mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-13 11:40:33 +00:00
Last commit from the GSoC 2013 project "Improve the acquisition sensitivity of a GNSS receiver" by Marc Molina.
Added OpenCL Acquisition blocks and tests. git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@420 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
parent
f4f22dffcd
commit
025a24bb20
@ -71,6 +71,11 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
endif(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
|
||||
|
||||
########################################################################
|
||||
# Find OpenCL installation
|
||||
########################################################################
|
||||
find_package(OpenCL)
|
||||
|
||||
|
||||
################################################################################
|
||||
# Googletest - http://code.google.com/p/googletest/
|
||||
@ -520,3 +525,4 @@ add_custom_target(uninstall
|
||||
########################################################################
|
||||
add_subdirectory(src)
|
||||
|
||||
|
||||
|
99
cmake/Modules/FindOpenCL.cmake
Normal file
99
cmake/Modules/FindOpenCL.cmake
Normal file
@ -0,0 +1,99 @@
|
||||
#
|
||||
# This file taken from FindOpenCL project @ http://gitorious.com/findopencl
|
||||
#
|
||||
# - Try to find OpenCL
|
||||
# This module tries to find an OpenCL implementation on your system. It supports
|
||||
# AMD / ATI, Apple and NVIDIA implementations, but shoudl work, too.
|
||||
#
|
||||
# Once done this will define
|
||||
# OPENCL_FOUND - system has OpenCL
|
||||
# OPENCL_INCLUDE_DIRS - the OpenCL include directory
|
||||
# OPENCL_LIBRARIES - link these to use OpenCL
|
||||
#
|
||||
# WIN32 should work, but is untested
|
||||
|
||||
FIND_PACKAGE( PackageHandleStandardArgs )
|
||||
|
||||
SET (OPENCL_VERSION_STRING "0.1.0")
|
||||
SET (OPENCL_VERSION_MAJOR 0)
|
||||
SET (OPENCL_VERSION_MINOR 1)
|
||||
SET (OPENCL_VERSION_PATCH 0)
|
||||
|
||||
IF (APPLE)
|
||||
|
||||
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL DOC "OpenCL lib for OSX")
|
||||
FIND_PATH(OPENCL_INCLUDE_DIRS OpenCL/cl.h DOC "Include for OpenCL on OSX")
|
||||
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS OpenCL/cl.hpp DOC "Include for OpenCL CPP bindings on OSX")
|
||||
|
||||
ELSE (APPLE)
|
||||
|
||||
IF (WIN32)
|
||||
|
||||
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h)
|
||||
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp)
|
||||
|
||||
# The AMD SDK currently installs both x86 and x86_64 libraries
|
||||
# This is only a hack to find out architecture
|
||||
IF( ${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64" )
|
||||
SET(OPENCL_LIB_DIR "$ENV{ATISTREAMSDKROOT}/lib/x86_64")
|
||||
SET(OPENCL_LIB_DIR "$ENV{ATIINTERNALSTREAMSDKROOT}/lib/x86_64")
|
||||
ELSE (${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64")
|
||||
SET(OPENCL_LIB_DIR "$ENV{ATISTREAMSDKROOT}/lib/x86")
|
||||
SET(OPENCL_LIB_DIR "$ENV{ATIINTERNALSTREAMSDKROOT}/lib/x86")
|
||||
ENDIF( ${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64" )
|
||||
|
||||
# find out if the user asked for a 64-bit build, and use the corresponding
|
||||
# 64 or 32 bit NVIDIA library paths to the search:
|
||||
STRING(REGEX MATCH "Win64" ISWIN64 ${CMAKE_GENERATOR})
|
||||
IF("${ISWIN64}" STREQUAL "Win64")
|
||||
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL.lib ${OPENCL_LIB_DIR} $ENV{CUDA_LIB_PATH} $ENV{CUDA_PATH}/lib/x64)
|
||||
ELSE("${ISWIN64}" STREQUAL "Win64")
|
||||
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL.lib ${OPENCL_LIB_DIR} $ENV{CUDA_LIB_PATH} $ENV{CUDA_PATH}/lib/Win32)
|
||||
ENDIF("${ISWIN64}" STREQUAL "Win64")
|
||||
|
||||
GET_FILENAME_COMPONENT(_OPENCL_INC_CAND ${OPENCL_LIB_DIR}/../../include ABSOLUTE)
|
||||
|
||||
# On Win32 search relative to the library
|
||||
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h PATHS "${_OPENCL_INC_CAND}" $ENV{CUDA_INC_PATH} $ENV{CUDA_PATH}/include)
|
||||
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp PATHS "${_OPENCL_INC_CAND}" $ENV{CUDA_INC_PATH} $ENV{CUDA_PATH}/include)
|
||||
|
||||
ELSE (WIN32)
|
||||
|
||||
# Unix style platforms
|
||||
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL
|
||||
ENV LD_LIBRARY_PATH
|
||||
)
|
||||
|
||||
GET_FILENAME_COMPONENT(OPENCL_LIB_DIR ${OPENCL_LIBRARIES} PATH)
|
||||
GET_FILENAME_COMPONENT(_OPENCL_INC_CAND ${OPENCL_LIB_DIR}/../../include ABSOLUTE)
|
||||
|
||||
# The AMD SDK currently does not place its headers
|
||||
# in /usr/include, therefore also search relative
|
||||
# to the library
|
||||
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h PATHS ${_OPENCL_INC_CAND} "/usr/local/cuda/include")
|
||||
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp PATHS ${_OPENCL_INC_CAND} "/usr/local/cuda/include")
|
||||
|
||||
ENDIF (WIN32)
|
||||
|
||||
ENDIF (APPLE)
|
||||
|
||||
FIND_PACKAGE_HANDLE_STANDARD_ARGS( OpenCL DEFAULT_MSG OPENCL_LIBRARIES OPENCL_INCLUDE_DIRS )
|
||||
|
||||
IF( _OPENCL_CPP_INCLUDE_DIRS )
|
||||
SET( OPENCL_HAS_CPP_BINDINGS TRUE )
|
||||
LIST( APPEND OPENCL_INCLUDE_DIRS ${_OPENCL_CPP_INCLUDE_DIRS} )
|
||||
# This is often the same, so clean up
|
||||
LIST( REMOVE_DUPLICATES OPENCL_INCLUDE_DIRS )
|
||||
ENDIF( _OPENCL_CPP_INCLUDE_DIRS )
|
||||
|
||||
MARK_AS_ADVANCED(
|
||||
OPENCL_INCLUDE_DIRS
|
||||
)
|
||||
|
||||
IF( OPENCL_INCLUDE_DIRS AND OPENCL_LIBRARIES )
|
||||
SET( OPENCL_FOUND TRUE )
|
||||
add_definitions( -DOPENCL=1 )
|
||||
ELSE( OPENCL_INCLUDE_DIRS AND OPENCL_LIBRARIES )
|
||||
SET( OPENCL_FOUND FALSE )
|
||||
add_definitions( -DOPENCL=0 )
|
||||
ENDIF( OPENCL_INCLUDE_DIRS AND OPENCL_LIBRARIES )
|
29
install/math_kernel.cl
Normal file
29
install/math_kernel.cl
Normal file
@ -0,0 +1,29 @@
|
||||
#define MUL_RE(a,b) (a.x*b.x - a.y*b.y)
|
||||
#define MUL_IM(a,b) (a.x*b.y + a.y*b.x)
|
||||
#define SUM_RE(a,b) (a.x + b.x)
|
||||
#define SUM_IM(a,b) (a.y + b.y)
|
||||
|
||||
__kernel void add_vectors(__global const float2* src1, __global const float2* src2, __global float2* dest)
|
||||
{
|
||||
int gid = get_global_id(0);
|
||||
dest[gid] = (float2)(SUM_RE(src1[gid],src2[gid]),SUM_IM(src1[gid],src2[gid]));
|
||||
}
|
||||
|
||||
__kernel void mult_vectors(__global const float2* src1, __global const float2* src2, __global float2* dest)
|
||||
{
|
||||
int gid = get_global_id(0);
|
||||
dest[gid] = (float2)(MUL_RE(src1[gid],src2[gid]),MUL_IM(src1[gid],src2[gid]));
|
||||
}
|
||||
|
||||
__kernel void conj_vector(__global const float2* src, __global float2* dest)
|
||||
{
|
||||
int gid = get_global_id(0);
|
||||
dest[gid] = ((float2)(1,-1)) * src[gid];
|
||||
}
|
||||
|
||||
__kernel void magnitude_squared(__global const float2* src, __global float* dest)
|
||||
{
|
||||
int gid = get_global_id(0);
|
||||
dest[gid] = src[gid].x*src[gid].x + src[gid].y*src[gid].y;
|
||||
}
|
||||
|
@ -16,7 +16,21 @@
|
||||
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
set(ACQ_ADAPTER_SOURCES
|
||||
if(OPENCL_FOUND)
|
||||
set(ACQ_ADAPTER_SOURCES
|
||||
gps_l1_ca_pcps_acquisition.cc
|
||||
gps_l1_ca_pcps_multithread_acquisition.cc
|
||||
gps_l1_ca_pcps_assisted_acquisition.cc
|
||||
gps_l1_ca_pcps_acquisition_fine_doppler.cc
|
||||
gps_l1_ca_pcps_tong_acquisition.cc
|
||||
gps_l1_ca_pcps_opencl_acquisition.cc
|
||||
galileo_e1_pcps_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_tong_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
|
||||
)
|
||||
else(OPENCL_FOUND)
|
||||
set(ACQ_ADAPTER_SOURCES
|
||||
gps_l1_ca_pcps_acquisition.cc
|
||||
gps_l1_ca_pcps_multithread_acquisition.cc
|
||||
gps_l1_ca_pcps_assisted_acquisition.cc
|
||||
@ -26,7 +40,8 @@ set(ACQ_ADAPTER_SOURCES
|
||||
galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_tong_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
|
||||
)
|
||||
)
|
||||
endif(OPENCL_FOUND)
|
||||
|
||||
include_directories(
|
||||
$(CMAKE_CURRENT_SOURCE_DIR)
|
||||
|
@ -29,8 +29,8 @@
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
@ -159,4 +159,4 @@ private:
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_ */
|
||||
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_ */
|
||||
|
@ -0,0 +1,296 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_opencl_acquisition.cc
|
||||
* \brief Adapts an OpenCL PCPS acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_pcps_opencl_acquisition.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
#include <iostream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <stdexcept>
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaPcpsOpenClAcquisition::GpsL1CaPcpsOpenClAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
gr::msg_queue::sptr queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
bit_transition_flag_ = configuration_->property("Acquisition.bit_transition_flag", false);
|
||||
|
||||
if (!bit_transition_flag_)
|
||||
{
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
max_dwells_ = 2;
|
||||
}
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_
|
||||
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
code_= new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_make_opencl_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, queue_, dump_, dump_filename_);
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
||||
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id()
|
||||
<< ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_AT_LEVEL(WARNING) << item_type_
|
||||
<< " unknown acquisition item type";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsOpenClAcquisition::~GpsL1CaPcpsOpenClAcquisition()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_threshold(float threshold)
|
||||
{
|
||||
float pfa = configuration_->property(role_ + boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0)
|
||||
{
|
||||
pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
}
|
||||
if(pfa==0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int GpsL1CaPcpsOpenClAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
std::complex<float>* code = new std::complex<float>[code_length_];
|
||||
|
||||
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_; i++)
|
||||
{
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_active(true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float GpsL1CaPcpsOpenClAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
//Calculate the threshold
|
||||
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
|
||||
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsOpenClAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsOpenClAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
|
@ -0,0 +1,162 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_opencl_acquisition.h
|
||||
* \brief Adapts an OpenCL PCPS acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_OPENCL_ACQUISITION_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_PCPS_OPENCL_ACQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "pcps_opencl_acquisition_cc.h"
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class adapts an OpenCL PCPS acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
*/
|
||||
class GpsL1CaPcpsOpenClAcquisition: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GpsL1CaPcpsOpenClAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GpsL1CaPcpsOpenClAcquisition();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "GPS_L1_CA_PCPS_OpenCl_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "GPS_L1_CA_PCPS_OpenCl_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/
|
||||
void reset();
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
pcps_opencl_acquisition_cc_sptr acquisition_cc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_OPENCL_ACQUISITION_H_ */
|
@ -16,7 +16,8 @@
|
||||
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
set(ACQ_GR_BLOCKS_SOURCES
|
||||
if(OPENCL_FOUND)
|
||||
set(ACQ_GR_BLOCKS_SOURCES
|
||||
pcps_acquisition_cc.cc
|
||||
pcps_multithread_acquisition_cc.cc
|
||||
pcps_assisted_acquisition_cc.cc
|
||||
@ -24,7 +25,19 @@ set(ACQ_GR_BLOCKS_SOURCES
|
||||
pcps_tong_acquisition_cc.cc
|
||||
pcps_cccwsr_acquisition_cc.cc
|
||||
galileo_pcps_8ms_acquisition_cc.cc
|
||||
)
|
||||
pcps_opencl_acquisition_cc.cc # Needs OpenCL
|
||||
)
|
||||
else(OPENCL_FOUND)
|
||||
set(ACQ_GR_BLOCKS_SOURCES
|
||||
pcps_acquisition_cc.cc
|
||||
pcps_multithread_acquisition_cc.cc
|
||||
pcps_assisted_acquisition_cc.cc
|
||||
pcps_acquisition_fine_doppler_cc.cc
|
||||
pcps_tong_acquisition_cc.cc
|
||||
pcps_cccwsr_acquisition_cc.cc
|
||||
galileo_pcps_8ms_acquisition_cc.cc
|
||||
)
|
||||
endif(OPENCL_FOUND)
|
||||
|
||||
include_directories(
|
||||
$(CMAKE_CURRENT_SOURCE_DIR)
|
||||
@ -37,6 +50,11 @@ include_directories(
|
||||
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES})
|
||||
target_link_libraries(acq_gr_blocks gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES})
|
||||
if(OPENCL_FOUND)
|
||||
include_directories( ${OPENCL_INCLUDE_DIRS} )
|
||||
set(OPT_LIBRARIES ${OPT_LIBRARIES} ${OPENCL_LIBRARIES})
|
||||
endif(OPENCL_FOUND)
|
||||
|
||||
add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES})
|
||||
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${OPT_LIBRARIES})
|
||||
|
||||
|
@ -53,7 +53,6 @@ galileo_pcps_8ms_acquisition_cc_sptr galileo_pcps_8ms_make_acquisition_cc(
|
||||
samples_per_code, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
@ -84,7 +83,7 @@ galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_code_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_fft_code_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
@ -97,18 +96,14 @@ galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
@ -125,9 +120,9 @@ galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
// code A: two replicas of a primary code
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
@ -142,7 +137,7 @@ void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
volk_32fc_conjugate_32fc_a(d_fft_code_A,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
|
||||
|
||||
// code B: two replicas of a primary code; the second replica is inverted.
