mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-15 14:25:00 +00:00
MOD: vtl matlab kf changes
This commit is contained in:
parent
4cc75d419f
commit
033a87be4b
@ -3,16 +3,25 @@
|
||||
sat_number=5;
|
||||
%% ################## Kalman filter initialization ######################################
|
||||
% covariances (static)
|
||||
kf_P_x = eye(8)*10.0; %TODO: use a real value.
|
||||
kf_P_x = eye(8); %TODO: use a real value.
|
||||
kf_x = zeros(8, 1);
|
||||
kf_R = zeros(2*sat_number, 2*sat_number);
|
||||
kf_dt=0.1;
|
||||
kf_F = eye(8, 8);
|
||||
kf_F(1, 4) = kf_dt;
|
||||
kf_F(2, 5) = kf_dt;
|
||||
kf_F(3, 6) = kf_dt;
|
||||
kf_F(7, 8) = kf_dt;
|
||||
% kf_F = eye(8, 8);
|
||||
% kf_F(1, 4) = kf_dt;
|
||||
% kf_F(2, 5) = kf_dt;
|
||||
% kf_F(3, 6) = kf_dt;
|
||||
% kf_F(7, 8) = kf_dt;
|
||||
|
||||
kf_F=[ 1 0 0 kf_dt 0 0 0 0
|
||||
0 1 0 0 kf_dt 0 0 0
|
||||
0 0 1 0 0 kf_dt 0 0
|
||||
0 0 0 1 0 0 0 0
|
||||
0 0 0 0 1 0 0 0
|
||||
0 0 0 0 0 1 0 0
|
||||
0 0 0 0 0 0 1 kf_dt
|
||||
0 0 0 0 0 0 0 1];
|
||||
|
||||
kf_H = zeros(2*sat_number,8);
|
||||
kf_y = zeros(2*sat_number, 1);
|
||||
kf_yerr = zeros(2*sat_number, 1);
|
||||
@ -20,18 +29,41 @@ kf_yerr = zeros(2*sat_number, 1);
|
||||
kf_S = zeros(2*sat_number, 2*sat_number); % kf_P_y innovation covariance matrix
|
||||
|
||||
%% State error Covariance Matrix Q (PVT)
|
||||
kf_Q = eye(8);%new_data.rx_pvt_var(i); %careful, values for V and T could not be adecuate.
|
||||
kf_Q = [ 1 0 0 0 0 0 0 0
|
||||
0 1 0 0 0 0 0 0
|
||||
0 0 1 0 0 0 0 0
|
||||
0 0 0 1 0 0 0 0
|
||||
0 0 0 0 1 0 0 0
|
||||
0 0 0 0 0 1 0 0
|
||||
0 0 0 0 0 0 1e-7 0
|
||||
0 0 0 0 0 0 0 1e-4];%new_data.rx_pvt_var(i); %careful, values for V and T could not be adecuate.
|
||||
%%
|
||||
|
||||
% Measurement error Covariance Matrix R assembling
|
||||
for chan=1:5 %neccesary quantities
|
||||
for t=1:length(navSolution.RX_time)
|
||||
% It is diagonal 2*NSatellite x 2*NSatellite (NSat psudorange error;NSat pseudo range rate error)
|
||||
kf_R(chan, chan) = 40.0; %TODO: fill with real values.
|
||||
kf_R(chan+sat_number, chan+sat_number) = 10.0;
|
||||
end
|
||||
end
|
||||
% % Measurement error Covariance Matrix R assembling
|
||||
% for chan=1:5 %neccesary quantities
|
||||
% % It is diagonal 2*NSatellite x 2*NSatellite (NSat psudorange error;NSat pseudo range rate error)
|
||||
% kf_R(chan, chan) = 40.0; %TODO: fill with real values.
