double)d_fs_in);
|
||||
double tcode_chips = 0;
|
||||
// Alternative EPL code generation (40% of speed improvement!)
|
||||
int early_late_spc_samples;
|
||||
early_late_spc_samples=round(d_early_late_spc_chips/code_phase_step_chips);
|
||||
double epl_loop_length_samples;
|
||||
epl_loop_length_samples=d_current_prn_length_samples+early_late_spc_samples*2;
|
||||
double tcode_chips;
|
||||
int associated_chip_index;
|
||||
int code_length_chips = (int)GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double code_phase_step_chips;
|
||||
int early_late_spc_samples;
|
||||
int epl_loop_length_samples;
|
||||
|
||||
// unified loop for E, P, L code vectors
|
||||
code_phase_step_chips = ((double)d_code_freq_chips) / ((double)d_fs_in);
|
||||
tcode_chips = 0;
|
||||
|
||||
// Alternative EPL code generation (40% of speed improvement!)
|
||||
early_late_spc_samples=round(d_early_late_spc_chips/code_phase_step_chips);
|
||||
epl_loop_length_samples=d_current_prn_length_samples+early_late_spc_samples*2;
|
||||
for (int i=0; i<epl_loop_length_samples; i++)
|
||||
{
|
||||
associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
|
||||
d_early_code[i] = d_ca_code[associated_chip_index];
|
||||
tcode_chips = tcode_chips + d_code_phase_step_chips;
|
||||
tcode_chips = tcode_chips + code_phase_step_chips;
|
||||
}
|
||||
|
||||
memcpy(d_prompt_code,&d_early_code[early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
|
||||
@ -268,8 +266,6 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking()
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_next_rem_code_phase_samples = 0;
|
||||
d_acc_carrier_phase_rad = 0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
@ -291,6 +287,7 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking()
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::update_local_code()
|
||||
{
|
||||
double tcode_chips;
|
||||
@ -302,18 +299,18 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::update_local_code()
|
||||
int epl_loop_length_samples;
|
||||
|
||||
// unified loop for E, P, L code vectors
|
||||
code_phase_step_chips = ((double)d_code_freq_hz) / ((double)d_fs_in);
|
||||
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_hz / d_fs_in);
|
||||
code_phase_step_chips = ((double)d_code_freq_chips) / ((double)d_fs_in);
|
||||
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
tcode_chips = -rem_code_phase_chips;
|
||||
|
||||
// Alternative EPL code generation (40% of speed improvement!)
|
||||
//EPL code generation
|
||||
early_late_spc_samples=round(d_early_late_spc_chips/code_phase_step_chips);
|
||||
epl_loop_length_samples=d_current_prn_length_samples+early_late_spc_samples*2;
|
||||
for (int i=0; i<epl_loop_length_samples; i++)
|
||||
{
|
||||
associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
|
||||
d_early_code[i] = d_ca_code[associated_chip_index];
|
||||
tcode_chips = tcode_chips + d_code_phase_step_chips;
|
||||
tcode_chips = tcode_chips + code_phase_step_chips;
|
||||
}
|
||||
|
||||
memcpy(d_prompt_code,&d_early_code[early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
|
||||
@ -321,43 +318,14 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::update_local_code()
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::update_local_carrier()
|
||||
{
|
||||
float phase_rad, phase_step_rad;
|
||||
|
||||
float phase_step_rad;
|
||||
phase_step_rad = (float)GPS_TWO_PI*d_carrier_doppler_hz / (float)d_fs_in;
|
||||
phase_rad = d_rem_carr_phase_rad;
|
||||
|
||||
int phase_rad_i;
|
||||
phase_rad_i=gr_fxpt::float_to_fixed(phase_rad);
|
||||
int phase_step_rad_i;
|
||||
phase_step_rad_i=gr_fxpt::float_to_fixed(phase_step_rad);
|
||||
|
||||
float sin_f,cos_f;
|
||||
|
||||
for(int i = 0; i < d_current_prn_length_samples; i++)
|
||||
{
|
||||
//using temp variables
|
||||
gr_fxpt::sincos(phase_rad_i,&sin_f,&cos_f);
|
||||
d_carr_sign[i] = gr_complex(cos_f, -sin_f);
|
||||
//using references (may be it can be a problem for c++11 standard
|
||||
//gr_fxpt::sincos(phase_rad_i,&d_carr_sign[i].imag(),&d_carr_sign[i].real());
|
||||
|
||||
phase_rad_i += phase_step_rad_i;
|
||||
|
||||
// Using std::cos and std::sin
|
||||
//d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
|
||||
}
|
||||
|
||||
d_rem_carr_phase_rad = fmod(gr_fxpt::fixed_to_float(phase_rad_i), GPS_TWO_PI);
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
|
||||
fxp_nco(d_carr_sign, d_current_prn_length_samples,d_rem_carr_phase_rad, phase_step_rad);
|
||||
//sse_nco(d_carr_sign, d_current_prn_length_samples,d_rem_carr_phase_rad, phase_step_rad);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::~Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
@ -384,51 +352,49 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
{
|
||||
|
||||
// process vars
|
||||
float carr_error;
|
||||
float carr_nco;
|
||||
float code_error;
|
||||
float code_nco;
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
/*
|
||||
* Receiver signal alignment
|
||||
*/
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
/*
|
||||
* Receiver signal alignment
|
||||
*/
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
|
||||
// 28/11/2011 ACQ to TRK transition BUG CORRECTION
|
||||
float acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_next_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_next_prn_length_samples);
|
||||
//std::cout<<"acq_trk_shif_correction="<<acq_trk_shif_correction_samples<<"\r\n";
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in);
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
||||
consume_each(samples_offset); //shift input to perform alignement with local replica
|
||||
return 1;
|
||||
}
|
||||
// 28/11/2011 ACQ to TRK transition BUG CORRECTION
|
||||
float acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples);
|
||||
//std::cout<<"acq_trk_shif_correction="<<acq_trk_shif_correction_samples<<"\r\n";
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in);
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
||||
consume_each(samples_offset); //shift input to perform alignement with local replica
|
||||
return 1;
|
||||
}
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data;
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data;
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignement
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
|
||||
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignement
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
// Generate local code and carrier replicas (using \hat{f}_d(k-1))
|
||||
|
||||
// Update the prn length based on code freq (variable) and
|
||||
// sampling frequency (fixed)
|
||||
// variable code PRN sample block size
|
||||
d_current_prn_length_samples = d_next_prn_length_samples;
|
||||
//update_local_code(); //disabled in the speed optimized tracking!
|
||||
|
||||
update_local_code();
|
||||
update_local_carrier();
|
||||
update_local_carrier();
|
||||
|
||||
// perform Early, Prompt and Late correlation
|
||||
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
|
||||
@ -442,111 +408,91 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
d_Late,
|
||||
is_unaligned());
|
||||
|
||||
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
||||
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
||||
{
|
||||
const int samples_available = ninput_items[0];
|
||||
d_sample_counter = d_sample_counter + samples_available;
|
||||
LOG_AT_LEVEL(WARNING) << "Detected NaN samples at sample number " << d_sample_counter;
|
||||
consume_each(samples_available);
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad=d_acc_carrier_phase_rad+GPS_TWO_PI*d_carrier_doppler_hz*GPS_L1_CA_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad=d_rem_carr_phase_rad+GPS_TWO_PI*d_carrier_doppler_hz*GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad=fmod(d_rem_carr_phase_rad,GPS_TWO_PI);
|
||||
|
||||
// make an output to not stop the rest of the processing blocks
|
||||
current_synchro_data.Prompt_I=0.0;
|
||||
current_synchro_data.Prompt_Q=0.0;
|
||||
current_synchro_data.Tracking_timestamp_secs=(double)d_sample_counter/(double)d_fs_in;
|
||||
current_synchro_data.Carrier_phase_rads=0.0;
|
||||
current_synchro_data.Code_phase_secs=0.0;
|
||||
current_synchro_data.CN0_dB_hz=0.0;
|
||||
current_synchro_data.Flag_valid_tracking=false;
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips =dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
code_error_filt_secs=(GPS_L1_CA_CODE_PERIOD*code_error_filt_chips)/GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs=d_acc_code_phase_secs+code_error_filt_secs;
|
||||
|
||||
*out[0] =current_synchro_data;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Compute PLL error and update carrier NCO -
|
||||
carr_error = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI;
|
||||
// Implement carrier loop filter and generate NCO command
|
||||
carr_nco = d_carrier_loop_filter.get_carrier_nco(carr_error);
|
||||
// Modify carrier freq based on NCO command
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_nco;
|
||||
|
||||
// Compute DLL error and update code NCO
|
||||
code_error = dll_nc_e_minus_l_normalized(*d_Early, *d_Late);
|
||||
// Implement code loop filter and generate NCO command
|
||||
code_nco = d_code_loop_filter.get_code_nco(code_error);
|
||||
// Modify code freq based on NCO command
|
||||
d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ - code_nco;
|
||||
|
||||
// Update the phasestep based on code freq (variable) and
|
||||
// sampling frequency (fixed)
|
||||
d_code_phase_step_chips = d_code_freq_hz / (float)d_fs_in; //[chips]
|
||||
// variable code PRN sample block size
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
float T_chip_seconds;
|
||||
float T_prn_seconds;
|
||||
float T_prn_samples;
|
||||
float K_blk_samples;
|
||||
T_chip_seconds = 1 / d_code_freq_hz;
|
||||
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * d_fs_in;
|
||||
d_rem_code_phase_samples = d_next_rem_code_phase_samples;
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples;
|
||||
d_next_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
d_next_rem_code_phase_samples = K_blk_samples - d_next_prn_length_samples; //rounding error
|
||||
T_prn_samples = T_prn_seconds * (float)d_fs_in;
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs*(float)d_fs_in;
|
||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
|
||||
/*!