|
||||
volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[d_samples_per_code],
|
||||
&code[d_samples_per_code], gr_complex(-1,0),
|
||||
d_samples_per_code);
|
||||
@ -160,7 +155,6 @@ void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void galileo_pcps_8ms_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
@ -169,12 +163,16 @@ void galileo_pcps_8ms_acquisition_cc::init()
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
// Count the number of bins
|
||||
d_num_doppler_bins = 0;
|
||||
for (int doppler = (int)(-d_doppler_max);
|
||||
doppler <= (int)d_doppler_max;
|
||||
doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
@ -187,7 +185,6 @@ void galileo_pcps_8ms_acquisition_cc::init()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
@ -264,7 +261,8 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
// with the local FFT'd code A reference using SIMD operations with
|
||||
// VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_A, d_fft_size);
|
||||
|
||||
@ -279,7 +277,8 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
|
||||
magt_A = d_magnitude[indext_A] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
// with the local FFT'd code B reference using SIMD operations with
|
||||
// VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_B, d_fft_size);
|
||||
|
||||
@ -293,6 +292,7 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt_B = d_magnitude[indext_B] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// Take the greater magnitude
|
||||
if (magt_A >= magt_B)
|
||||
{
|
||||
magt = magt_A;
|
||||
@ -336,13 +336,10 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(1);
|
||||
|
||||
|
@ -40,6 +40,7 @@
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
@ -57,7 +58,6 @@ pcps_acquisition_cc_sptr pcps_make_acquisition_cc(
|
||||
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
@ -102,18 +102,14 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
@ -129,7 +125,6 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
@ -147,7 +142,6 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
@ -156,12 +150,16 @@ void pcps_acquisition_cc::init()
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
// Count the number of bins
|
||||
d_num_doppler_bins = 0;
|
||||
for (int doppler = (int)(-d_doppler_max);
|
||||
doppler <= (int)d_doppler_max;
|
||||
doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
@ -174,13 +172,12 @@ void pcps_acquisition_cc::init()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
/*
|
||||
* By J.Arribas and L.Esteve
|
||||
* By J.Arribas, L.Esteve and M.Molina
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold):
|
||||
* 1. Compute the input signal power estimation
|
||||
* 2. Doppler serial search loop
|
||||
@ -239,21 +236,9 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
|
||||
// for(int i =0; i < 10 ;i++){
|
||||
// DLOG(INFO) << "d_magnitude["<< i <<"] " << d_magnitude[i];
|
||||
// }
|
||||
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
|
||||
// DLOG(INFO) << "d_input_power before " << d_input_power;
|
||||
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// DLOG(INFO) << "d_fft_size " << d_fft_size;
|
||||
// DLOG(INFO) << "d_input_power " << d_input_power;
|
||||
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
@ -288,7 +273,14 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (d_test_statistics < (magt / d_input_power) || !d_bit_transition_flag)
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
@ -321,17 +313,14 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
|
@ -60,7 +60,6 @@ pcps_cccwsr_acquisition_cc_sptr pcps_cccwsr_make_acquisition_cc(
|
||||
samples_per_ms, samples_per_code, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
@ -108,18 +107,14 @@ pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc(
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
@ -140,10 +135,10 @@ pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
|
||||
std::complex<float> * code_pilot)
|
||||
{
|
||||
// Data code (E1B)
|
||||
memcpy(d_fft_if->get_inbuf(), code_data, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
@ -158,6 +153,7 @@ void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
|
||||
volk_32fc_conjugate_32fc_a(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
|
||||
// Pilot code (E1C)
|
||||
memcpy(d_fft_if->get_inbuf(), code_pilot, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
@ -173,7 +169,6 @@ void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_cccwsr_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
@ -182,12 +177,16 @@ void pcps_cccwsr_acquisition_cc::init()
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
// Count the number of bins
|
||||
d_num_doppler_bins = 0;
|
||||
for (int doppler = (int)(-d_doppler_max);
|
||||
doppler <= (int)d_doppler_max;
|
||||
doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
@ -200,7 +199,6 @@ void pcps_cccwsr_acquisition_cc::init()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
@ -274,21 +272,29 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference {data+j*pilot} using SIMD operations with VOLK library
|
||||
// with the local FFT'd data code reference (E1B) using SIMD operations
|
||||
// with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_data, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Copy the result of the correlation between wiped--off signal and data code in
|
||||
// d_data_correlation.
|
||||
memcpy(d_data_correlation, d_ifft->get_outbuf(), sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd pilot code reference (E1C) using SIMD operations
|
||||
// with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_pilot, d_fft_size);
|
||||
|
||||
// Compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Copy the result of the correlation between wiped--off signal and pilot code in
|
||||
// d_data_correlation.
|
||||
memcpy(d_pilot_correlation, d_ifft->get_outbuf(), sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
for (unsigned int i = 0; i < d_fft_size; i++)
|
||||
@ -354,13 +360,12 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(1);
|
||||
|
||||
break;
|
||||
}
|
||||
|
@ -57,7 +57,6 @@ pcps_multithread_acquisition_cc_sptr pcps_make_multithread_acquisition_cc(
|
||||
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
@ -72,6 +71,7 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_core_working = false;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
@ -86,10 +86,19 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_in_dwell_count = 0;
|
||||
|
||||
d_in_buffer = new gr_complex*[d_max_dwells];
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
for (unsigned int i = 0; i < d_max_dwells; i++)
|
||||
{
|
||||
if (posix_memalign((void**)&d_in_buffer[i], 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
}
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
@ -102,21 +111,23 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < d_max_dwells; i++)
|
||||
{
|
||||
free(d_in_buffer[i]);
|
||||
}
|
||||
delete[] d_in_buffer;
|
||||
|
||||
free(d_fft_codes);
|
||||
free(d_magnitude);
|
||||
|
||||
@ -129,6 +140,35 @@ pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_multithread_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Count the number of bins
|
||||
d_num_doppler_bins = 0;
|
||||
for (int doppler = (int)(-d_doppler_max);
|
||||
doppler <= (int)d_doppler_max;
|
||||
doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
@ -147,13 +187,16 @@ void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in, unsigned int samplestamp)
|
||||
void pcps_multithread_acquisition_cc::acquisition_core()
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
gr_complex* in = d_in_buffer[d_well_count];
|
||||
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
|
||||
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
@ -204,7 +247,14 @@ void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in,
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (d_test_statistics < (magt / d_input_power) || !d_bit_transition_flag)
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
@ -235,68 +285,31 @@ void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in,
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 3; // Positive acquisition
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 4; // Negative acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 1; // Process next block
|
||||
}
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 3; // Positive acquisition
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 4; // Negative acquisition
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 1; // Process next block
|
||||
}
|
||||
}
|
||||
|
||||
d_core_working = false;
|
||||
}
|
||||
|
||||
|
||||
void pcps_multithread_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
@ -318,36 +331,65 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_in_dwell_count = 0;
|
||||
d_sample_counter_buffer.clear();
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
boost::thread(&pcps_multithread_acquisition_cc::perform_acquisition, this, in, d_sample_counter);
|
||||
d_state = 2;
|
||||
consume_each(1);
|
||||
if (d_in_dwell_count < d_max_dwells)
|
||||
{
|
||||
// Fill internal buffer with d_max_dwells signal blocks. This step ensures that
|
||||
// consecutive signal blocks will be processed in multi-dwell operation. This is
|
||||
// essential when d_bit_transition_flag = true.
|
||||
unsigned int num_dwells = std::min((int)(d_max_dwells-d_in_dwell_count),ninput_items[0]);
|
||||
for (unsigned int i = 0; i < num_dwells; i++)
|
||||
{
|
||||
memcpy(d_in_buffer[d_in_dwell_count++], (gr_complex*)input_items[i],
|
||||
sizeof(gr_complex)*d_fft_size);
|
||||
d_sample_counter += d_fft_size;
|
||||
d_sample_counter_buffer.push_back(d_sample_counter);
|
||||
}
|
||||
|
||||
if (ninput_items[0] > (int)num_dwells)
|
||||
{
|
||||
d_sample_counter += d_fft_size * (ninput_items[0]-num_dwells);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// We already have d_max_dwells consecutive blocks in the internal buffer,
|
||||
// just skip input blocks.
|
||||
d_sample_counter += d_fft_size * ninput_items[0];
|
||||
}
|
||||
|
||||
// We create a new thread to process next block if the following
|
||||
// conditions are fulfilled:
|
||||
// 1. There are new blocks in d_in_buffer that have not been processed yet
|
||||
// (d_well_count < d_in_dwell_count).
|
||||
// 2. No other acquisition_core thead is working (!d_core_working).
|
||||
// 3. d_state==1. We need to check again d_state because it can be modified at any
|
||||
// moment by the external thread (may have changed since checked in the switch()).
|
||||
// If the external thread has already declared positive (d_state=2) or negative
|
||||
// (d_state=3) acquisition, we don't have to process next block!!
|
||||
if ((d_well_count < d_in_dwell_count) && !d_core_working && d_state==1)
|
||||
{
|
||||
d_core_working = true;
|
||||
boost::thread(&pcps_multithread_acquisition_cc::acquisition_core, this);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
|
||||
// Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
@ -363,7 +405,6 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
@ -371,7 +412,7 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
break;
|
||||
}
|
||||
|
||||
case 4:
|
||||
case 3:
|
||||
{
|
||||
// Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
@ -388,7 +429,6 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
@ -397,5 +437,7 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -134,9 +134,13 @@ private:
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_core_working;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
gr_complex** d_in_buffer;
|
||||
std::vector<unsigned long int> d_sample_counter_buffer;
|
||||
unsigned int d_in_dwell_count;
|
||||
|
||||
public:
|
||||
/*!
|
||||
@ -237,7 +241,7 @@ public:
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
void perform_acquisition(const gr_complex* in, const unsigned int samplestamp);
|
||||
void acquisition_core();
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_*/
|
||||
|
@ -0,0 +1,809 @@
|
||||
/*!
|
||||
* \file pcps_opencl_acquisition_cc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition
|
||||
* using OpenCL to offload some functions to the GPU.
|
||||
*
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation
|
||||
* <li> Doppler serial search loop
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search)
|
||||
* <li> Record the maximum peak and the associated synchronization parameters
|
||||
* <li> Compute the test statistics and compare to the threshold
|
||||
* <li> Declare positive or negative acquisition using a message queue
|
||||
* </ol>
|
||||
*
|
||||
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach", Birkha user, 2007. pp 81-84
|
||||
*
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "pcps_opencl_acquisition_cc.h"
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include "fft_base_kernels.h"
|
||||
#include "fft_internal.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <sstream>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_opencl_acquisition_cc_sptr pcps_make_opencl_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return pcps_opencl_acquisition_cc_sptr(
|
||||
new pcps_opencl_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
pcps_opencl_acquisition_cc::pcps_opencl_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename) :
|
||||
gr::block("pcps_opencl_acquisition_cc",
|
||||
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
|
||||
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_core_working = false;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_fft_size_pow2 = pow(2,ceil(log2(2*d_fft_size)));
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_in_dwell_count = 0;
|
||||
d_cl_fft_batch_size = 1;
|
||||
|
||||
d_in_buffer = new gr_complex*[d_max_dwells];
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
for (unsigned int i = 0; i < d_max_dwells; i++)
|
||||
{
|
||||
if (posix_memalign((void**)&d_in_buffer[i], 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
}
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size_pow2 * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_zero_vector, 16, (d_fft_size_pow2-d_fft_size) * sizeof(gr_complex)) == 0){};
|
||||
|
||||
for (unsigned int i = 0; i < (d_fft_size_pow2-d_fft_size); i++)
|
||||
{
|
||||
d_zero_vector[i] = gr_complex(0.0,0.0);
|
||||
}
|
||||
|
||||
d_opencl = init_opencl_environment("math_kernel.cl");
|
||||
|
||||
if (d_opencl != 0)
|
||||
{
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
}
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
}
|
||||
|
||||
pcps_opencl_acquisition_cc::~pcps_opencl_acquisition_cc()
|
||||
{
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < d_max_dwells; i++)
|
||||
{
|
||||
free(d_in_buffer[i]);
|
||||
}
|
||||
delete[] d_in_buffer;
|
||||
|
||||
free(d_fft_codes);
|
||||
free(d_magnitude);
|
||||
free(d_zero_vector);
|
||||
|
||||
if (d_opencl == 0)
|
||||
{
|
||||
delete d_cl_queue;
|
||||
delete d_cl_buffer_in;
|
||||
delete d_cl_buffer_1;
|
||||
delete d_cl_buffer_2;
|
||||
delete d_cl_buffer_magnitude;
|
||||
delete d_cl_buffer_fft_codes;
|
||||
if(d_num_doppler_bins > 0)
|
||||
{
|
||||
delete[] d_cl_buffer_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
clFFT_DestroyPlan(d_cl_fft_plan);
|
||||
}
|
||||
else
|
||||
{
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
}
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
int pcps_opencl_acquisition_cc::init_opencl_environment(std::string kernel_filename)
|
||||
{
|
||||
//get all platforms (drivers)
|
||||
std::vector<cl::Platform> all_platforms;
|
||||
cl::Platform::get(&all_platforms);
|
||||
|
||||
if(all_platforms.size()==0)
|
||||
{
|
||||
std::cout << "No OpenCL platforms found. Check OpenCL installation!" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
d_cl_platform = all_platforms[0]; //get default platform
|
||||
std::cout << "Using platform: " << d_cl_platform.getInfo<CL_PLATFORM_NAME>()
|
||||
<< std::endl;
|
||||
|
||||
//get default GPU device of the default platform
|
||||
std::vector<cl::Device> gpu_devices;
|
||||
d_cl_platform.getDevices(CL_DEVICE_TYPE_GPU, &gpu_devices);
|
||||
|
||||
if(gpu_devices.size()==0)
|
||||
{
|
||||
std::cout << "No GPU devices found. Check OpenCL installation!" << std::endl;
|
||||
return 2;
|
||||
}
|
||||
|
||||
d_cl_device = gpu_devices[0];
|
||||
|
||||
std::vector<cl::Device> device;
|
||||
device.push_back(d_cl_device);
|
||||
std::cout << "Using device: " << d_cl_device.getInfo<CL_DEVICE_NAME>() << std::endl;
|
||||
|
||||
cl::Context context(device);
|
||||
d_cl_context = context;
|
||||
|
||||
// build the program from the source in the file
|
||||
std::ifstream kernel_file(kernel_filename, std::ifstream::in);
|
||||
std::string kernel_code(std::istreambuf_iterator<char>(kernel_file),
|
||||
(std::istreambuf_iterator<char>()));
|
||||
kernel_file.close();
|
||||
|
||||
// std::cout << "Kernel code: \n" << kernel_code << std::endl;
|
||||
|
||||
cl::Program::Sources sources;
|
||||
|
||||
sources.push_back({kernel_code.c_str(),kernel_code.length()});
|
||||
|
||||
cl::Program program(context,sources);
|
||||
if(program.build(device)!=CL_SUCCESS)
|
||||
{
|
||||
std::cout << " Error building: "
|
||||
<< program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device[0])
|
||||
<< std::endl;
|
||||
return 3;
|
||||
}
|
||||
d_cl_program = program;
|
||||
|
||||
// create buffers on the device
|
||||
d_cl_buffer_in = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size);
|
||||
d_cl_buffer_fft_codes = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size_pow2);
|
||||
d_cl_buffer_1 = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size_pow2);
|
||||
d_cl_buffer_2 = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size_pow2);
|
||||
d_cl_buffer_magnitude = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(float)*d_fft_size);
|
||||
|
||||
//create queue to which we will push commands for the device.