|
||||
% kf_R(chan+sat_number, chan+sat_number) = 10.0;
|
||||
% end
|
||||
|
||||
kf_R=[ 3 0 0 0 0 0 0 0 0 0
|
||||
0 3 0 0 0 0 0 0 0 0
|
||||
0 0 3 0 0 0 0 0 0 0
|
||||
0 0 0 3 0 0 0 0 0 0
|
||||
0 0 0 0 3 0 0 0 0 0
|
||||
0 0 0 0 0 30 0 0 0 0
|
||||
0 0 0 0 0 0 30 0 0 0
|
||||
0 0 0 0 0 0 0 30 0 0
|
||||
0 0 0 0 0 0 0 0 30 0
|
||||
0 0 0 0 0 0 0 0 0 30];
|
||||
|
||||
d = zeros(sat_number, 1);
|
||||
rho_pri = zeros(sat_number, 1);
|
||||
rhoDot_pri = zeros(sat_number, 1);
|
||||
a_x = zeros(sat_number, 1);
|
||||
a_y = zeros(sat_number, 1);
|
||||
a_z = zeros(sat_number, 1);
|
||||
c_pr_m=zeros(sat_number,length(navSolution.RX_time));
|
||||
%% ################## Kalman Tracking ######################################
|
||||
% receiver solution from rtklib_solver
|
||||
for t=1:length(navSolution.RX_time)
|
||||
@ -44,17 +76,7 @@ for t=1:length(navSolution.RX_time)
|
||||
kf_x(5,t) = navSolution.vY(t);
|
||||
kf_x(6,t) = navSolution.vZ(t);
|
||||
kf_x(7,t) = clk_bias_s(t);
|
||||
kf_x(8,t) = 1e-6;%new_data.rx_dts(1);
|
||||
x_u=kf_x(1,t);
|
||||
y_u=kf_x(2,t);
|
||||
z_u=kf_x(3,t);
|
||||
xDot_u=kf_x(4,t);
|
||||
yDot_u=kf_x(5,t);
|
||||
zDot_u=kf_x(6,t);
|
||||
cdeltat_u=kf_x(7,t)*SPEED_OF_LIGHT_M_S;
|
||||
cdeltatDot_u=1e-8*SPEED_OF_LIGHT_M_S;
|
||||
else
|
||||
kf_x(:,t)=corr_kf_state(:,t-1);
|
||||
kf_x(8,t) = clk_drift(t);%new_data.rx_dts(1);
|
||||
|
||||
x_u=kf_x(1,t);
|
||||
y_u=kf_x(2,t);
|
||||
@ -62,23 +84,27 @@ for t=1:length(navSolution.RX_time)
|
||||
xDot_u=kf_x(4,t);
|
||||
yDot_u=kf_x(5,t);
|
||||
zDot_u=kf_x(6,t);
|
||||
cdeltat_u=kf_x(7,t)*SPEED_OF_LIGHT_M_S;
|
||||
cdeltatDot_u=1e-8*SPEED_OF_LIGHT_M_S;
|
||||
cdeltat_u(t)=kf_x(7,t)*SPEED_OF_LIGHT_M_S;
|
||||
cdeltatDot_u=kf_x(8,t)*SPEED_OF_LIGHT_M_S;
|
||||
kf_P_x = eye(8); %TODO: use a real value.
|
||||
|
||||
else
|
||||
kf_x(:,t)=corr_kf_state(:,t-1);
|
||||
x_u=kf_x(1,t);
|
||||
y_u=kf_x(2,t);
|
||||
z_u=kf_x(3,t);
|
||||
xDot_u=kf_x(4,t);
|
||||
yDot_u=kf_x(5,t);
|
||||
zDot_u=kf_x(6,t);
|
||||
cdeltat_u(t)=kf_x(7,t)*SPEED_OF_LIGHT_M_S;%
|
||||
cdeltatDot_u=kf_x(8,t)*SPEED_OF_LIGHT_M_S;%
|
||||
end
|
||||
% Kalman state prediction (time update)
|
||||
kf_x(:,t) = kf_F * kf_x(:,t); % state prediction
|
||||
kf_P_x= kf_F * kf_P_x * kf_F' + kf_Q; % state error covariance prediction
|
||||
%from error state variables to variables
|
||||
% From state variables definition
|
||||
% TODO: cast to type properly
|
||||
|
||||
d = zeros(sat_number, 1);
|
||||
rho_pri = zeros(sat_number, 1);
|
||||
rhoDot_pri = zeros(sat_number, 1);
|
||||
a_x = zeros(sat_number, 1);
|
||||
a_y = zeros(sat_number, 1);
|
||||
a_z = zeros(sat_number, 1);
|
||||
c_pr_m=zeros(sat_number,length(navSolution.RX_time));
|
||||
% TODO: cast to type properly
|
||||
|
||||
for chan=1:5 %neccesary quantities
|
||||
d(chan)=(sat_posX_m(chan,t)-kf_x(1,t))^2;
|
||||
@ -86,7 +112,7 @@ for t=1:length(navSolution.RX_time)
|
||||
d(chan)=d(chan)+(sat_posZ_m(chan,t)-kf_x(3,t))^2;
|
||||
d(chan)=sqrt(d(chan));
|
||||
|
||||
c_pr_m(chan,t)=d(chan)+clk_bias_s(t)*SPEED_OF_LIGHT_M_S;
|
||||
c_pr_m(chan,t)=d(chan)+cdeltat_u(t);
|
||||
|
||||
a_x(chan,t)=-(sat_posX_m(chan,t)-kf_x(1,t))/d(chan);
|
||||
a_y(chan,t)=-(sat_posY_m(chan,t)-kf_x(2,t))/d(chan);
|
||||
@ -94,7 +120,7 @@ for t=1:length(navSolution.RX_time)
|
||||
|
||||
rhoDot_pri(chan,t)=(sat_velX(chan,t)-kf_x(4,t))*a_x(chan,t)...
