1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 20:20:35 +00:00

replaced #defines by static consts + removed unused tracking parameter + removed unnecessary comments

This commit is contained in:
Marc Majoral 2019-07-22 19:58:37 +02:00
parent d9d3696880
commit 00993d9719
18 changed files with 149 additions and 335 deletions

View File

@ -44,14 +44,6 @@
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
#define QUANT_BITS_LOCAL_CODE 16
#define SELECT_LSBits 0x0000FFFF // Select the 10 LSbits out of a 20-bit word
#define SELECT_MSBbits 0xFFFF0000 // Select the 10 MSbits out of a 20-bit word
#define SELECT_ALL_CODE_BITS 0xFFFFFFFF // Select a 20 bit word
#define SHL_CODE_BITS 65536 // shift left by 10 bits
GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
ConfigurationInterface* configuration,
const std::string& role,
@ -166,10 +158,10 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
// and package codes in a format that is ready to be written to the FPGA
for (uint32_t i = 0; i < nsamples_total; i++)
{
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_CODE_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
fft_data = local_code & SELECT_ALL_CODE_BITS;
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, quant_bits_local_code - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, quant_bits_local_code - 1) - 1) / max));
local_code = (tmp & select_lsbits) | ((tmp2 * shl_code_bits) & select_msbits); // put together the real part and the imaginary part
fft_data = local_code & select_all_code_bits;
d_all_fft_codes_[i + (nsamples_total * (PRN - 1))] = fft_data;
}
}

View File

@ -153,6 +153,15 @@ public:
void set_resampler_latency(uint32_t latency_samples __attribute__((unused))) override{};
private:
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
static const uint32_t quant_bits_local_code = 16;
static const uint32_t select_lsbits = 0x0000FFFF; // Select the 10 LSbits out of a 20-bit word
static const uint32_t select_msbits = 0xFFFF0000; // Select the 10 MSbits out of a 20-bit word
static const uint32_t select_all_code_bits = 0xFFFFFFFF; // Select a 20 bit word
static const uint32_t shl_code_bits = 65536; // shift left by 10 bits
ConfigurationInterface* configuration_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
size_t item_size_;

View File

@ -44,14 +44,6 @@
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
#define QUANT_BITS_LOCAL_CODE 16
#define SELECT_LSBits 0x0000FFFF // Select the 10 LSbits out of a 20-bit word
#define SELECT_MSBbits 0xFFFF0000 // Select the 10 MSbits out of a 20-bit word
#define SELECT_ALL_CODE_BITS 0xFFFFFFFF // Select a 20 bit word
#define SHL_CODE_BITS 65536 // shift left by 10 bits
GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_streams,
@ -169,10 +161,10 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
// and package codes in a format that is ready to be written to the FPGA
for (uint32_t i = 0; i < nsamples_total; i++)
{
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_CODE_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
fft_data = local_code & SELECT_ALL_CODE_BITS;
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, quant_bits_local_code - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, quant_bits_local_code - 1) - 1) / max));
local_code = (tmp & select_lsbits) | ((tmp2 * shl_code_bits) & select_msbits); // put together the real part and the imaginary part
fft_data = local_code & select_all_code_bits;
d_all_fft_codes_[i + (nsamples_total * (PRN - 1))] = fft_data;
}
}

View File

@ -163,6 +163,15 @@ public:
void set_resampler_latency(uint32_t latency_samples __attribute__((unused))) override{};
private:
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
static const uint32_t quant_bits_local_code = 16;
static const uint32_t select_lsbits = 0x0000FFFF; // Select the 10 LSbits out of a 20-bit word
static const uint32_t select_msbits = 0xFFFF0000; // Select the 10 MSbits out of a 20-bit word
static const uint32_t select_all_code_bits = 0xFFFFFFFF; // Select a 20 bit word
static const uint32_t shl_code_bits = 65536; // shift left by 10 bits
ConfigurationInterface* configuration_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
size_t item_size_;

View File

@ -49,14 +49,6 @@
#define NUM_PRNs 32
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
#define QUANT_BITS_LOCAL_CODE 16
#define SELECT_LSBits 0x0000FFFF // Select the 10 LSbits out of a 20-bit word
#define SELECT_MSBbits 0xFFFF0000 // Select the 10 MSbits out of a 20-bit word
#define SELECT_ALL_CODE_BITS 0xFFFFFFFF // Select a 20 bit word
#define SHL_CODE_BITS 65536 // shift left by 10 bits
GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
ConfigurationInterface* configuration,
const std::string& role,
@ -146,10 +138,10 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
// and package codes in a format that is ready to be written to the FPGA
for (uint32_t i = 0; i < nsamples_total; i++)
{
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_CODE_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
fft_data = local_code & SELECT_ALL_CODE_BITS;
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, quant_bits_local_code - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, quant_bits_local_code - 1) - 1) / max));
local_code = (tmp & select_lsbits) | ((tmp2 * shl_code_bits) & select_msbits); // put together the real part and the imaginary part
fft_data = local_code & select_all_code_bits;
d_all_fft_codes_[i + (nsamples_total * (PRN - 1))] = fft_data;
}
}