|
||||
d_cl_queue = new cl::CommandQueue(d_cl_context,d_cl_device);
|
||||
|
||||
//create FFT plan
|
||||
cl_int err;
|
||||
clFFT_Dim3 dim = {d_fft_size_pow2, 1, 1};
|
||||
|
||||
d_cl_fft_plan = clFFT_CreatePlan(d_cl_context(), dim, clFFT_1D,
|
||||
clFFT_InterleavedComplexFormat, &err);
|
||||
|
||||
if (err != 0)
|
||||
{
|
||||
delete d_cl_queue;
|
||||
delete d_cl_buffer_in;
|
||||
delete d_cl_buffer_1;
|
||||
delete d_cl_buffer_2;
|
||||
delete d_cl_buffer_magnitude;
|
||||
delete d_cl_buffer_fft_codes;
|
||||
|
||||
std::cout << "Error creating OpenCL FFT plan." << std::endl;
|
||||
return 4;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void pcps_opencl_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Count the number of bins
|
||||
d_num_doppler_bins = 0;
|
||||
for (int doppler = (int)(-d_doppler_max);
|
||||
doppler <= (int)d_doppler_max;
|
||||
doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
if (d_opencl == 0)
|
||||
{
|
||||
d_cl_buffer_grid_doppler_wipeoffs = new cl::Buffer*[d_num_doppler_bins];
|
||||
}
|
||||
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
|
||||
if (d_opencl == 0)
|
||||
{
|
||||
d_cl_buffer_grid_doppler_wipeoffs[doppler_index] =
|
||||
new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_cl_queue->enqueueWriteBuffer(*(d_cl_buffer_grid_doppler_wipeoffs[doppler_index]),
|
||||
CL_TRUE,0,sizeof(gr_complex)*d_fft_size,
|
||||
d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
}
|
||||
|
||||
// zero padding in buffer_1 (FFT input)
|
||||
if (d_opencl == 0)
|
||||
{
|
||||
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_1,CL_TRUE,sizeof(gr_complex)*d_fft_size,
|
||||
sizeof(gr_complex)*(d_fft_size_pow2-d_fft_size),d_zero_vector);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_opencl_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
if(d_opencl == 0)
|
||||
{
|
||||
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_2,CL_TRUE,0,
|
||||
sizeof(gr_complex)*d_fft_size, code);
|
||||
|
||||
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_2,CL_TRUE,sizeof(gr_complex)*d_fft_size,
|
||||
sizeof(gr_complex)*(d_fft_size_pow2 - 2*d_fft_size),
|
||||
d_zero_vector);
|
||||
|
||||
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_2,CL_TRUE,sizeof(gr_complex)
|
||||
*(d_fft_size_pow2 - d_fft_size),
|
||||
sizeof(gr_complex)*d_fft_size, code);
|
||||
|
||||
clFFT_ExecuteInterleaved((*d_cl_queue)(), d_cl_fft_plan, d_cl_fft_batch_size,
|
||||
clFFT_Forward, (*d_cl_buffer_2)(), (*d_cl_buffer_2)(),
|
||||
0, NULL, NULL);
|
||||
|
||||
//Conjucate the local code
|
||||
cl::Kernel kernel=cl::Kernel(d_cl_program,"conj_vector");
|
||||
kernel.setArg(0,*d_cl_buffer_2); //input
|
||||
kernel.setArg(1,*d_cl_buffer_fft_codes); //output
|
||||
d_cl_queue->enqueueNDRangeKernel(kernel,cl::NullRange,cl::NDRange(d_fft_size_pow2),cl::NullRange);
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_opencl_acquisition_cc::acquisition_core_volk()
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
gr_complex* in = d_in_buffer[d_well_count];
|
||||
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
|
||||
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
filename << "../data/test_statistics_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_core_working = false;
|
||||
}
|
||||
|
||||
void pcps_opencl_acquisition_cc::acquisition_core_opencl()
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
float fft_normalization_factor = ((float)d_fft_size_pow2 * (float)d_fft_size); //This works, but I am not sure why.
|
||||
gr_complex* in = d_in_buffer[d_well_count];
|
||||
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
|
||||
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
// write input vector in buffer of OpenCL device
|
||||
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_in,CL_TRUE,0,sizeof(gr_complex)*d_fft_size,in);
|
||||
|
||||
d_well_count++;
|
||||
|
||||
// struct timeval tv;
|
||||
// long long int begin = 0;
|
||||
// long long int end = 0;
|
||||
|
||||
// gettimeofday(&tv, NULL);
|
||||
// begin = tv.tv_sec *1e6 + tv.tv_usec;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
cl::Kernel kernel;
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
//Multiply input signal with doppler wipe-off
|
||||
kernel = cl::Kernel(d_cl_program,"mult_vectors");
|
||||
kernel.setArg(0,*d_cl_buffer_in); //input 1
|
||||
kernel.setArg(1,*d_cl_buffer_grid_doppler_wipeoffs[doppler_index]); //input 2
|
||||
kernel.setArg(2,*d_cl_buffer_1); //output
|
||||
d_cl_queue->enqueueNDRangeKernel(kernel,cl::NullRange, cl::NDRange(d_fft_size),
|
||||
cl::NullRange);
|
||||
|
||||
// In the previous operation, we store the result in the first d_fft_size positions
|
||||
// of d_cl_buffer_1. The rest d_fft_size_pow2-d_fft_size already have zeros
|
||||
// (zero-padding is made in init() for optimization purposes).
|
||||
|
||||
clFFT_ExecuteInterleaved((*d_cl_queue)(), d_cl_fft_plan, d_cl_fft_batch_size,
|
||||
clFFT_Forward,(*d_cl_buffer_1)(), (*d_cl_buffer_2)(),
|
||||
0, NULL, NULL);
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference
|
||||
kernel = cl::Kernel(d_cl_program,"mult_vectors");
|
||||
kernel.setArg(0,*d_cl_buffer_2); //input 1
|
||||
kernel.setArg(1,*d_cl_buffer_fft_codes); //input 2
|
||||
kernel.setArg(2,*d_cl_buffer_2); //output
|
||||
d_cl_queue->enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(d_fft_size_pow2),
|
||||
cl::NullRange);
|
||||
|
||||
// compute the inverse FFT
|
||||
clFFT_ExecuteInterleaved((*d_cl_queue)(), d_cl_fft_plan, d_cl_fft_batch_size,
|
||||
clFFT_Inverse, (*d_cl_buffer_2)(), (*d_cl_buffer_2)(),
|
||||
0, NULL, NULL);
|
||||
|
||||
// Compute magnitude
|
||||
kernel = cl::Kernel(d_cl_program,"magnitude_squared");
|
||||
kernel.setArg(0,*d_cl_buffer_2); //input 1
|
||||
kernel.setArg(1,*d_cl_buffer_magnitude); //output
|
||||
d_cl_queue->enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(d_fft_size),
|
||||
cl::NullRange);
|
||||
|
||||
// This is the only function that blocks this thread until all previously enqueued
|
||||
// OpenCL commands are completed.
|
||||
d_cl_queue->enqueueReadBuffer(*d_cl_buffer_magnitude, CL_TRUE, 0,
|
||||
sizeof(float)*d_fft_size,d_magnitude);
|
||||
|
||||
// Search maximum
|
||||
// @TODO: find an efficient way to search the maximum with OpenCL in the GPU.
|
||||
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
filename << "../data/test_statistics_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
// gettimeofday(&tv, NULL);
|
||||
// end = tv.tv_sec *1e6 + tv.tv_usec;
|
||||
// std::cout << "Acq time = " << (end-begin) << " us" << std::endl;
|
||||
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_core_working = false;
|
||||
}
|
||||
|
||||
int pcps_opencl_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_in_dwell_count = 0;
|
||||
d_sample_counter_buffer.clear();
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
if (d_in_dwell_count < d_max_dwells)
|
||||
{
|
||||
// Fill internal buffer with d_max_dwells signal blocks. This step ensures that
|
||||
// consecutive signal blocks will be processed in multi-dwell operation. This is
|
||||
// essential when d_bit_transition_flag = true.
|
||||
unsigned int num_dwells = std::min((int)(d_max_dwells-d_in_dwell_count),ninput_items[0]);
|
||||
for (unsigned int i = 0; i < num_dwells; i++)
|
||||
{
|
||||
memcpy(d_in_buffer[d_in_dwell_count++], (gr_complex*)input_items[i],
|
||||
sizeof(gr_complex)*d_fft_size);
|
||||
d_sample_counter += d_fft_size;
|
||||
d_sample_counter_buffer.push_back(d_sample_counter);
|
||||
}
|
||||
|
||||
if (ninput_items[0] > (int)num_dwells)
|
||||
{
|
||||
d_sample_counter += d_fft_size * (ninput_items[0]-num_dwells);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// We already have d_max_dwells consecutive blocks in the internal buffer,
|
||||
// just skip input blocks.
|
||||
d_sample_counter += d_fft_size * ninput_items[0];
|
||||
}
|
||||
|
||||
// We create a new thread to process next block if the following
|
||||
// conditions are fulfilled:
|
||||
// 1. There are new blocks in d_in_buffer that have not been processed yet
|
||||
// (d_well_count < d_in_dwell_count).
|
||||
// 2. No other acquisition_core thead is working (!d_core_working).
|
||||
// 3. d_state==1. We need to check again d_state because it can be modified at any
|
||||
// moment by the external thread (may have changed since checked in the switch()).
|
||||
// If the external thread has already declared positive (d_state=2) or negative
|
||||
// (d_state=3) acquisition, we don't have to process next block!!
|
||||
if ((d_well_count < d_in_dwell_count) && !d_core_working && d_state==1)
|
||||
{
|
||||
d_core_working = true;
|
||||
if (d_opencl == 0)
|
||||
{ // Use OpenCL implementation
|
||||
boost::thread(&pcps_opencl_acquisition_cc::acquisition_core_opencl, this);
|
||||
}
|
||||
else
|
||||
{ // Use Volk implementation
|
||||
boost::thread(&pcps_opencl_acquisition_cc::acquisition_core_volk, this);
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
// Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
{
|
||||
// Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,277 @@
|
||||
/*!
|
||||
* \file pcps_opencl_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition
|
||||
* using OpenCL to offload some functions to the GPU.
|
||||
*
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation
|
||||
* <li> Doppler serial search loop
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search)
|
||||
* <li> Record the maximum peak and the associated synchronization parameters
|
||||
* <li> Compute the test statistics and compare to the threshold
|
||||
* <li> Declare positive or negative acquisition using a message queue
|
||||
* </ol>
|
||||
*
|
||||
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach", Birkha user, 2007. pp 81-84
|
||||
*
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_OPENCL_ACQUISITION_CC_H_
|
||||
#define GNSS_SDR_PCPS_OPENCL_ACQUISITION_CC_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include <queue>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <boost/thread/thread.hpp>
|
||||
#include "concurrent_queue.h"
|
||||
#include "fft_internal.h"
|
||||
#include "gnss_synchro.h"
|
||||
|
||||
#ifdef APPLE
|
||||
#include <OpenCL/cl.hpp>
|
||||
#else
|
||||
#include <CL/cl.hpp>
|
||||
#endif
|
||||
|
||||
class pcps_opencl_acquisition_cc;
|
||||
|
||||
typedef boost::shared_ptr<pcps_opencl_acquisition_cc> pcps_opencl_acquisition_cc_sptr;
|
||||
|
||||
pcps_opencl_acquisition_cc_sptr
|
||||
pcps_make_opencl_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
*
|
||||
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
|
||||
* Algorithm 1, for a pseudocode description of this implementation.
|
||||
*/
|
||||
class pcps_opencl_acquisition_cc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_opencl_acquisition_cc_sptr
|
||||
pcps_make_opencl_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
|
||||
pcps_opencl_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
|
||||
int init_opencl_environment(std::string kernel_filename);
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned int d_fft_size_pow2;
|
||||
int* d_max_doppler_indexs;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_codes;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
bool d_bit_transition_flag;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_core_working;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
gr_complex* d_zero_vector;
|
||||
gr_complex** d_in_buffer;
|
||||
std::vector<unsigned long int> d_sample_counter_buffer;
|
||||
unsigned int d_in_dwell_count;
|
||||
|
||||
cl::Platform d_cl_platform;
|
||||
cl::Device d_cl_device;
|
||||
cl::Context d_cl_context;
|
||||
cl::Program d_cl_program;
|
||||
cl::Buffer* d_cl_buffer_in;
|
||||
cl::Buffer* d_cl_buffer_fft_codes;
|
||||
cl::Buffer* d_cl_buffer_1;
|
||||
cl::Buffer* d_cl_buffer_2;
|
||||
cl::Buffer* d_cl_buffer_magnitude;
|
||||
cl::Buffer** d_cl_buffer_grid_doppler_wipeoffs;
|
||||
cl::CommandQueue* d_cl_queue;
|
||||
clFFT_Plan d_cl_fft_plan;
|
||||
cl_int d_cl_fft_batch_size;
|
||||
|
||||
int d_opencl;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~pcps_opencl_acquisition_cc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active)
|
||||
{
|
||||
d_active = active;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue.
|
||||
* \param channel_internal_queue - Channel's internal blocks information queue.
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
void acquisition_core_volk();
|
||||
|
||||
void acquisition_core_opencl();
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_pcps_opencl_acquisition_cc_H_*/
|
@ -71,7 +71,6 @@ pcps_tong_acquisition_cc_sptr pcps_tong_make_acquisition_cc(
|
||||
tong_init_val, tong_max_val, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms,
|
||||
@ -103,7 +102,7 @@ pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
@ -116,19 +115,15 @@ pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_tong_acquisition_cc::~pcps_tong_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
free(d_grid_data[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[i]);
|
||||
free(d_grid_data[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
delete[] d_grid_data;
|
||||
}
|
||||
@ -145,7 +140,6 @@ pcps_tong_acquisition_cc::~pcps_tong_acquisition_cc()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_tong_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
@ -163,7 +157,6 @@ void pcps_tong_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_tong_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
@ -172,12 +165,16 @@ void pcps_tong_acquisition_cc::init()
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
// Count the number of bins
|
||||
d_num_doppler_bins = 0;
|
||||
for (int doppler = (int)(-d_doppler_max);
|
||||
doppler <= (int)d_doppler_max;
|
||||
doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
|
||||
// Create the carrier Doppler wipeoff signals and allocate data grid.
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
d_grid_data = new float*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
@ -200,7 +197,6 @@ void pcps_tong_acquisition_cc::init()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_tong_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
@ -289,18 +285,20 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
// Compute magnitude
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
|
||||
// Compute vector of test statistics corresponding to current doppler index.
|
||||
volk_32f_s32f_multiply_32f_a(d_magnitude, d_magnitude,
|
||||
1/(fft_normalization_factor*fft_normalization_factor*d_input_power),
|
||||
d_fft_size);
|
||||
|
||||
// Accumulate test statistics in d_grid_data.
|
||||
volk_32f_x2_add_32f_a(d_grid_data[doppler_index], d_magnitude, d_grid_data[doppler_index], d_fft_size);
|
||||
|
||||
// Search maximum
|
||||
volk_32f_index_max_16u_a(&indext, d_grid_data[doppler_index], d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_grid_data[doppler_index][indext];
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
@ -328,7 +326,6 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
|
||||
}
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag;
|
||||
|
||||
if (d_test_statistics > d_threshold*d_well_count)
|
||||
|
@ -25,15 +25,30 @@
|
||||
# pass_through.cc
|
||||
#)
|
||||
#else(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
set(GNSS_SPLIBS_SOURCES
|
||||
#endif(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
|
||||
if(OPENCL_FOUND)
|
||||
set(GNSS_SPLIBS_SOURCES
|
||||
galileo_e1_signal_processing.cc
|
||||
gnss_sdr_valve.cc
|
||||
gnss_signal_processing.cc
|
||||
gps_sdr_signal_processing.cc
|
||||
nco_lib.cc
|
||||
pass_through.cc
|
||||
)
|
||||
#endif(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
fft_execute.cc # Needs OpenCL
|
||||
fft_setup.cc # Needs OpenCL
|
||||
fft_kernelstring.cc # Needs OpenCL
|
||||
)
|
||||
else(OPENCL_FOUND)
|
||||
set(GNSS_SPLIBS_SOURCES
|
||||
galileo_e1_signal_processing.cc
|
||||
gnss_sdr_valve.cc
|
||||
gnss_signal_processing.cc
|
||||
gps_sdr_signal_processing.cc
|
||||
nco_lib.cc
|
||||
pass_through.cc
|
||||
)
|
||||
endif(OPENCL_FOUND)
|
||||
|
||||
include_directories(
|
||||
$(CMAKE_CURRENT_SOURCE_DIR)
|
||||
@ -45,5 +60,10 @@ include_directories(
|
||||
${GFlags_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
if(OPENCL_FOUND)
|
||||
include_directories( ${OPENCL_INCLUDE_DIRS} )
|
||||
set(OPT_LIBRARIES ${OPT_LIBRARIES} ${OPENCL_LIBRARIES})
|
||||
endif(OPENCL_FOUND)
|
||||
|
||||
add_library(gnss_sp_libs ${GNSS_SPLIBS_SOURCES})
|
||||
target_link_libraries(gnss_sp_libs ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_BLOCKS_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${GNURADIO_FILTER_LIBRARIES} gnss_rx)
|
||||
target_link_libraries(gnss_sp_libs ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_BLOCKS_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${GNURADIO_FILTER_LIBRARIES} ${OPT_LIBRARIES} gnss_rx)
|
||||
|
134
src/algorithms/libs/clFFT.h
Normal file
134
src/algorithms/libs/clFFT.h
Normal file
@ -0,0 +1,134 @@
|
||||
|
||||
//
|
||||
// File: clFFT.h
|
||||
//
|
||||
// Version: <1.0>
|
||||
//
|
||||
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
|
||||
// in consideration of your agreement to the following terms, and your use,
|
||||
// installation, modification or redistribution of this Apple software
|
||||
// constitutes acceptance of these terms. If you do not agree with these
|
||||
// terms, please do not use, install, modify or redistribute this Apple
|
||||
// software.