|
||||
+(sat_velY(chan,t)-kf_x(5,t))*a_y(chan,t)...
|
||||
+(sat_velZ(chan,t)-kf_x(6,t))*a_z(chan,t);
|
||||
+(sat_velZ(chan,t)-kf_x(6,t))*a_z(chan,t)+cdeltatDot_u;
|
||||
end
|
||||
|
||||
|
||||
@ -110,7 +136,7 @@ for t=1:length(navSolution.RX_time)
|
||||
%kf_y(i) = new_data.pr_m(i); % i-Satellite
|
||||
%kf_y(i+sat_number) = rhoDot_pri(i)/Lambda_GPS_L1; % i-Satellite
|
||||
kf_yerr(chan,t)=c_pr_m(chan,t)-sat_prg_m(chan,t);%-0.000157*SPEED_OF_LIGHT_M_S;
|
||||
kf_yerr(chan+sat_number,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1)-rhoDot_pri(chan,t);
|
||||
kf_yerr(chan+sat_number,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+cdeltatDot_u)-rhoDot_pri(chan,t);
|
||||
end
|
||||
|
||||
% DOUBLES DIFFERENCES
|
||||
@ -138,5 +164,5 @@ for t=1:length(navSolution.RX_time)
|
||||
% kf_x(6) =kf_x(6) /SPEED_OF_LIGHT_M_S;
|
||||
% kf_x(7) =kf_x(7) /SPEED_OF_LIGHT_M_S;
|
||||
corr_kf_state(7,t)=corr_kf_state(7,t)/SPEED_OF_LIGHT_M_S;
|
||||
corr_kf_state(8,t)=1e-8/SPEED_OF_LIGHT_M_S;
|
||||
corr_kf_state(8,t)=corr_kf_state(8,t)/SPEED_OF_LIGHT_M_S;% forced !!!!!
|
||||
end
|
@ -23,7 +23,7 @@ clearvars
|
||||
% end
|
||||
SPEED_OF_LIGHT_M_S=299792458.0;
|
||||
Lambda_GPS_L1=0.1902937;
|
||||
point_of_closure=6000;
|
||||
point_of_closure=5;
|
||||
%%
|
||||
samplingFreq=5000000;
|
||||
channels=6;
|
||||
@ -40,9 +40,9 @@ load observables\observable_raw.mat
|
||||
% refSatData = SpirentSatData2struct('..\log_spirent\sat_data_V1A1_SPF_LD_05.csv');
|
||||
rx_PRN=[28 4 17 15 27 9]; % for SPF_LD_05.
|
||||
load('PVT_raw.mat','sat_posX_m','sat_posY_m','sat_posZ_m','sat_velX','sat_velY'...
|
||||
,'sat_velZ','sat_prg_m','clk_bias_s','sat_dopp_hz')
|
||||
,'sat_velZ','sat_prg_m','clk_bias_s','clk_drift','sat_dopp_hz','user_clk_offset')
|
||||
%%
|
||||
vtlSolution = Vtl2struct('dump_vtl_file.csv');
|
||||
|
||||
%% calculate LOS Rx-sat
|
||||
|
||||
% for chan=1:5
|
||||
@ -102,6 +102,22 @@ legend('PRN 28','PRN 4','PRN 17','PRN 15','PRN 27','Location','eastoutside')
|
||||
%%
|
||||
%general_raw_plot
|
||||
vtl_general_plot
|
||||
%%
|
||||
close all
|
||||
figure;plot(kf_xerr(7,:),'.');title('clk bias err')
|
||||
figure;plot(kf_xerr(8,:),'.');title('clk drift err')
|
||||
figure;plot(kf_x(7,:),'.');title('clk bias state')
|
||||
figure;plot(kf_x(8,:),'.');title('clk drift state')
|
||||
figure;plot(corr_kf_state(7,:),'.');title('clk bias corrected state')
|
||||
figure;plot(corr_kf_state(8,:),'.');title('clk drift corrected state')
|
||||
%%
|
||||
% close all
|
||||
% kferr_pos_all=[vtlSolution.kferr.X vtlSolution.kferr.Y vtlSolution.kferr.Z];
|
||||
% kferr_vel_all=[vtlSolution.kferr.vX vtlSolution.kferr.vY vtlSolution.kferr.vZ];
|
||||
% figure;plot(kferr_pos_all,'.');title('original pos err')
|
||||
% figure;plot(kf_xerr(1:3,:)','.');title('calc pos err')
|
||||
% figure;plot(kferr_vel_all,'.');title('original vel err')
|
||||
% figure;plot(kf_xerr(4:6,:)','.');title('calc vel err')
|
||||
%% ============================================== ==============================================
|
||||
% time_reference_spirent_obs=129780;%s
|
||||
% if(load_observables)
|
||||
|
Loading…
Reference in New Issue
Block a user