|
||||
* \todo Improve the lock detection algorithm!
|
||||
*/
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
|
||||
// ###### TRACKING UNLOCK NOTIFICATION #####
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Channel " << d_channel << " loss of lock!" << std::endl ;
|
||||
//tracking_message = 3; //loss of lock
|
||||
//d_channel_internal_queue->push(tracking_message);
|
||||
ControlMessageFactory* cmf = new ControlMessageFactory();
|
||||
if (d_queue != gr_msg_queue_sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
delete cmf;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
|
||||
}
|
||||
//std::cout<<"d_carrier_lock_fail_counter"<<d_carrier_lock_fail_counter<<"\r\n";
|
||||
}
|
||||
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Channel " << d_channel << " loss of lock!" << std::endl ;
|
||||
ControlMessageFactory* cmf = new ControlMessageFactory();
|
||||
if (d_queue != gr_msg_queue_sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
delete cmf;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
|
||||
current_synchro_data.Prompt_I = (double)(*d_Prompt).real();
|
||||
current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag();
|
||||
// Tracking_timestamp_secs is aligned with the PRN start sample
|
||||
current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter +
|
||||
(double)d_next_prn_length_samples + (double)d_next_rem_code_phase_samples) / (double)d_fs_in;
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN,
|
||||
// thus, Code_phase_secs = 0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Tracking_timestamp_secs=((double)d_sample_counter+(double)d_current_prn_length_samples+(double)d_rem_code_phase_samples)/(double)d_fs_in;
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs=0;
|
||||
current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad;
|
||||
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
|
||||
*out[0] = current_synchro_data;
|
||||
@ -585,7 +531,6 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
*d_Prompt = gr_complex(0,0);
|
||||
*d_Late = gr_complex(0,0);
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
|
||||
//std::cout<<output_items.size()<<std::endl;
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data;
|
||||
*out[0] = current_synchro_data;
|
||||
@ -621,15 +566,15 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
|
||||
d_dump_file.write((char*)&d_code_freq_hz, sizeof(float));
|
||||
d_dump_file.write((char*)&d_code_freq_chips, sizeof(float));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write((char*)&carr_error, sizeof(float));
|
||||
d_dump_file.write((char*)&carr_nco, sizeof(float));
|
||||
d_dump_file.write((char*)&carr_error_hz, sizeof(float));
|
||||
d_dump_file.write((char*)&carr_error_filt_hz, sizeof(float));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write((char*)&code_error, sizeof(float));
|
||||
d_dump_file.write((char*)&code_nco, sizeof(float));
|
||||
d_dump_file.write((char*)&code_error_chips, sizeof(float));
|
||||
d_dump_file.write((char*)&code_error_filt_chips, sizeof(float));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
|
||||
@ -641,14 +586,13 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
tmp_double=(double)(d_sample_counter+d_current_prn_length_samples);
|
||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (std::ifstream::failure& e)
|
||||
{
|
||||
std::cout << "Exception writing trk dump file " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(d_current_prn_length_samples); // this is necesary in gr_block derivates
|
||||
//d_sample_counter_seconds = d_sample_counter_seconds + ( ((double)d_current_prn_length_samples) / (double)d_fs_in );
|
||||
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
|
||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||
}
|
||||
@ -672,7 +616,7 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::set_channel(unsigned int channel)
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
std::cout << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (std::ifstream::failure& e)
|
||||
{
|
||||