|
||||
//
|
||||
// In consideration of your agreement to abide by the following terms, and
|
||||
// subject to these terms, Apple grants you a personal, non - exclusive
|
||||
// license, under Apple's copyrights in this original Apple software ( the
|
||||
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
|
||||
// Software, with or without modifications, in source and / or binary forms;
|
||||
// provided that if you redistribute the Apple Software in its entirety and
|
||||
// without modifications, you must retain this notice and the following text
|
||||
// and disclaimers in all such redistributions of the Apple Software. Neither
|
||||
// the name, trademarks, service marks or logos of Apple Inc. may be used to
|
||||
// endorse or promote products derived from the Apple Software without specific
|
||||
// prior written permission from Apple. Except as expressly stated in this
|
||||
// notice, no other rights or licenses, express or implied, are granted by
|
||||
// Apple herein, including but not limited to any patent rights that may be
|
||||
// infringed by your derivative works or by other works in which the Apple
|
||||
// Software may be incorporated.
|
||||
//
|
||||
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
|
||||
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
|
||||
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
|
||||
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
||||
//
|
||||
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
|
||||
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
|
||||
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
|
||||
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
|
||||
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#ifndef __CLFFT_H
|
||||
#define __CLFFT_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#ifdef APPLE
|
||||
#include <OpenCL/cl.h>
|
||||
#else
|
||||
#include <CL/cl.h>
|
||||
#endif
|
||||
|
||||
// XForm type
|
||||
typedef enum
|
||||
{
|
||||
clFFT_Forward = -1,
|
||||
clFFT_Inverse = 1
|
||||
|
||||
}clFFT_Direction;
|
||||
|
||||
// XForm dimension
|
||||
typedef enum
|
||||
{
|
||||
clFFT_1D = 0,
|
||||
clFFT_2D = 1,
|
||||
clFFT_3D = 3
|
||||
|
||||
}clFFT_Dimension;
|
||||
|
||||
// XForm Data type
|
||||
typedef enum
|
||||
{
|
||||
clFFT_SplitComplexFormat = 0,
|
||||
clFFT_InterleavedComplexFormat = 1
|
||||
}clFFT_DataFormat;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned int x;
|
||||
unsigned int y;
|
||||
unsigned int z;
|
||||
}clFFT_Dim3;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float *real;
|
||||
float *imag;
|
||||
} clFFT_SplitComplex;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float real;
|
||||
float imag;
|
||||
}clFFT_Complex;
|
||||
|
||||
typedef void* clFFT_Plan;
|
||||
|
||||
clFFT_Plan clFFT_CreatePlan( cl_context context, clFFT_Dim3 n, clFFT_Dimension dim, clFFT_DataFormat dataFormat, cl_int *error_code );
|
||||
|
||||
void clFFT_DestroyPlan( clFFT_Plan plan );
|
||||
|
||||
cl_int clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan plan, cl_int batchSize, clFFT_Direction dir,
|
||||
cl_mem data_in, cl_mem data_out,
|
||||
cl_int num_events, cl_event *event_list, cl_event *event );
|
||||
|
||||
cl_int clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan plan, cl_int batchSize, clFFT_Direction dir,
|
||||
cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
|
||||
cl_int num_events, cl_event *event_list, cl_event *event );
|
||||
|
||||
cl_int clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
|
||||
size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir);
|
||||
|
||||
|
||||
cl_int clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
|
||||
size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir);
|
||||
|
||||
void clFFT_DumpPlan( clFFT_Plan plan, FILE *file);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
277
src/algorithms/libs/fft_base_kernels.h
Normal file
277
src/algorithms/libs/fft_base_kernels.h
Normal file
@ -0,0 +1,277 @@
|
||||
|
||||
//
|
||||
// File: fft_base_kernels.h
|
||||
//
|
||||
// Version: <1.0>
|
||||
//
|
||||
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
|
||||
// in consideration of your agreement to the following terms, and your use,
|
||||
// installation, modification or redistribution of this Apple software
|
||||
// constitutes acceptance of these terms. If you do not agree with these
|
||||
// terms, please do not use, install, modify or redistribute this Apple
|
||||
// software.
|
||||
//
|
||||
// In consideration of your agreement to abide by the following terms, and
|
||||
// subject to these terms, Apple grants you a personal, non - exclusive
|
||||
// license, under Apple's copyrights in this original Apple software ( the
|
||||
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
|
||||
// Software, with or without modifications, in source and / or binary forms;
|
||||
// provided that if you redistribute the Apple Software in its entirety and
|
||||
// without modifications, you must retain this notice and the following text
|
||||
// and disclaimers in all such redistributions of the Apple Software. Neither
|
||||
// the name, trademarks, service marks or logos of Apple Inc. may be used to
|
||||
// endorse or promote products derived from the Apple Software without specific
|
||||
// prior written permission from Apple. Except as expressly stated in this
|
||||
// notice, no other rights or licenses, express or implied, are granted by
|
||||
// Apple herein, including but not limited to any patent rights that may be
|
||||
// infringed by your derivative works or by other works in which the Apple
|
||||
// Software may be incorporated.
|
||||
//
|
||||
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
|
||||
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
|
||||
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
|
||||
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
||||
//
|
||||
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
|
||||
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
|
||||
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
|
||||
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
|
||||
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#ifndef __CL_FFT_BASE_KERNELS_
|
||||
#define __CL_FFT_BASE_KERNELS_
|
||||
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
|
||||
static string baseKernels = string(
|
||||
"#ifndef M_PI\n"
|
||||
"#define M_PI 0x1.921fb54442d18p+1\n"
|
||||
"#endif\n"
|
||||
"#define complexMul(a,b) ((float2)(mad(-(a).y, (b).y, (a).x * (b).x), mad((a).y, (b).x, (a).x * (b).y)))\n"
|
||||
"#define conj(a) ((float2)((a).x, -(a).y))\n"
|
||||
"#define conjTransp(a) ((float2)(-(a).y, (a).x))\n"
|
||||
"\n"
|
||||
"#define fftKernel2(a,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 c = (a)[0]; \\\n"
|
||||
" (a)[0] = c + (a)[1]; \\\n"
|
||||
" (a)[1] = c - (a)[1]; \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define fftKernel2S(d1,d2,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 c = (d1); \\\n"
|
||||
" (d1) = c + (d2); \\\n"
|
||||
" (d2) = c - (d2); \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define fftKernel4(a,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" fftKernel2S((a)[0], (a)[2], dir); \\\n"
|
||||
" fftKernel2S((a)[1], (a)[3], dir); \\\n"
|
||||
" fftKernel2S((a)[0], (a)[1], dir); \\\n"
|
||||
" (a)[3] = (float2)(dir)*(conjTransp((a)[3])); \\\n"
|
||||
" fftKernel2S((a)[2], (a)[3], dir); \\\n"
|
||||
" float2 c = (a)[1]; \\\n"
|
||||
" (a)[1] = (a)[2]; \\\n"
|
||||
" (a)[2] = c; \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define fftKernel4s(a0,a1,a2,a3,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" fftKernel2S((a0), (a2), dir); \\\n"
|
||||
" fftKernel2S((a1), (a3), dir); \\\n"
|
||||
" fftKernel2S((a0), (a1), dir); \\\n"
|
||||
" (a3) = (float2)(dir)*(conjTransp((a3))); \\\n"
|
||||
" fftKernel2S((a2), (a3), dir); \\\n"
|
||||
" float2 c = (a1); \\\n"
|
||||
" (a1) = (a2); \\\n"
|
||||
" (a2) = c; \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define bitreverse8(a) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 c; \\\n"
|
||||
" c = (a)[1]; \\\n"
|
||||
" (a)[1] = (a)[4]; \\\n"
|
||||
" (a)[4] = c; \\\n"
|
||||
" c = (a)[3]; \\\n"
|
||||
" (a)[3] = (a)[6]; \\\n"
|
||||
" (a)[6] = c; \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define fftKernel8(a,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" const float2 w1 = (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \\\n"
|
||||
" const float2 w3 = (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \\\n"
|
||||
" float2 c; \\\n"
|
||||
" fftKernel2S((a)[0], (a)[4], dir); \\\n"
|
||||
" fftKernel2S((a)[1], (a)[5], dir); \\\n"
|
||||
" fftKernel2S((a)[2], (a)[6], dir); \\\n"
|
||||
" fftKernel2S((a)[3], (a)[7], dir); \\\n"
|
||||
" (a)[5] = complexMul(w1, (a)[5]); \\\n"
|
||||
" (a)[6] = (float2)(dir)*(conjTransp((a)[6])); \\\n"
|
||||
" (a)[7] = complexMul(w3, (a)[7]); \\\n"
|
||||
" fftKernel2S((a)[0], (a)[2], dir); \\\n"
|
||||
" fftKernel2S((a)[1], (a)[3], dir); \\\n"
|
||||
" fftKernel2S((a)[4], (a)[6], dir); \\\n"
|
||||
" fftKernel2S((a)[5], (a)[7], dir); \\\n"
|
||||
" (a)[3] = (float2)(dir)*(conjTransp((a)[3])); \\\n"
|
||||
" (a)[7] = (float2)(dir)*(conjTransp((a)[7])); \\\n"
|
||||
" fftKernel2S((a)[0], (a)[1], dir); \\\n"
|
||||
" fftKernel2S((a)[2], (a)[3], dir); \\\n"
|
||||
" fftKernel2S((a)[4], (a)[5], dir); \\\n"
|
||||
" fftKernel2S((a)[6], (a)[7], dir); \\\n"
|
||||
" bitreverse8((a)); \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define bitreverse4x4(a) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 c; \\\n"
|
||||
" c = (a)[1]; (a)[1] = (a)[4]; (a)[4] = c; \\\n"
|
||||
" c = (a)[2]; (a)[2] = (a)[8]; (a)[8] = c; \\\n"
|
||||
" c = (a)[3]; (a)[3] = (a)[12]; (a)[12] = c; \\\n"
|
||||
" c = (a)[6]; (a)[6] = (a)[9]; (a)[9] = c; \\\n"
|
||||
" c = (a)[7]; (a)[7] = (a)[13]; (a)[13] = c; \\\n"
|
||||
" c = (a)[11]; (a)[11] = (a)[14]; (a)[14] = c; \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define fftKernel16(a,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" const float w0 = 0x1.d906bcp-1f; \\\n"
|
||||
" const float w1 = 0x1.87de2ap-2f; \\\n"
|
||||
" const float w2 = 0x1.6a09e6p-1f; \\\n"
|
||||
" fftKernel4s((a)[0], (a)[4], (a)[8], (a)[12], dir); \\\n"
|
||||
" fftKernel4s((a)[1], (a)[5], (a)[9], (a)[13], dir); \\\n"
|
||||
" fftKernel4s((a)[2], (a)[6], (a)[10], (a)[14], dir); \\\n"
|
||||
" fftKernel4s((a)[3], (a)[7], (a)[11], (a)[15], dir); \\\n"
|
||||
" (a)[5] = complexMul((a)[5], (float2)(w0, dir*w1)); \\\n"
|
||||
" (a)[6] = complexMul((a)[6], (float2)(w2, dir*w2)); \\\n"
|
||||
" (a)[7] = complexMul((a)[7], (float2)(w1, dir*w0)); \\\n"
|
||||
" (a)[9] = complexMul((a)[9], (float2)(w2, dir*w2)); \\\n"
|
||||
" (a)[10] = (float2)(dir)*(conjTransp((a)[10])); \\\n"
|
||||
" (a)[11] = complexMul((a)[11], (float2)(-w2, dir*w2)); \\\n"
|
||||
" (a)[13] = complexMul((a)[13], (float2)(w1, dir*w0)); \\\n"
|
||||
" (a)[14] = complexMul((a)[14], (float2)(-w2, dir*w2)); \\\n"
|
||||
" (a)[15] = complexMul((a)[15], (float2)(-w0, dir*-w1)); \\\n"
|
||||
" fftKernel4((a), dir); \\\n"
|
||||
" fftKernel4((a) + 4, dir); \\\n"
|
||||
" fftKernel4((a) + 8, dir); \\\n"
|
||||
" fftKernel4((a) + 12, dir); \\\n"
|
||||
" bitreverse4x4((a)); \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define bitreverse32(a) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 c1, c2; \\\n"
|
||||
" c1 = (a)[2]; (a)[2] = (a)[1]; c2 = (a)[4]; (a)[4] = c1; c1 = (a)[8]; (a)[8] = c2; c2 = (a)[16]; (a)[16] = c1; (a)[1] = c2; \\\n"
|
||||
" c1 = (a)[6]; (a)[6] = (a)[3]; c2 = (a)[12]; (a)[12] = c1; c1 = (a)[24]; (a)[24] = c2; c2 = (a)[17]; (a)[17] = c1; (a)[3] = c2; \\\n"
|
||||
" c1 = (a)[10]; (a)[10] = (a)[5]; c2 = (a)[20]; (a)[20] = c1; c1 = (a)[9]; (a)[9] = c2; c2 = (a)[18]; (a)[18] = c1; (a)[5] = c2; \\\n"
|
||||
" c1 = (a)[14]; (a)[14] = (a)[7]; c2 = (a)[28]; (a)[28] = c1; c1 = (a)[25]; (a)[25] = c2; c2 = (a)[19]; (a)[19] = c1; (a)[7] = c2; \\\n"
|
||||
" c1 = (a)[22]; (a)[22] = (a)[11]; c2 = (a)[13]; (a)[13] = c1; c1 = (a)[26]; (a)[26] = c2; c2 = (a)[21]; (a)[21] = c1; (a)[11] = c2; \\\n"
|
||||
" c1 = (a)[30]; (a)[30] = (a)[15]; c2 = (a)[29]; (a)[29] = c1; c1 = (a)[27]; (a)[27] = c2; c2 = (a)[23]; (a)[23] = c1; (a)[15] = c2; \\\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"#define fftKernel32(a,dir) \\\n"
|
||||
"{ \\\n"
|
||||
" fftKernel2S((a)[0], (a)[16], dir); \\\n"
|
||||
" fftKernel2S((a)[1], (a)[17], dir); \\\n"
|
||||
" fftKernel2S((a)[2], (a)[18], dir); \\\n"
|
||||
" fftKernel2S((a)[3], (a)[19], dir); \\\n"
|
||||
" fftKernel2S((a)[4], (a)[20], dir); \\\n"
|
||||
" fftKernel2S((a)[5], (a)[21], dir); \\\n"
|
||||
" fftKernel2S((a)[6], (a)[22], dir); \\\n"
|
||||
" fftKernel2S((a)[7], (a)[23], dir); \\\n"
|
||||
" fftKernel2S((a)[8], (a)[24], dir); \\\n"
|
||||
" fftKernel2S((a)[9], (a)[25], dir); \\\n"
|
||||
" fftKernel2S((a)[10], (a)[26], dir); \\\n"
|
||||
" fftKernel2S((a)[11], (a)[27], dir); \\\n"
|
||||
" fftKernel2S((a)[12], (a)[28], dir); \\\n"
|
||||
" fftKernel2S((a)[13], (a)[29], dir); \\\n"
|
||||
" fftKernel2S((a)[14], (a)[30], dir); \\\n"
|
||||
" fftKernel2S((a)[15], (a)[31], dir); \\\n"
|
||||
" (a)[17] = complexMul((a)[17], (float2)(0x1.f6297cp-1f, dir*0x1.8f8b84p-3f)); \\\n"
|
||||
" (a)[18] = complexMul((a)[18], (float2)(0x1.d906bcp-1f, dir*0x1.87de2ap-2f)); \\\n"
|
||||
" (a)[19] = complexMul((a)[19], (float2)(0x1.a9b662p-1f, dir*0x1.1c73b4p-1f)); \\\n"
|
||||
" (a)[20] = complexMul((a)[20], (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f)); \\\n"
|
||||
" (a)[21] = complexMul((a)[21], (float2)(0x1.1c73b4p-1f, dir*0x1.a9b662p-1f)); \\\n"
|
||||
" (a)[22] = complexMul((a)[22], (float2)(0x1.87de2ap-2f, dir*0x1.d906bcp-1f)); \\\n"
|
||||
" (a)[23] = complexMul((a)[23], (float2)(0x1.8f8b84p-3f, dir*0x1.f6297cp-1f)); \\\n"
|
||||
" (a)[24] = complexMul((a)[24], (float2)(0x0p+0f, dir*0x1p+0f)); \\\n"
|
||||
" (a)[25] = complexMul((a)[25], (float2)(-0x1.8f8b84p-3f, dir*0x1.f6297cp-1f)); \\\n"
|
||||
" (a)[26] = complexMul((a)[26], (float2)(-0x1.87de2ap-2f, dir*0x1.d906bcp-1f)); \\\n"
|
||||
" (a)[27] = complexMul((a)[27], (float2)(-0x1.1c73b4p-1f, dir*0x1.a9b662p-1f)); \\\n"
|
||||
" (a)[28] = complexMul((a)[28], (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f)); \\\n"
|
||||
" (a)[29] = complexMul((a)[29], (float2)(-0x1.a9b662p-1f, dir*0x1.1c73b4p-1f)); \\\n"
|
||||
" (a)[30] = complexMul((a)[30], (float2)(-0x1.d906bcp-1f, dir*0x1.87de2ap-2f)); \\\n"
|
||||
" (a)[31] = complexMul((a)[31], (float2)(-0x1.f6297cp-1f, dir*0x1.8f8b84p-3f)); \\\n"
|
||||
" fftKernel16((a), dir); \\\n"
|
||||
" fftKernel16((a) + 16, dir); \\\n"
|
||||
" bitreverse32((a)); \\\n"
|
||||
"}\n\n"
|
||||
);
|
||||
|
||||
static string twistKernelInterleaved = string(
|
||||
"__kernel void \\\n"
|
||||
"clFFT_1DTwistInterleaved(__global float2 *in, unsigned int startRow, unsigned int numCols, unsigned int N, unsigned int numRowsToProcess, int dir) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 a, w; \\\n"
|
||||
" float ang; \\\n"
|
||||
" unsigned int j; \\\n"
|
||||
" unsigned int i = get_global_id(0); \\\n"
|
||||
" unsigned int startIndex = i; \\\n"
|
||||
" \\\n"
|
||||
" if(i < numCols) \\\n"
|
||||
" { \\\n"
|
||||
" for(j = 0; j < numRowsToProcess; j++) \\\n"
|
||||
" { \\\n"
|
||||
" a = in[startIndex]; \\\n"
|
||||
" ang = 2.0f * M_PI * dir * i * (startRow + j) / N; \\\n"
|
||||
" w = (float2)(native_cos(ang), native_sin(ang)); \\\n"
|
||||
" a = complexMul(a, w); \\\n"
|
||||
" in[startIndex] = a; \\\n"
|
||||
" startIndex += numCols; \\\n"
|
||||
" } \\\n"
|
||||
" } \\\n"
|
||||
"} \\\n"
|
||||
);
|
||||
|
||||
static string twistKernelPlannar = string(
|
||||
"__kernel void \\\n"
|
||||
"clFFT_1DTwistSplit(__global float *in_real, __global float *in_imag , unsigned int startRow, unsigned int numCols, unsigned int N, unsigned int numRowsToProcess, int dir) \\\n"
|
||||
"{ \\\n"
|
||||
" float2 a, w; \\\n"
|
||||
" float ang; \\\n"
|
||||
" unsigned int j; \\\n"
|
||||
" unsigned int i = get_global_id(0); \\\n"
|
||||
" unsigned int startIndex = i; \\\n"
|
||||
" \\\n"
|
||||
" if(i < numCols) \\\n"
|
||||
" { \\\n"
|
||||
" for(j = 0; j < numRowsToProcess; j++) \\\n"
|
||||
" { \\\n"
|
||||
" a = (float2)(in_real[startIndex], in_imag[startIndex]); \\\n"
|
||||
" ang = 2.0f * M_PI * dir * i * (startRow + j) / N; \\\n"
|
||||
" w = (float2)(native_cos(ang), native_sin(ang)); \\\n"
|
||||
" a = complexMul(a, w); \\\n"
|
||||
" in_real[startIndex] = a.x; \\\n"
|
||||
" in_imag[startIndex] = a.y; \\\n"
|
||||
" startIndex += numCols; \\\n"
|
||||
" } \\\n"
|
||||
" } \\\n"
|
||||
"} \\\n"
|
||||
);
|
||||
|
||||
|
||||
|
||||
#endif
|
405
src/algorithms/libs/fft_execute.cc
Normal file
405
src/algorithms/libs/fft_execute.cc
Normal file
@ -0,0 +1,405 @@
|
||||
|
||||
//
|
||||
// File: fft_execute.cpp
|
||||
//
|
||||
// Version: <1.0>
|
||||
//
|
||||
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
|
||||
// in consideration of your agreement to the following terms, and your use,
|
||||
// installation, modification or redistribution of this Apple software
|
||||
// constitutes acceptance of these terms. If you do not agree with these
|
||||
// terms, please do not use, install, modify or redistribute this Apple
|
||||
// software.¬
|
||||
//
|
||||
// In consideration of your agreement to abide by the following terms, and
|
||||
// subject to these terms, Apple grants you a personal, non - exclusive
|
||||
// license, under Apple's copyrights in this original Apple software ( the
|
||||
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
|
||||
// Software, with or without modifications, in source and / or binary forms;
|
||||
// provided that if you redistribute the Apple Software in its entirety and
|
||||
// without modifications, you must retain this notice and the following text
|
||||
// and disclaimers in all such redistributions of the Apple Software. Neither
|
||||
// the name, trademarks, service marks or logos of Apple Inc. may be used to
|
||||
// endorse or promote products derived from the Apple Software without specific
|
||||
// prior written permission from Apple. Except as expressly stated in this
|
||||
// notice, no other rights or licenses, express or implied, are granted by
|
||||
// Apple herein, including but not limited to any patent rights that may be
|
||||
// infringed by your derivative works or by other works in which the Apple
|
||||
// Software may be incorporated.
|
||||
//
|
||||
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
|
||||
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
|
||||
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
|
||||
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
||||
//
|
||||
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
|
||||
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
|
||||
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
|
||||
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
|
||||
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#include "fft_internal.h"
|
||||
#include "clFFT.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
#define max(a,b) (((a)>(b)) ? (a) : (b))
|
||||
#define min(a,b) (((a)<(b)) ? (a) : (b))
|
||||
|
||||
static cl_int
|
||||
allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
|
||||
{
|
||||
cl_int err = CL_SUCCESS;
|
||||
if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
|
||||
{
|
||||
plan->last_batch_size = batchSize;
|
||||
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
|
||||
|
||||
if(plan->tempmemobj)
|
||||
clReleaseMemObject(plan->tempmemobj);
|
||||
|
||||
plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
static cl_int
|
||||
allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
|
||||
{
|
||||
cl_int err = CL_SUCCESS;
|
||||
cl_int terr;
|
||||
if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
|
||||
{
|
||||
plan->last_batch_size = batchSize;
|
||||
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
|
||||
|
||||
if(plan->tempmemobj_real)
|
||||
clReleaseMemObject(plan->tempmemobj_real);
|
||||
|
||||
if(plan->tempmemobj_imag)
|
||||
clReleaseMemObject(plan->tempmemobj_imag);
|
||||
|
||||
plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
|
||||
plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
|
||||
err |= terr;
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
void
|
||||
getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
|
||||
{
|
||||
*lWorkItems = kernelInfo->num_workitems_per_workgroup;
|
||||
int numWorkGroups = kernelInfo->num_workgroups;
|
||||
int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
|
||||
|
||||
switch(kernelInfo->dir)
|
||||
{
|
||||
case cl_fft_kernel_x:
|
||||
*batchSize *= (plan->n.y * plan->n.z);
|
||||
numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
|
||||
numWorkGroups *= kernelInfo->num_workgroups;
|
||||
break;
|
||||
case cl_fft_kernel_y:
|
||||
*batchSize *= plan->n.z;
|
||||
numWorkGroups *= *batchSize;
|
||||
break;
|
||||
case cl_fft_kernel_z:
|
||||
numWorkGroups *= *batchSize;
|
||||
break;
|
||||
}
|
||||
|
||||
*gWorkItems = numWorkGroups * *lWorkItems;
|
||||
}
|
||||
|
||||
cl_int
|
||||
clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
|
||||
cl_mem data_in, cl_mem data_out,
|
||||
cl_int num_events, cl_event *event_list, cl_event *event )
|
||||
{
|
||||
int s;
|
||||
cl_fft_plan *plan = (cl_fft_plan *) Plan;
|
||||
if(plan->format != clFFT_InterleavedComplexFormat)
|
||||
return CL_INVALID_VALUE;
|
||||
|
||||
cl_int err;
|
||||
size_t gWorkItems, lWorkItems;
|
||||
int inPlaceDone;
|
||||
|
||||
cl_int isInPlace = data_in == data_out ? 1 : 0;
|
||||
|
||||
if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
|
||||
return err;
|
||||
|
||||
cl_mem memObj[3];
|
||||
memObj[0] = data_in;
|
||||
memObj[1] = data_out;
|
||||
memObj[2] = plan->tempmemobj;
|
||||
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
|
||||
int numKernels = plan->num_kernels;
|
||||
|
||||
int numKernelsOdd = numKernels & 1;
|
||||
int currRead = 0;
|
||||
int currWrite = 1;
|
||||
|
||||
// at least one external dram shuffle (transpose) required
|
||||
if(plan->temp_buffer_needed)
|
||||
{
|
||||
// in-place transform
|
||||
if(isInPlace)
|
||||
{
|
||||
inPlaceDone = 0;
|
||||
currRead = 1;
|
||||
currWrite = 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
currWrite = (numKernels & 1) ? 1 : 2;
|
||||
}
|
||||
|
||||
while(kernelInfo)
|
||||
{
|
||||
if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
|
||||
{
|
||||
currWrite = currRead;
|
||||
inPlaceDone = 1;
|
||||
}
|
||||
|
||||
s = batchSize;
|
||||
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
|
||||
|
||||
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
currRead = (currWrite == 1) ? 1 : 2;
|
||||
currWrite = (currWrite == 1) ? 2 : 1;
|
||||
|
||||
kernelInfo = kernelInfo->next;
|
||||
}
|
||||
}
|
||||
// no dram shuffle (transpose required) transform
|
||||
// all kernels can execute in-place.
|
||||
else {
|
||||
|
||||
while(kernelInfo)
|
||||
{
|
||||
s = batchSize;
|
||||
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
|
||||
|
||||
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
currRead = 1;
|
||||
currWrite = 1;
|
||||
|
||||
kernelInfo = kernelInfo->next;
|
||||
}
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
cl_int
|
||||
clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
|
||||
cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
|
||||
cl_int num_events, cl_event *event_list, cl_event *event)
|
||||
{
|
||||
int s;
|
||||
cl_fft_plan *plan = (cl_fft_plan *) Plan;
|
||||
|
||||
if(plan->format != clFFT_SplitComplexFormat)
|
||||
return CL_INVALID_VALUE;
|
||||
|
||||
cl_int err;
|
||||
size_t gWorkItems, lWorkItems;
|
||||
int inPlaceDone;
|
||||
|
||||
cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
|
||||
|
||||
if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
|
||||
return err;
|
||||
|
||||
cl_mem memObj_real[3];
|
||||
cl_mem memObj_imag[3];
|
||||
memObj_real[0] = data_in_real;
|
||||
memObj_real[1] = data_out_real;
|
||||
memObj_real[2] = plan->tempmemobj_real;
|
||||
memObj_imag[0] = data_in_imag;
|
||||
memObj_imag[1] = data_out_imag;
|
||||
memObj_imag[2] = plan->tempmemobj_imag;
|
||||
|
||||
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
|
||||
int numKernels = plan->num_kernels;
|
||||
|
||||
int numKernelsOdd = numKernels & 1;
|
||||
int currRead = 0;
|
||||
int currWrite = 1;
|
||||
|
||||
// at least one external dram shuffle (transpose) required
|
||||
if(plan->temp_buffer_needed)
|
||||
{
|
||||
// in-place transform
|
||||
if(isInPlace)
|
||||
{
|
||||
inPlaceDone = 0;
|
||||
currRead = 1;
|
||||
currWrite = 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
currWrite = (numKernels & 1) ? 1 : 2;
|
||||
}
|
||||
|
||||
while(kernelInfo)
|
||||
{
|
||||
if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
|
||||
{
|
||||
currWrite = currRead;
|
||||
inPlaceDone = 1;
|
||||
}
|
||||
|
||||
s = batchSize;
|
||||
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
|
||||
|
||||
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
currRead = (currWrite == 1) ? 1 : 2;
|
||||
currWrite = (currWrite == 1) ? 2 : 1;
|
||||
|
||||
kernelInfo = kernelInfo->next;
|
||||
}
|
||||
}
|
||||
// no dram shuffle (transpose required) transform
|
||||
else {
|
||||
|
||||
while(kernelInfo)
|
||||
{
|
||||
s = batchSize;
|
||||
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
|
||||
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
|
||||
|
||||
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
currRead = 1;
|
||||
currWrite = 1;
|
||||
|
||||
kernelInfo = kernelInfo->next;
|
||||
}
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
cl_int
|
||||
clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
|
||||
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
|
||||
{
|
||||
cl_fft_plan *plan = (cl_fft_plan *) Plan;
|
||||
|
||||
unsigned int N = numRows*numCols;
|
||||
unsigned int nCols = numCols;
|
||||
unsigned int sRow = startRow;
|
||||
unsigned int rToProcess = rowsToProcess;
|
||||
int d = dir;
|
||||
int err = 0;
|
||||
|
||||
cl_device_id device_id;
|
||||
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
size_t gSize;
|
||||
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
gSize = min(128, gSize);
|
||||
size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
|
||||
size_t numLocalThreads[1] = { gSize };
|
||||
|
||||
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
|
||||
|
||||
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
cl_int
|
||||
clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
|
||||
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
|
||||
{
|
||||
cl_fft_plan *plan = (cl_fft_plan *) Plan;
|
||||
|
||||
unsigned int N = numRows*numCols;
|
||||
unsigned int nCols = numCols;
|
||||
unsigned int sRow = startRow;
|
||||
unsigned int rToProcess = rowsToProcess;
|
||||
int d = dir;
|
||||
int err = 0;
|
||||
|
||||
cl_device_id device_id;
|
||||
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
size_t gSize;
|
||||
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
|
||||
if(err)
|
||||
return err;
|
||||
|
||||
gSize = min(128, gSize);
|
||||
size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
|
||||
size_t numLocalThreads[1] = { gSize };
|
||||
|
||||
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
|
||||
err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
|
||||
|
||||
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
163
src/algorithms/libs/fft_internal.h
Normal file
163
src/algorithms/libs/fft_internal.h
Normal file
@ -0,0 +1,163 @@
|
||||
|
||||
//
|
||||
// File: fft_internal.h
|
||||
//
|
||||
// Version: <1.0>
|
||||
//
|
||||
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
|
||||
// in consideration of your agreement to the following terms, and your use,
|
||||
// installation, modification or redistribution of this Apple software
|
||||
// constitutes acceptance of these terms. If you do not agree with these
|
||||
// terms, please do not use, install, modify or redistribute this Apple
|
||||
// software.