std::cout << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
||||
}
|
||||
@ -681,7 +625,6 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::set_channel(unsigned int channel)
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
|
@ -35,7 +35,7 @@
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_OPTIM_TRACKING_CC_H
|
||||
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_CC_H
|
||||
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_OPTIM_TRACKING_CC_H
|
||||
|
||||
#include <fstream>
|
||||
#include <queue>
|
||||
@ -56,7 +56,7 @@
|
||||
|
||||
class Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc;
|
||||
typedef boost::shared_ptr<Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc>
|
||||
gps_l1_ca_dll_pll_optim_tracking_cc_sptr;
|
||||
gps_l1_ca_dll_pll_optim_tracking_cc_sptr;
|
||||
|
||||
gps_l1_ca_dll_pll_optim_tracking_cc_sptr
|
||||
gps_l1_ca_dll_pll_make_optim_tracking_cc(long if_freq,
|
||||
@ -135,7 +135,6 @@ private:
|
||||
long d_fs_in;
|
||||
|
||||
double d_early_late_spc_chips;
|
||||
double d_code_phase_step_chips;
|
||||
|
||||
gr_complex* d_ca_code;
|
||||
|
||||
@ -150,7 +149,6 @@ private:
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
float d_rem_code_phase_samples;
|
||||
float d_next_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
@ -164,15 +162,14 @@ private:
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
float d_code_freq_hz;
|
||||
float d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
float d_acc_carrier_phase_rad;
|
||||
float d_code_phase_samples;
|
||||
float d_acc_code_phase_secs;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
int d_next_prn_length_samples;
|
||||
//double d_sample_counter_seconds;
|
||||
|
||||
//processing samples counters
|
||||
unsigned long int d_sample_counter;
|
||||
@ -187,9 +184,9 @@ private:
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
int d_gnuradio_forecast_samples;
|
||||
bool d_enable_tracking;
|
||||
bool d_pull_in;
|
||||
int d_gnuradio_forecast_samples;
|
||||
|
||||
// file dump
|
||||
std::string d_dump_filename;
|
||||
|
@ -28,6 +28,7 @@ exe gnss-sdr : main.cc
|
||||
../algorithms/data_type_adapter/adapters//ishort_to_complex
|
||||
../algorithms/input_filter/adapters//fir_filter
|
||||
../algorithms/input_filter/adapters//freq_xlating_fir_filter
|
||||
../algorithms/libs//nco_lib
|
||||
../algorithms/libs//gnss_signal_processing
|
||||
../algorithms/libs//gps_sdr_signal_processing
|
||||
../algorithms/libs//galileo_e1_signal_processing
|
||||
|
@ -2,6 +2,7 @@
|
||||
* \file cordic_test.cc
|
||||
* \brief Test of the CORDIC (COordinate Rotation DIgital Computer) algorithm
|
||||
* \author Carles Fernandez-Prades, 2012. cfernandez(at)cttc.es
|
||||
* Javier Arribas, 2012. jarribas(at)cttc.es
|
||||
*
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
@ -30,79 +31,105 @@
|
||||
*/
|
||||
|
||||
|
||||
#include "GPS_L1_CA.h"
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <cmath>
|
||||
#include <gtest/gtest.h>
|
||||
#include "cordic.h"
|
||||
#include <sys/time.h>
|
||||
#include <algorithm>
|
||||
#include <cstdlib> // for RAND_MAX
|
||||
#include <gnuradio/gr_fxpt_nco.h>
|
||||
|
||||
#include "nco_lib.h"
|
||||
|
||||
TEST(Cordic_Test, StandardCIsFasterThanCordic)
|
||||
{
|
||||
int largest_k = 10;
|
||||
Cordic* cordicPtr;
|
||||
cordicPtr = new Cordic(largest_k);
|
||||
double phase = rand();
|
||||
phase = (phase/RAND_MAX) * 3.141592;
|
||||
double cos_phase1 = 0;
|
||||
double sin_phase1 = 0;
|
||||
double cos_phase2 = 0;
|
||||
double sin_phase2 = 0;
|
||||
double cos_phase3 = 0;
|
||||
double sin_phase3 = 0;
|
||||
|
||||
gr_fxpt_nco* nco;
|
||||
nco = new gr_fxpt_nco();
|
||||
std::complex<float> *d_carr_sign;
|
||||
// carrier parameters
|
||||
int d_vector_length=4000;
|
||||
float phase_rad;
|
||||
float phase_step_rad;
|
||||
float carrier_freq=2000;
|
||||
float d_fs_in=4000000;
|
||||
phase_step_rad = (float)GPS_TWO_PI*carrier_freq / (float)d_fs_in;
|
||||
|
||||
double niter = 10000000;
|
||||
// space for carrier wipeoff and signal baseband vectors
|
||||