|
||||
//
|
||||
// In consideration of your agreement to abide by the following terms, and
|
||||
// subject to these terms, Apple grants you a personal, non - exclusive
|
||||
// license, under Apple's copyrights in this original Apple software ( the
|
||||
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
|
||||
// Software, with or without modifications, in source and / or binary forms;
|
||||
// provided that if you redistribute the Apple Software in its entirety and
|
||||
// without modifications, you must retain this notice and the following text
|
||||
// and disclaimers in all such redistributions of the Apple Software. Neither
|
||||
// the name, trademarks, service marks or logos of Apple Inc. may be used to
|
||||
// endorse or promote products derived from the Apple Software without specific
|
||||
// prior written permission from Apple. Except as expressly stated in this
|
||||
// notice, no other rights or licenses, express or implied, are granted by
|
||||
// Apple herein, including but not limited to any patent rights that may be
|
||||
// infringed by your derivative works or by other works in which the Apple
|
||||
// Software may be incorporated.
|
||||
//
|
||||
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
|
||||
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
|
||||
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
|
||||
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
||||
//
|
||||
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
|
||||
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
|
||||
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
|
||||
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
|
||||
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#ifndef __CLFFT_INTERNAL_H
|
||||
#define __CLFFT_INTERNAL_H
|
||||
|
||||
#include "clFFT.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
typedef enum kernel_dir_t
|
||||
{
|
||||
cl_fft_kernel_x,
|
||||
cl_fft_kernel_y,
|
||||
cl_fft_kernel_z
|
||||
}cl_fft_kernel_dir;
|
||||
|
||||
typedef struct kernel_info_t
|
||||
{
|
||||
cl_kernel kernel;
|
||||
char *kernel_name;
|
||||
unsigned lmem_size;
|
||||
unsigned num_workgroups;
|
||||
unsigned num_xforms_per_workgroup;
|
||||
unsigned num_workitems_per_workgroup;
|
||||
cl_fft_kernel_dir dir;
|
||||
int in_place_possible;
|
||||
kernel_info_t *next;
|
||||
}cl_fft_kernel_info;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
// context in which fft resources are created and kernels are executed
|
||||
cl_context context;
|
||||
|
||||
// size of signal
|
||||
clFFT_Dim3 n;
|
||||
|
||||
// dimension of transform ... must be either 1D, 2D or 3D
|
||||
clFFT_Dimension dim;
|
||||
|
||||
// data format ... must be either interleaved or plannar
|
||||
clFFT_DataFormat format;
|
||||
|
||||
// string containing kernel source. Generated at runtime based on
|
||||
// n, dim, format and other parameters
|
||||
string *kernel_string;
|
||||
|
||||
// CL program containing source and kernel this particular
|
||||
// n, dim, data format
|
||||
cl_program program;
|
||||
|
||||
// linked list of kernels which needs to be executed for this fft
|
||||
cl_fft_kernel_info *kernel_info;
|
||||
|
||||
// number of kernels
|
||||
int num_kernels;
|
||||
|
||||
// twist kernel for virtualizing fft of very large sizes that do not
|
||||
// fit in GPU global memory
|
||||
cl_kernel twist_kernel;
|
||||
|
||||
// flag indicating if temporary intermediate buffer is needed or not.
|
||||
// this depends on fft kernels being executed and if transform is
|
||||
// in-place or out-of-place. e.g. Local memory fft (say 1D 1024 ...
|
||||
// one that does not require global transpose do not need temporary buffer)
|
||||
// 2D 1024x1024 out-of-place fft however do require intermediate buffer.
|
||||
// If temp buffer is needed, its allocation is lazy i.e. its not allocated
|
||||
// until its needed
|
||||
cl_int temp_buffer_needed;
|
||||
|
||||
// Batch size is runtime parameter and size of temporary buffer (if needed)
|
||||
// depends on batch size. Allocation of temporary buffer is lazy i.e. its
|
||||
// only created when needed. Once its created at first call of clFFT_Executexxx
|
||||
// it is not allocated next time if next time clFFT_Executexxx is called with
|
||||
// batch size different than the first call. last_batch_size caches the last
|
||||
// batch size with which this plan is used so that we dont keep allocating/deallocating
|
||||
// temp buffer if same batch size is used again and again.
|
||||
unsigned last_batch_size;
|
||||
|
||||
// temporary buffer for interleaved plan
|
||||
cl_mem tempmemobj;
|
||||
|
||||
// temporary buffer for planner plan. Only one of tempmemobj or
|
||||
// (tempmemobj_real, tempmemobj_imag) pair is valid (allocated) depending
|
||||
// data format of plan (plannar or interleaved)
|
||||
cl_mem tempmemobj_real, tempmemobj_imag;
|
||||
|
||||
// Maximum size of signal for which local memory transposed based
|
||||
// fft is sufficient i.e. no global mem transpose (communication)
|
||||
// is needed
|
||||
unsigned max_localmem_fft_size;
|
||||
|
||||
// Maximum work items per work group allowed. This, along with max_radix below controls
|
||||
// maximum local memory being used by fft kernels of this plan. Set to 256 by default
|
||||
unsigned max_work_item_per_workgroup;
|
||||
|
||||
// Maximum base radix for local memory fft ... this controls the maximum register
|
||||
// space used by work items. Currently defaults to 16
|
||||
unsigned max_radix;
|
||||
|
||||
// Device depended parameter that tells how many work-items need to be read consecutive
|
||||
// values to make sure global memory access by work-items of a work-group result in
|
||||
// coalesced memory access to utilize full bandwidth e.g. on NVidia tesla, this is 16
|
||||
unsigned min_mem_coalesce_width;
|
||||
|
||||
// Number of local memory banks. This is used to geneate kernel with local memory
|
||||
// transposes with appropriate padding to avoid bank conflicts to local memory
|
||||
// e.g. on NVidia it is 16.
|
||||
unsigned num_local_mem_banks;
|
||||
}cl_fft_plan;
|
||||
|
||||
void FFT1D(cl_fft_plan *plan, cl_fft_kernel_dir dir);
|
||||
|
||||
#endif
|
1257
src/algorithms/libs/fft_kernelstring.cc
Normal file
1257
src/algorithms/libs/fft_kernelstring.cc
Normal file
File diff suppressed because it is too large
Load Diff
402
src/algorithms/libs/fft_setup.cc
Normal file
402
src/algorithms/libs/fft_setup.cc
Normal file
@ -0,0 +1,402 @@
|
||||
|
||||
//
|
||||
// File: fft_setup.cpp
|
||||
//
|
||||
// Version: <1.0>
|
||||
//
|
||||
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
|
||||
// in consideration of your agreement to the following terms, and your use,
|
||||
// installation, modification or redistribution of this Apple software
|
||||
// constitutes acceptance of these terms. If you do not agree with these
|
||||
// terms, please do not use, install, modify or redistribute this Apple
|
||||
// software.
|
||||
//
|
||||
// In consideration of your agreement to abide by the following terms, and
|
||||
// subject to these terms, Apple grants you a personal, non - exclusive
|
||||
// license, under Apple's copyrights in this original Apple software ( the
|
||||
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
|
||||
// Software, with or without modifications, in source and / or binary forms;
|
||||
// provided that if you redistribute the Apple Software in its entirety and
|
||||
// without modifications, you must retain this notice and the following text
|
||||
// and disclaimers in all such redistributions of the Apple Software. Neither
|
||||
// the name, trademarks, service marks or logos of Apple Inc. may be used to
|
||||
// endorse or promote products derived from the Apple Software without specific
|
||||
// prior written permission from Apple. Except as expressly stated in this
|
||||
// notice, no other rights or licenses, express or implied, are granted by
|
||||
// Apple herein, including but not limited to any patent rights that may be
|
||||
// infringed by your derivative works or by other works in which the Apple
|
||||
// Software may be incorporated.
|
||||
//
|
||||
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
|
||||
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
|
||||
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
|
||||
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
||||
//
|
||||
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
|
||||
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
|
||||
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
|
||||
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
|
||||
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#include "fft_internal.h"
|
||||
#include "fft_base_kernels.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <limits>
|
||||
|
||||
using namespace std;
|
||||
|
||||
extern void getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems);
|
||||
|
||||
static void
|
||||
getBlockConfigAndKernelString(cl_fft_plan *plan)
|
||||
{
|
||||
plan->temp_buffer_needed = 0;
|
||||
*plan->kernel_string += baseKernels;
|
||||
|
||||
if(plan->format == clFFT_SplitComplexFormat)
|
||||
*plan->kernel_string += twistKernelPlannar;
|
||||
else
|
||||
*plan->kernel_string += twistKernelInterleaved;
|
||||
|
||||
switch(plan->dim)
|
||||
{
|
||||
case clFFT_1D:
|
||||
FFT1D(plan, cl_fft_kernel_x);
|
||||
break;
|
||||
|
||||
case clFFT_2D:
|
||||
FFT1D(plan, cl_fft_kernel_x);
|
||||
FFT1D(plan, cl_fft_kernel_y);
|
||||
break;
|
||||
|
||||
case clFFT_3D:
|
||||
FFT1D(plan, cl_fft_kernel_x);
|
||||
FFT1D(plan, cl_fft_kernel_y);
|
||||
FFT1D(plan, cl_fft_kernel_z);
|
||||
break;
|
||||
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
plan->temp_buffer_needed = 0;
|
||||
cl_fft_kernel_info *kInfo = plan->kernel_info;
|
||||
while(kInfo)
|
||||
{
|
||||
plan->temp_buffer_needed |= !kInfo->in_place_possible;
|
||||
kInfo = kInfo->next;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
deleteKernelInfo(cl_fft_kernel_info *kInfo)
|
||||
{
|
||||
if(kInfo)
|
||||
{
|
||||
if(kInfo->kernel_name)
|
||||
free(kInfo->kernel_name);
|
||||
if(kInfo->kernel)
|
||||
clReleaseKernel(kInfo->kernel);
|
||||
free(kInfo);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
destroy_plan(cl_fft_plan *Plan)
|
||||
{
|
||||
cl_fft_kernel_info *kernel_info = Plan->kernel_info;
|
||||
|
||||
while(kernel_info)
|
||||
{
|
||||
cl_fft_kernel_info *tmp = kernel_info->next;
|
||||
deleteKernelInfo(kernel_info);
|
||||
kernel_info = tmp;
|
||||
}
|
||||
|
||||
Plan->kernel_info = NULL;
|
||||
|
||||
if(Plan->kernel_string)
|
||||
{
|
||||
delete Plan->kernel_string;
|
||||
Plan->kernel_string = NULL;
|
||||
}
|
||||
if(Plan->twist_kernel)
|
||||
{
|
||||
clReleaseKernel(Plan->twist_kernel);
|
||||
Plan->twist_kernel = NULL;
|
||||
}
|
||||
if(Plan->program)
|
||||
{
|
||||
clReleaseProgram(Plan->program);
|
||||
Plan->program = NULL;
|
||||
}
|
||||
if(Plan->tempmemobj)
|
||||
{
|
||||
clReleaseMemObject(Plan->tempmemobj);
|
||||
Plan->tempmemobj = NULL;
|
||||
}
|
||||
if(Plan->tempmemobj_real)
|
||||
{
|
||||
clReleaseMemObject(Plan->tempmemobj_real);
|
||||
Plan->tempmemobj_real = NULL;
|
||||
}
|
||||
if(Plan->tempmemobj_imag)
|
||||
{
|
||||
clReleaseMemObject(Plan->tempmemobj_imag);
|
||||
Plan->tempmemobj_imag = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static int
|
||||
createKernelList(cl_fft_plan *plan)
|
||||
{
|
||||
cl_program program = plan->program;
|
||||
cl_fft_kernel_info *kernel_info = plan->kernel_info;
|
||||
|
||||
cl_int err;
|
||||
while(kernel_info)
|
||||
{
|
||||
kernel_info->kernel = clCreateKernel(program, kernel_info->kernel_name, &err);
|
||||
if(!kernel_info->kernel || err != CL_SUCCESS)
|
||||
return err;
|
||||
kernel_info = kernel_info->next;
|
||||
}
|
||||
|
||||
if(plan->format == clFFT_SplitComplexFormat)
|
||||
plan->twist_kernel = clCreateKernel(program, "clFFT_1DTwistSplit", &err);
|
||||
else
|
||||
plan->twist_kernel = clCreateKernel(program, "clFFT_1DTwistInterleaved", &err);
|
||||
|
||||
if(!plan->twist_kernel || err)
|
||||
return err;
|
||||
|
||||
return CL_SUCCESS;
|
||||
}
|
||||
|
||||
int getMaxKernelWorkGroupSize(cl_fft_plan *plan, unsigned int *max_wg_size, unsigned int num_devices, cl_device_id *devices)
|
||||
{
|
||||
int reg_needed = 0;
|
||||
*max_wg_size = std::numeric_limits<int>::max();
|
||||
int err;
|
||||
unsigned wg_size;
|
||||
|
||||
unsigned int i;
|
||||
for(i = 0; i < num_devices; i++)
|
||||
{
|
||||
cl_fft_kernel_info *kInfo = plan->kernel_info;
|
||||
while(kInfo)
|
||||
{
|
||||
err = clGetKernelWorkGroupInfo(kInfo->kernel, devices[i], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wg_size, NULL);
|
||||
if(err != CL_SUCCESS)
|
||||
return -1;
|
||||
|
||||
if(wg_size < kInfo->num_workitems_per_workgroup)
|
||||
reg_needed |= 1;
|
||||
|
||||
if(*max_wg_size > wg_size)
|
||||
*max_wg_size = wg_size;
|
||||
|
||||
kInfo = kInfo->next;
|
||||
}
|
||||
}
|
||||
|
||||
return reg_needed;
|
||||
}
|
||||
|
||||
#define ERR_MACRO(err) { \
|
||||
if( err != CL_SUCCESS) \
|
||||
{ \
|
||||
if(error_code) \
|
||||
*error_code = err; \
|
||||
clFFT_DestroyPlan((clFFT_Plan) plan); \
|
||||
return (clFFT_Plan) NULL; \
|
||||
} \
|
||||
}
|
||||
|
||||
clFFT_Plan
|
||||
clFFT_CreatePlan(cl_context context, clFFT_Dim3 n, clFFT_Dimension dim, clFFT_DataFormat dataFormat, cl_int *error_code )
|
||||
{
|
||||
int i;
|
||||
cl_int err;
|
||||
int isPow2 = 1;
|
||||
cl_fft_plan *plan = NULL;
|
||||
ostringstream kString;
|
||||
int num_devices;
|
||||
int gpu_found = 0;
|
||||
cl_device_id devices[16];
|
||||
size_t ret_size;
|
||||
cl_device_type device_type;
|
||||
|
||||
if(!context)
|
||||
ERR_MACRO(CL_INVALID_VALUE);
|
||||
|
||||
isPow2 |= n.x && !( (n.x - 1) & n.x );
|
||||
isPow2 |= n.y && !( (n.y - 1) & n.y );
|
||||
isPow2 |= n.z && !( (n.z - 1) & n.z );
|
||||
|
||||
if(!isPow2)
|
||||
ERR_MACRO(CL_INVALID_VALUE);
|
||||
|
||||
if( (dim == clFFT_1D && (n.y != 1 || n.z != 1)) || (dim == clFFT_2D && n.z != 1) )
|
||||
ERR_MACRO(CL_INVALID_VALUE);
|
||||
|
||||
plan = (cl_fft_plan *) malloc(sizeof(cl_fft_plan));
|
||||
if(!plan)
|
||||
ERR_MACRO(CL_OUT_OF_RESOURCES);
|
||||
|
||||
plan->context = context;
|
||||
clRetainContext(context);
|
||||
plan->n = n;
|
||||
plan->dim = dim;
|
||||
plan->format = dataFormat;
|
||||
plan->kernel_info = 0;
|
||||
plan->num_kernels = 0;
|
||||
plan->twist_kernel = 0;
|
||||
plan->program = 0;
|
||||
plan->temp_buffer_needed = 0;
|
||||
plan->last_batch_size = 0;
|
||||
plan->tempmemobj = 0;
|
||||
plan->tempmemobj_real = 0;
|
||||
plan->tempmemobj_imag = 0;
|
||||
plan->max_localmem_fft_size = 2048;
|
||||
plan->max_work_item_per_workgroup = 256;
|
||||
plan->max_radix = 16;
|
||||
plan->min_mem_coalesce_width = 16;
|
||||
plan->num_local_mem_banks = 16;
|
||||
|
||||
patch_kernel_source:
|
||||
|
||||
plan->kernel_string = new string("");
|
||||
if(!plan->kernel_string)
|
||||
ERR_MACRO(CL_OUT_OF_RESOURCES);
|
||||
|
||||
getBlockConfigAndKernelString(plan);
|
||||
|
||||
const char *source_str = plan->kernel_string->c_str();
|
||||
plan->program = clCreateProgramWithSource(context, 1, (const char**) &source_str, NULL, &err);
|
||||
ERR_MACRO(err);
|
||||
|
||||
err = clGetContextInfo(context, CL_CONTEXT_DEVICES, sizeof(devices), devices, &ret_size);
|
||||
ERR_MACRO(err);
|
||||
|
||||
num_devices = (int)(ret_size / sizeof(cl_device_id));
|
||||
|
||||
for(i = 0; i < num_devices; i++)
|
||||
{
|
||||
err = clGetDeviceInfo(devices[i], CL_DEVICE_TYPE, sizeof(device_type), &device_type, NULL);
|
||||
ERR_MACRO(err);
|
||||
|
||||
if(device_type == CL_DEVICE_TYPE_GPU)
|
||||
{
|
||||
gpu_found = 1;
|
||||
err = clBuildProgram(plan->program, 1, &devices[i], "-cl-mad-enable", NULL, NULL);
|
||||
if (err != CL_SUCCESS)
|
||||
{
|
||||
char *build_log;
|
||||
char devicename[200];
|
||||
size_t log_size;
|
||||
|
||||
err = clGetProgramBuildInfo(plan->program, devices[i], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
|
||||
ERR_MACRO(err);
|
||||
|
||||
build_log = (char *) malloc(log_size + 1);
|
||||
|
||||
err = clGetProgramBuildInfo(plan->program, devices[i], CL_PROGRAM_BUILD_LOG, log_size, build_log, NULL);
|
||||
ERR_MACRO(err);
|
||||
|
||||
err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(devicename), devicename, NULL);
|
||||
ERR_MACRO(err);
|
||||
|
||||
fprintf(stdout, "FFT program build log on device %s\n", devicename);
|
||||
fprintf(stdout, "%s\n", build_log);
|
||||
free(build_log);
|
||||
|
||||
ERR_MACRO(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(!gpu_found)
|
||||
ERR_MACRO(CL_INVALID_CONTEXT);
|
||||
|
||||
err = createKernelList(plan);
|
||||
ERR_MACRO(err);
|
||||
|
||||
// we created program and kernels based on "some max work group size (default 256)" ... this work group size
|
||||
// may be larger than what kernel may execute with ... if thats the case we need to regenerate the kernel source
|
||||
// setting this as limit i.e max group size and rebuild.
|
||||
unsigned int max_kernel_wg_size;
|
||||
int patching_req = getMaxKernelWorkGroupSize(plan, &max_kernel_wg_size, num_devices, devices);
|
||||
if(patching_req == -1)
|
||||
{
|
||||
ERR_MACRO(err);
|
||||
}
|
||||
|
||||
if(patching_req)
|
||||
{
|
||||
destroy_plan(plan);
|
||||
plan->max_work_item_per_workgroup = max_kernel_wg_size;
|
||||
goto patch_kernel_source;
|
||||
}
|
||||
|
||||
cl_fft_kernel_info *kInfo = plan->kernel_info;
|
||||
while(kInfo)
|
||||
{
|
||||
plan->num_kernels++;
|
||||
kInfo = kInfo->next;
|
||||
}
|
||||
|
||||
if(error_code)
|
||||
*error_code = CL_SUCCESS;
|
||||
|
||||
return (clFFT_Plan) plan;
|
||||
}
|
||||
|
||||
void
|
||||
clFFT_DestroyPlan(clFFT_Plan plan)
|
||||
{
|
||||
cl_fft_plan *Plan = (cl_fft_plan *) plan;
|
||||
if(Plan)
|
||||
{
|
||||
destroy_plan(Plan);
|
||||
clReleaseContext(Plan->context);
|
||||
free(Plan);
|
||||
}
|
||||
}
|
||||
|
||||
void clFFT_DumpPlan( clFFT_Plan Plan, FILE *file)
|
||||
{
|
||||
size_t gDim, lDim;
|
||||
FILE *out;
|
||||
if(!file)
|
||||
out = stdout;
|
||||
else
|
||||
out = file;
|
||||
|
||||
cl_fft_plan *plan = (cl_fft_plan *) Plan;
|
||||
cl_fft_kernel_info *kInfo = plan->kernel_info;
|
||||
|
||||
while(kInfo)
|
||||
{
|
||||
cl_int s = 1;
|
||||
getKernelWorkDimensions(plan, kInfo, &s, &gDim, &lDim);
|
||||
fprintf(out, "Run kernel %s with global dim = {%zd*BatchSize}, local dim={%zd}\n", kInfo->kernel_name, gDim, lDim);
|
||||
kInfo = kInfo->next;
|
||||
}
|
||||
fprintf(out, "%s\n", plan->kernel_string->c_str());
|
||||
}
|
@ -158,7 +158,7 @@ galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
|
||||
|
||||
std::string _galileo_signal = _Signal;
|
||||
unsigned int _samplesPerCode;
|
||||
const unsigned int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
|
||||
const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
|
||||
unsigned int _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
int primary_code_E1_chips[(int)Galileo_E1_B_CODE_LENGTH_CHIPS];
|
||||
_samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
|
||||
|
@ -54,6 +54,7 @@
|
||||
#include "fir_filter.h"
|
||||
#include "freq_xlating_fir_filter.h"
|
||||
#include "gps_l1_ca_pcps_acquisition.h"
|
||||
#include "gps_l1_ca_pcps_multithread_acquisition.h"
|
||||
#include "gps_l1_ca_pcps_tong_acquisition.h"
|
||||
#include "gps_l1_ca_pcps_assisted_acquisition.h"
|
||||
#include "gps_l1_ca_pcps_acquisition_fine_doppler.h"
|
||||
@ -74,6 +75,10 @@
|
||||
#include "gps_l1_ca_pvt.h"
|
||||
#include "galileo_e1_pvt.h"
|
||||
|
||||
#if OPENCL
|
||||
#include "gps_l1_ca_pcps_opencl_acquisition.h"
|
||||
#endif
|
||||
|
||||
#if GN3S_DRIVER
|
||||
#include "gn3s_signal_source.h"
|
||||
#endif
|
||||
@ -346,9 +351,18 @@ GNSSBlockInterface* GNSSBlockFactory::GetBlock(
|
||||
}
|
||||
else if (implementation.compare("GPS_L1_CA_PCPS_Multithread_Acquisition") == 0)
|
||||
{
|
||||
block = new GpsL1CaPcpsAcquisition(configuration, role, in_streams,
|
||||
block = new GpsL1CaPcpsMultithreadAcquisition(configuration, role, in_streams,
|
||||
out_streams, queue);
|
||||
}
|
||||
|
||||
#if OPENCL
|
||||
else if (implementation.compare("GPS_L1_CA_PCPS_OpenCl_Acquisition") == 0)
|
||||
{
|
||||
block = new GpsL1CaPcpsOpenClAcquisition(configuration, role, in_streams,
|
||||
out_streams, queue);
|
||||
}
|
||||
#endif
|
||||
|
||||
else if (implementation.compare("GPS_L1_CA_PCPS_Acquisition_Fine_Doppler") == 0)
|
||||
{
|
||||
block = new GpsL1CaPcpsAcquisitionFineDoppler(configuration, role, in_streams,
|
||||
|
@ -129,6 +129,7 @@ add_executable(gnss_block_test EXCLUDE_FROM_ALL
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_acquisition_test.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_acquisition_gsoc2013_test.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_tong_acquisition_gsoc2013_test.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc
|
||||
|
@ -238,14 +238,14 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "10");
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "20");
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
config->set_property("SignalSource.delay_chips_3", "300");
|
||||
@ -279,7 +279,7 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::config_2()
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition");
|
||||
config->set_property("Acquisition.pfa", "1e-1");
|
||||
config->set_property("Acquisition.pfa", "0.1");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
|
@ -242,14 +242,14 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "10");
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "20");
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
config->set_property("SignalSource.delay_chips_3", "300");
|
||||
@ -284,7 +284,7 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.bit_transition_flag","false");
|
||||
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
|
||||
config->set_property("Acquisition.pfa", "1e-1");
|
||||
config->set_property("Acquisition.pfa", "0.1");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
|
@ -240,14 +240,14 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "10");
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "20");
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
config->set_property("SignalSource.delay_chips_3", "300");
|
||||
@ -281,7 +281,7 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::config_2()
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.0025");
|
||||
config->set_property("Acquisition.threshold", "0.00215"); // Pfa,a = 0.1
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
@ -536,7 +536,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResultsProbabili
|
||||
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
std::cout << "Probability of false alarm (target) = " << 0.0065 << std::endl;
|
||||
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
|
||||
|
||||
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
|
||||
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
|
||||
|
@ -191,8 +191,8 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_1()
|
||||
config->set_property("Acquisition.if", "0");
|
||||
config->set_property("Acquisition.coherent_integration_time_ms",
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.tong_init_val", "5");
|
||||
config->set_property("Acquisition.tong_max_val", "10");
|
||||
config->set_property("Acquisition.tong_init_val", "1");
|
||||
config->set_property("Acquisition.tong_max_val", "8");
|
||||
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.3");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
@ -241,14 +241,14 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "10");
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "20");
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
config->set_property("SignalSource.delay_chips_3", "300");
|
||||
@ -280,10 +280,10 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("Acquisition.if", "0");
|
||||
config->set_property("Acquisition.coherent_integration_time_ms",
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.tong_init_val", "5");
|
||||
config->set_property("Acquisition.tong_max_val", "10");
|
||||
config->set_property("Acquisition.tong_init_val", "1");
|
||||
config->set_property("Acquisition.tong_max_val", "8");
|
||||
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.0005");
|
||||
config->set_property("Acquisition.threshold", "0.00028"); // Pfa,a = 0.1
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
@ -536,7 +536,7 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsPro
|
||||
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
std::cout << "Probability of false alarm (target) = " << 0.0 << std::endl;
|
||||
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
|
||||
|
||||
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
|
||||
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
|
||||
|
@ -238,13 +238,13 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
@ -279,7 +279,7 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_2()
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
|
||||
config->set_property("Acquisition.pfa", "1e-1");
|
||||
config->set_property("Acquisition.pfa", "0.1");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.bit_transition_flag", "false");
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_acquisition_gsoc2013_test.cc
|
||||
* \file gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc
|
||||
* \brief This class implements an acquisition test for
|
||||
* GpsL1CaPcpsMultithreadAcquisition class.
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
@ -205,7 +205,7 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
|
||||
std::string signal = "1C";
|
||||
signal.copy(gnss_synchro.Signal,2,0);
|
||||
|
||||
integration_time_ms = 4;
|
||||
integration_time_ms = 1;
|
||||
fs_in = 4e6;
|
||||
|
||||
expected_delay_chips = 600;
|
||||
@ -237,13 +237,13 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
@ -278,10 +278,10 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Multithread_Acquisition");
|
||||
config->set_property("Acquisition.pfa", "1e-1");
|
||||
config->set_property("Acquisition.pfa", "0.1");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.bit_transition_flag", "true");
|
||||
config->set_property("Acquisition.bit_transition_flag", "false");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,579 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc
|
||||
* \brief This class implements an acquisition test for
|
||||
* GpsL1CaPcpsOpenClAcquisition class.