if (posix_memalign((void**)&d_carr_sign, 16, d_vector_length * sizeof(std::complex<float>) * 2) == 0){};
|
||||
double sin_d,cos_d;
|
||||
double sin_f,cos_f;
|
||||
|
||||
|
||||
double niter = 10000;
|
||||
struct timeval tv;
|
||||
|
||||
|
||||
//*** NON-OPTIMIZED CORDIC *****
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int begin1 = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
|
||||
for(int i=0; i<niter; i++)
|
||||
{
|
||||
cordicPtr->cordic_get_cos_sin(phase, cos_phase1, sin_phase1);
|
||||
phase_rad=0;
|
||||
for(int j=0;j<d_vector_length;j++)
|
||||
{
|
||||
|
||||
cordicPtr->cordic_get_cos_sin(phase_rad, cos_d, sin_d);
|
||||
d_carr_sign[j]=std::complex<float>(cos_d,-sin_d);
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
}
|
||||
|
||||
}
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int end1 = tv.tv_sec *1000000 + tv.tv_usec;
|
||||
|
||||
|
||||
|
||||
//*** STD COS, SIN standalone *****
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int begin2 = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
for(int i=0; i<niter; i++)
|
||||
{
|
||||
cos_phase2 = cos(phase);
|
||||
sin_phase2 = sin(phase);
|
||||
for(int j=0;j<d_vector_length;j++)
|
||||
{
|
||||
cos_f = std::cos(phase_rad);
|
||||
sin_f = std::sin(phase_rad);
|
||||
d_carr_sign[j]=std::complex<float>(cos_f,-sin_f);
|
||||
phase_rad=phase_rad+phase_step_rad;
|
||||
}
|
||||
}
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int end2 = tv.tv_sec *1000000 + tv.tv_usec;
|
||||
|
||||
|
||||
|
||||
float phase_f;
|
||||
phase_f = (float)phase;
|
||||
//*** GNU RADIO FIXED POINT ARITHMETIC ********
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int begin3 = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
for(int i=0; i<niter; i++)
|
||||
{
|
||||
nco->set_phase(phase_f);
|
||||
cos_phase3 = nco->cos();
|
||||
sin_phase3 = nco->sin();
|
||||
fxp_nco(d_carr_sign, d_vector_length,0, phase_step_rad);
|
||||
}
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int end3 = tv.tv_sec *1000000 + tv.tv_usec;
|
||||
delete nco;
|
||||
|
||||
//*** SSE2 NCO ****************
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int begin4 = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
for(int i=0; i<niter; i++)
|
||||
{
|
||||
sse_nco(d_carr_sign, d_vector_length,0, phase_step_rad);
|
||||
}
|
||||
gettimeofday(&tv, NULL);
|
||||
long long int end4 = tv.tv_sec *1000000 + tv.tv_usec;
|
||||
|
||||
|
||||
delete cordicPtr;
|
||||
|
||||
|
||||
std::cout << "CORDIC sin =" << sin_phase1 << ", cos =" << cos_phase1 << " computed " << niter << " times in " << (end1-begin1) << " microseconds" << std::endl;
|
||||
std::cout << "STD sin =" << sin_phase2 << ", cos =" << cos_phase2 << " computed " << niter << " times in " << (end2-begin2) << " microseconds" << std::endl;
|
||||
std::cout << "FXPT sin =" << sin_phase3 << ", cos =" << cos_phase3 << " computed " << niter << " times in " << (end3-begin3) << " microseconds" << std::endl;
|
||||
std::cout << "NON-OPTIMIZED CORDIC computed " << niter << " times in " << (end1-begin1) << " microseconds" << std::endl;
|
||||
std::cout << "STD LIB ARITHM computed " << niter << " times in " << (end2-begin2) << " microseconds" << std::endl;
|
||||
std::cout << "FXPT CORDIC computed " << niter << " times in " << (end3-begin3) << " microseconds" << std::endl;
|
||||
std::cout << "SSE CORDIC computed " << niter << " times in " << (end4-begin4) << " microseconds" << std::endl;
|
||||
|
||||
EXPECT_TRUE((end2-begin2) < (end1-begin1)); // if true, standard C++ is faster than the cordic implementation
|
||||
}
|
||||
|
@ -25,6 +25,7 @@ exe run_tests : test_main.cc
|
||||
../algorithms/data_type_adapter/adapters//ishort_to_complex
|
||||
../algorithms/input_filter/adapters//fir_filter
|
||||
../algorithms/input_filter/adapters//freq_xlating_fir_filter
|
||||
../algorithms/libs//nco_lib
|
||||
../algorithms/libs//gnss_signal_processing
|
||||
../algorithms/libs//gps_sdr_signal_processing
|
||||
../algorithms/libs//galileo_e1_signal_processing
|
||||
|
Loading…
Reference in New Issue
Block a user