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <sys/time.h>
|
||||
#include <iostream>
|
||||
#include <gnuradio/top_block.h>
|
||||
#include <gnuradio/blocks/file_source.h>
|
||||
#include <gnuradio/analog/sig_source_waveform.h>
|
||||
#include <gnuradio/analog/sig_source_c.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/null_sink.h>
|
||||
#include "gnss_block_interface.h"
|
||||
#include "in_memory_configuration.h"
|
||||
#include "configuration_interface.h"
|
||||
#include "gnss_synchro.h"
|
||||
#include "gps_l1_ca_pcps_opencl_acquisition.h"
|
||||
#include "signal_generator.h"
|
||||
//#include "signal_generator.cc"
|
||||
#include "signal_generator_c.h"
|
||||
//#include "signal_generator_c.cc"
|
||||
#include "fir_filter.h"
|
||||
#include "gen_signal_source.h"
|
||||
#include "gnss_sdr_valve.h"
|
||||
#include "boost/shared_ptr.hpp"
|
||||
|
||||
|
||||
class GpsL1CaPcpsOpenClAcquisitionGSoC2013Test: public ::testing::Test
|
||||
{
|
||||
protected:
|
||||
GpsL1CaPcpsOpenClAcquisitionGSoC2013Test()
|
||||
{
|
||||
queue = gr::msg_queue::make(0);
|
||||
top_block = gr::make_top_block("Acquisition test");
|
||||
item_size = sizeof(gr_complex);
|
||||
stop = false;
|
||||
message = 0;
|
||||
}
|
||||
|
||||
~GpsL1CaPcpsOpenClAcquisitionGSoC2013Test()
|
||||
{
|
||||
}
|
||||
|
||||
void init();
|
||||
void config_1();
|
||||
void config_2();
|
||||
void start_queue();
|
||||
void wait_message();
|
||||
void process_message();
|
||||
void stop_queue();
|
||||
|
||||
gr::msg_queue::sptr queue;
|
||||
gr::top_block_sptr top_block;
|
||||
GpsL1CaPcpsOpenClAcquisition *acquisition;
|
||||
InMemoryConfiguration* config;
|
||||
Gnss_Synchro gnss_synchro;
|
||||
size_t item_size;
|
||||
concurrent_queue<int> channel_internal_queue;
|
||||
bool stop;
|
||||
int message;
|
||||
boost::thread ch_thread;
|
||||
|
||||
unsigned int integration_time_ms;
|
||||
unsigned int fs_in;
|
||||
|
||||
double expected_delay_chips;
|
||||
double expected_doppler_hz;
|
||||
float max_doppler_error_hz;
|
||||
float max_delay_error_chips;
|
||||
|
||||
unsigned int num_of_realizations;
|
||||
unsigned int realization_counter;
|
||||
unsigned int detection_counter;
|
||||
unsigned int correct_estimation_counter;
|
||||
unsigned int acquired_samples;
|
||||
unsigned int mean_acq_time_us;
|
||||
|
||||
double mse_doppler;
|
||||
double mse_delay;
|
||||
|
||||
double Pd;
|
||||
double Pfa_p;
|
||||
double Pfa_a;
|
||||
};
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::init()
|
||||
{
|
||||
message = 0;
|
||||
realization_counter = 0;
|
||||
detection_counter = 0;
|
||||
correct_estimation_counter = 0;
|
||||
acquired_samples = 0;
|
||||
mse_doppler = 0;
|
||||
mse_delay = 0;
|
||||
mean_acq_time_us = 0;
|
||||
Pd = 0;
|
||||
Pfa_p = 0;
|
||||
Pfa_a = 0;
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::config_1()
|
||||
{
|
||||
gnss_synchro.Channel_ID = 0;
|
||||
gnss_synchro.System = 'G';
|
||||
std::string signal = "1C";
|
||||
signal.copy(gnss_synchro.Signal,2,0);
|
||||
|
||||
integration_time_ms = 1;
|
||||
fs_in = 4e6;
|
||||
|
||||
expected_delay_chips = 600;
|
||||
expected_doppler_hz = 750;
|
||||
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
|
||||
max_delay_error_chips = 0.50;
|
||||
|
||||
num_of_realizations = 1;
|
||||
|
||||
config = new InMemoryConfiguration();
|
||||
|
||||
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in));
|
||||
|
||||
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
|
||||
|
||||
config->set_property("SignalSource.item_type", "gr_complex");
|
||||
|
||||
config->set_property("SignalSource.num_satellites", "1");
|
||||
|
||||
config->set_property("SignalSource.system_0", "G");
|
||||
config->set_property("SignalSource.PRN_0", "10");
|
||||
config->set_property("SignalSource.CN0_dB_0", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
|
||||
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
|
||||
|
||||
config->set_property("SignalSource.noise_flag", "false");
|
||||
config->set_property("SignalSource.data_flag", "false");
|
||||
config->set_property("SignalSource.BW_BB", "0.97");
|
||||
|
||||
config->set_property("InputFilter.implementation", "Fir_Filter");
|
||||
config->set_property("InputFilter.input_item_type", "gr_complex");
|
||||
config->set_property("InputFilter.output_item_type", "gr_complex");
|
||||
config->set_property("InputFilter.taps_item_type", "float");
|
||||
config->set_property("InputFilter.number_of_taps", "11");
|
||||
config->set_property("InputFilter.number_of_bands", "2");
|
||||
config->set_property("InputFilter.band1_begin", "0.0");
|
||||
config->set_property("InputFilter.band1_end", "0.97");
|
||||
config->set_property("InputFilter.band2_begin", "0.98");
|
||||
config->set_property("InputFilter.band2_end", "1.0");
|
||||
config->set_property("InputFilter.ampl1_begin", "1.0");
|
||||
config->set_property("InputFilter.ampl1_end", "1.0");
|
||||
config->set_property("InputFilter.ampl2_begin", "0.0");
|
||||
config->set_property("InputFilter.ampl2_end", "0.0");
|
||||
config->set_property("InputFilter.band1_error", "1.0");
|
||||
config->set_property("InputFilter.band2_error", "1.0");
|
||||
config->set_property("InputFilter.filter_type", "bandpass");
|
||||
config->set_property("InputFilter.grid_density", "16");
|
||||
|
||||
config->set_property("Acquisition.item_type", "gr_complex");
|
||||
config->set_property("Acquisition.if", "0");
|
||||
config->set_property("Acquisition.coherent_integration_time_ms",
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.8");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.bit_transition_flag", "false");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::config_2()
|
||||
{
|
||||
gnss_synchro.Channel_ID = 0;
|
||||
gnss_synchro.System = 'G';
|
||||
std::string signal = "1C";
|
||||
signal.copy(gnss_synchro.Signal,2,0);
|
||||
|
||||
integration_time_ms = 1;
|
||||
fs_in = 4e6;
|
||||
|
||||
expected_delay_chips = 600;
|
||||
expected_doppler_hz = 750;
|
||||
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
|
||||
max_delay_error_chips = 0.50;
|
||||
|
||||
num_of_realizations = 100;
|
||||
|
||||
config = new InMemoryConfiguration();
|
||||
|
||||
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in));
|
||||
|
||||
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
|
||||
|
||||
config->set_property("SignalSource.item_type", "gr_complex");
|
||||
|
||||
config->set_property("SignalSource.num_satellites", "4");
|
||||
|
||||
config->set_property("SignalSource.system_0", "G");
|
||||
config->set_property("SignalSource.PRN_0", "10");
|
||||
config->set_property("SignalSource.CN0_dB_0", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
|
||||
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
|
||||
|
||||
config->set_property("SignalSource.system_1", "G");
|
||||
config->set_property("SignalSource.PRN_1", "15");
|
||||
config->set_property("SignalSource.CN0_dB_1", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
config->set_property("SignalSource.delay_chips_3", "300");
|
||||
|
||||
config->set_property("SignalSource.noise_flag", "true");
|
||||
config->set_property("SignalSource.data_flag", "true");
|
||||
config->set_property("SignalSource.BW_BB", "0.97");
|
||||
|
||||
config->set_property("InputFilter.implementation", "Fir_Filter");
|
||||
config->set_property("InputFilter.input_item_type", "gr_complex");
|
||||
config->set_property("InputFilter.output_item_type", "gr_complex");
|
||||
config->set_property("InputFilter.taps_item_type", "float");
|
||||
config->set_property("InputFilter.number_of_taps", "11");
|
||||
config->set_property("InputFilter.number_of_bands", "2");
|
||||
config->set_property("InputFilter.band1_begin", "0.0");
|
||||
config->set_property("InputFilter.band1_end", "0.97");
|
||||
config->set_property("InputFilter.band2_begin", "0.98");
|
||||
config->set_property("InputFilter.band2_end", "1.0");
|
||||
config->set_property("InputFilter.ampl1_begin", "1.0");
|
||||
config->set_property("InputFilter.ampl1_end", "1.0");
|
||||
config->set_property("InputFilter.ampl2_begin", "0.0");
|
||||
config->set_property("InputFilter.ampl2_end", "0.0");
|
||||
config->set_property("InputFilter.band1_error", "1.0");
|
||||
config->set_property("InputFilter.band2_error", "1.0");
|
||||
config->set_property("InputFilter.filter_type", "bandpass");
|
||||
config->set_property("InputFilter.grid_density", "16");
|
||||
|
||||
config->set_property("Acquisition.item_type", "gr_complex");
|
||||
config->set_property("Acquisition.if", "0");
|
||||
config->set_property("Acquisition.coherent_integration_time_ms",
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.max_dwells", "1");
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
|
||||
config->set_property("Acquisition.pfa", "0.1");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.bit_transition_flag", "false");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::start_queue()
|
||||
{
|
||||
stop = false;
|
||||
ch_thread = boost::thread(&GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::wait_message, this);
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::wait_message()
|
||||
{
|
||||
struct timeval tv;
|
||||
long long int begin = 0;
|
||||
long long int end = 0;
|
||||
|
||||
while (!stop)
|
||||
{
|
||||
acquisition->reset();
|
||||
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec *1e6 + tv.tv_usec;
|
||||
|
||||
channel_internal_queue.wait_and_pop(message);
|
||||
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec *1e6 + tv.tv_usec;
|
||||
|
||||
mean_acq_time_us += (end-begin);
|
||||
|
||||
process_message();
|
||||
}
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::process_message()
|
||||
{
|
||||
if (message == 1)
|
||||
{
|
||||
detection_counter++;
|
||||
|
||||
// The term -5 is here to correct the additional delay introduced by the FIR filter
|
||||
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
|
||||
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
|
||||
|
||||
mse_delay += std::pow(delay_error_chips, 2);
|
||||
mse_doppler += std::pow(doppler_error_hz, 2);
|
||||
|
||||
if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz))
|
||||
{
|
||||
correct_estimation_counter++;
|
||||
}
|
||||
|
||||
// std::cout << "Acq delay samples = " << (double)gnss_synchro.Acq_delay_samples << std::endl;
|
||||
// std::cout << "Acq doppler Hz = " << (double)gnss_synchro.Acq_doppler_hz << std::endl;
|
||||
}
|
||||
|
||||
realization_counter++;
|
||||
|
||||
std::cout << "Progress: " << round((float)realization_counter/num_of_realizations*100) << "% \r" << std::flush;
|
||||
|
||||
if (realization_counter == num_of_realizations)
|
||||
{
|
||||
mse_delay /= num_of_realizations;
|
||||
mse_doppler /= num_of_realizations;
|
||||
|
||||
Pd = (double)correct_estimation_counter / (double)num_of_realizations;
|
||||
Pfa_a = (double)detection_counter / (double)num_of_realizations;
|
||||
Pfa_p = (double)(detection_counter-correct_estimation_counter) / (double)num_of_realizations;
|
||||
|
||||
mean_acq_time_us /= num_of_realizations;
|
||||
|
||||
stop_queue();
|
||||
top_block->stop();
|
||||
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::stop_queue()
|
||||
{
|
||||
stop = true;
|
||||
}
|
||||
|
||||
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, Instantiate)
|
||||
{
|
||||
config_1();
|
||||
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
|
||||
delete acquisition;
|
||||
delete config;
|
||||
}
|
||||
|
||||
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ConnectAndRun)
|
||||
{
|
||||
int nsamples = floor(fs_in*integration_time_ms*1e-3);
|
||||
struct timeval tv;
|
||||
long long int begin = 0;
|
||||
long long int end = 0;
|
||||
|
||||
config_1();
|
||||
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->connect(top_block);
|
||||
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
|
||||
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
|
||||
top_block->connect(source, 0, valve, 0);
|
||||
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
|
||||
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
|
||||
|
||||
EXPECT_NO_THROW( {
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec *1e6 + tv.tv_usec;
|
||||
top_block->run(); // Start threads and wait
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec *1e6 + tv.tv_usec;
|
||||
}) << "Failure running the top_block."<< std::endl;
|
||||
|
||||
std::cout << "Processed " << nsamples << " samples in " << (end-begin) << " microseconds" << std::endl;
|
||||
|
||||
delete acquisition;
|
||||
delete config;
|
||||
}
|
||||
|
||||
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResults)
|
||||
{
|
||||
config_1();
|
||||
|
||||
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_channel(1);
|
||||
}) << "Failure setting channel."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_gnss_synchro(&gnss_synchro);
|
||||
}) << "Failure setting gnss_synchro."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_channel_queue(&channel_internal_queue);
|
||||
}) << "Failure setting channel_internal_queue."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
|
||||
}) << "Failure setting doppler_max."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
|
||||
}) << "Failure setting doppler_step."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
|
||||
}) << "Failure setting threshold."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->connect(top_block);
|
||||
}) << "Failure connecting acquisition to the top_block."<< std::endl;
|
||||
|
||||
acquisition->init();
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
boost::shared_ptr<GenSignalSource> signal_source;
|
||||
SignalGenerator* signal_generator = new SignalGenerator(config, "SignalSource", 0, 1, queue);
|
||||
FirFilter* filter = new FirFilter(config, "InputFilter", 1, 1, queue);
|
||||
signal_source.reset(new GenSignalSource(config, signal_generator, filter, "SignalSource", queue));
|
||||
signal_source->connect(top_block);
|
||||
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
// i = 0 --> sallite in acquisition is visible
|
||||
// i = 1 --> satellite in acquisition is not visible
|
||||
for (unsigned int i = 0; i < 2; i++)
|
||||
{
|
||||
init();
|
||||
|
||||
if (i == 0)
|
||||
{
|
||||
gnss_synchro.PRN = 10; // This satellite is visible
|
||||
}
|
||||
else if (i == 1)
|
||||
{
|
||||
gnss_synchro.PRN = 20; // This satellite is not visible
|
||||
}
|
||||
|
||||
acquisition->set_local_code();
|
||||
|
||||
start_queue();
|
||||
|
||||
EXPECT_NO_THROW( {
|
||||
top_block->run(); // Start threads and wait
|
||||
}) << "Failure running he top_block."<< std::endl;
|
||||
|
||||
if (i == 0)
|
||||
{
|
||||
EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
|
||||
if (message == 1)
|
||||
{
|
||||
EXPECT_EQ((unsigned int)1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation.";
|
||||
}
|
||||
|
||||
}
|
||||
else if (i == 1)
|
||||
{
|
||||
EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL.";
|
||||
}
|
||||
}
|
||||
|
||||
delete acquisition;
|
||||
delete config;
|
||||
}
|
||||
|
||||
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
|
||||
{
|
||||
config_2();
|
||||
|
||||
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_channel(1);
|
||||
}) << "Failure setting channel."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_gnss_synchro(&gnss_synchro);
|
||||
}) << "Failure setting gnss_synchro."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_channel_queue(&channel_internal_queue);
|
||||
}) << "Failure setting channel_internal_queue."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
|
||||
}) << "Failure setting doppler_max."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
|
||||
}) << "Failure setting doppler_step."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
|
||||
}) << "Failure setting threshold."<< std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->connect(top_block);
|
||||
}) << "Failure connecting acquisition to the top_block."<< std::endl;
|
||||
|
||||
acquisition->init();
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
boost::shared_ptr<GenSignalSource> signal_source;
|
||||
SignalGenerator* signal_generator = new SignalGenerator(config, "SignalSource", 0, 1, queue);
|
||||
FirFilter* filter = new FirFilter(config, "InputFilter", 1, 1, queue);
|
||||
signal_source.reset(new GenSignalSource(config, signal_generator, filter, "SignalSource", queue));
|
||||
signal_source->connect(top_block);
|
||||
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
|
||||
|
||||
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
|
||||
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
|
||||
for (unsigned int i = 0; i < 2; i++)
|
||||
{
|
||||
init();
|
||||
|
||||
if (i == 0)
|
||||
{
|
||||
gnss_synchro.PRN = 10; // This satellite is visible
|
||||
}
|
||||
else if (i == 1)
|
||||
{
|
||||
gnss_synchro.PRN = 20; // This satellite is not visible
|
||||
}
|
||||
|
||||
acquisition->set_local_code();
|
||||
|
||||
start_queue();
|
||||
|
||||
EXPECT_NO_THROW( {
|
||||
top_block->run(); // Start threads and wait
|
||||
}) << "Failure running he top_block."<< std::endl;
|
||||
|
||||
if (i == 0)
|
||||
{
|
||||
std::cout << "Probability of detection = " << Pd << std::endl;
|
||||
std::cout << "Probability of false alarm (satellite present) = " << Pfa_p << std::endl;
|
||||
// std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
|
||||
}
|
||||
else if (i == 1)
|
||||
{
|
||||
std::cout << "Probability of false alarm (satellite absent) = " << Pfa_a << std::endl;
|
||||
// std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
delete acquisition;
|
||||
delete config;
|
||||
}
|
@ -191,8 +191,8 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_1()
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.8");
|
||||
config->set_property("Acquisition.tong_init_val", "5");
|
||||
config->set_property("Acquisition.tong_max_val", "10");
|
||||
config->set_property("Acquisition.tong_init_val", "1");
|
||||
config->set_property("Acquisition.tong_max_val", "8");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
@ -237,14 +237,14 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("SignalSource.doppler_Hz_1", "1000");
|
||||
config->set_property("SignalSource.delay_chips_1", "100");
|
||||
|
||||
config->set_property("SignalSource.system_2", "E");
|
||||
config->set_property("SignalSource.PRN_2", "10");
|
||||
config->set_property("SignalSource.system_2", "G");
|
||||
config->set_property("SignalSource.PRN_2", "21");
|
||||
config->set_property("SignalSource.CN0_dB_2", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_2", "2000");
|
||||
config->set_property("SignalSource.delay_chips_2", "200");
|
||||
|
||||
config->set_property("SignalSource.system_3", "E");
|
||||
config->set_property("SignalSource.PRN_3", "20");
|
||||
config->set_property("SignalSource.system_3", "G");
|
||||
config->set_property("SignalSource.PRN_3", "22");
|
||||
config->set_property("SignalSource.CN0_dB_3", "44");
|
||||
config->set_property("SignalSource.doppler_Hz_3", "3000");
|
||||
config->set_property("SignalSource.delay_chips_3", "300");
|
||||
@ -277,9 +277,9 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_2()
|
||||
config->set_property("Acquisition.coherent_integration_time_ms",
|
||||
std::to_string(integration_time_ms));
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.002");
|
||||
config->set_property("Acquisition.tong_init_val", "5");
|
||||
config->set_property("Acquisition.tong_max_val", "10");
|
||||
config->set_property("Acquisition.threshold", "0.00108"); // Pfa,a = 0.1
|
||||
config->set_property("Acquisition.tong_init_val", "1");
|
||||
config->set_property("Acquisition.tong_max_val", "8");
|
||||
config->set_property("Acquisition.doppler_max", "10000");
|
||||
config->set_property("Acquisition.doppler_step", "250");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
@ -532,7 +532,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
|
||||
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
std::cout << "Probability of false alarm (target) = " << 0.0 << std::endl;
|
||||
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
|
||||
|
||||
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
|
||||
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
|
||||
|
@ -73,6 +73,9 @@
|
||||
//#include "gnss_block/gps_l1_ca_pcps_acquisition_test.cc"
|
||||
#include "gnss_block/gps_l1_ca_pcps_acquisition_gsoc2013_test.cc"
|
||||
#include "gnss_block/gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc"
|
||||
#if OPENCL
|
||||
#include "gnss_block/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc"
|
||||
#endif
|
||||
#include "gnss_block/gps_l1_ca_pcps_tong_acquisition_gsoc2013_test.cc"
|
||||
//#include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc"
|
||||
//#include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc"
|
||||
|
Loading…
Reference in New Issue
Block a user