View File

@ -155,6 +155,16 @@ public:
void set_resampler_latency(uint32_t latency_samples __attribute__((unused))) override{};
private:
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
static const uint32_t quant_bits_local_code = 16;
static const uint32_t select_lsbits = 0x0000FFFF; // Select the 10 LSbits out of a 20-bit word
static const uint32_t select_msbits = 0xFFFF0000; // Select the 10 MSbits out of a 20-bit word
static const uint32_t select_all_code_bits = 0xFFFFFFFF; // Select a 20 bit word
static const uint32_t shl_code_bits = 65536; // shift left by 10 bits
ConfigurationInterface* configuration_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
size_t item_size_;

View File

@ -49,15 +49,6 @@
#define NUM_PRNs 32
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
#define QUANT_BITS_LOCAL_CODE 16
#define SELECT_LSBits 0x0000FFFF // Select the 10 LSbits out of a 20-bit word
#define SELECT_MSBbits 0xFFFF0000 // Select the 10 MSbits out of a 20-bit word
#define SELECT_ALL_CODE_BITS 0xFFFFFFFF // Select a 20 bit word
#define SHL_CODE_BITS 65536 // shift left by 10 bits
GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
ConfigurationInterface* configuration,
const std::string& role,
@ -150,10 +141,10 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
// and package codes in a format that is ready to be written to the FPGA
for (uint32_t i = 0; i < nsamples_total; i++)
{
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, QUANT_BITS_LOCAL_CODE - 1) - 1) / max));
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_CODE_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
fft_data = local_code & SELECT_ALL_CODE_BITS;
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, quant_bits_local_code - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, quant_bits_local_code - 1) - 1) / max));
local_code = (tmp & select_lsbits) | ((tmp2 * shl_code_bits) & select_msbits); // put together the real part and the imaginary part
fft_data = local_code & select_all_code_bits;
d_all_fft_codes_[i + (nsamples_total * (PRN - 1))] = fft_data;
}
}

View File

@ -154,6 +154,15 @@ public:
void set_resampler_latency(uint32_t latency_samples __attribute__((unused))) override{};
private:
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
static const uint32_t quant_bits_local_code = 16;
static const uint32_t select_lsbits = 0x0000FFFF; // Select the 10 LSbits out of a 20-bit word
static const uint32_t select_msbits = 0xFFFF0000; // Select the 10 MSbits out of a 20-bit word
static const uint32_t select_all_code_bits = 0xFFFFFFFF; // Select a 20 bit word
static const uint32_t shl_code_bits = 65536; // shift left by 10 bits
ConfigurationInterface* configuration_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
size_t item_size_;

View File

@ -169,21 +169,12 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
trk_param_fpga.max_carrier_lock_fail = configuration->property(role + ".max_carrier_lock_fail", trk_param_fpga.max_carrier_lock_fail);
trk_param_fpga.carrier_lock_th = configuration->property(role + ".carrier_lock_th", trk_param_fpga.carrier_lock_th);
// int32_t max_lock_fail = configuration->property(role + ".max_lock_fail", 50);
// if (FLAGS_max_lock_fail != 50)
// {
// max_lock_fail = FLAGS_max_lock_fail;
// }
// trk_param_fpga.max_lock_fail = max_lock_fail;
// FPGA configuration parameters
std::string default_device_name = "/dev/uio";
std::string device_name = configuration->property(role + ".devicename", default_device_name);
trk_param_fpga.device_name = device_name;
uint32_t device_base = configuration->property(role + ".device_base", 15);
trk_param_fpga.device_base = device_base;
trk_param_fpga.multicorr_type = 1; // 0 -> 3 correlators, 1 -> 5 correlators
//################# PRE-COMPUTE ALL THE CODES #################
uint32_t code_samples_per_chip = 2;

View File

@ -162,14 +162,6 @@ GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
trk_param_fpga.max_carrier_lock_fail = configuration->property(role + ".max_carrier_lock_fail", trk_param_fpga.max_carrier_lock_fail);
trk_param_fpga.carrier_lock_th = configuration->property(role + ".carrier_lock_th", trk_param_fpga.carrier_lock_th);
// int32_t max_lock_fail = configuration->property(role + ".max_lock_fail", 50);
// if (FLAGS_max_lock_fail != 50)
// {
// max_lock_fail = FLAGS_max_lock_fail;
// }
// trk_param_fpga.max_lock_fail = max_lock_fail;
d_data_codes = nullptr;
// FPGA configuration parameters
@ -178,7 +170,6 @@ GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
trk_param_fpga.device_name = device_name;
uint32_t device_base = configuration->property(role + ".device_base", 27);
trk_param_fpga.device_base = device_base;
trk_param_fpga.multicorr_type = 1; // 0 -> 3 correlators, 1 -> up to 5+1 correlators
//################# PRE-COMPUTE ALL THE CODES #################
uint32_t code_samples_per_chip = 1;

View File

@ -170,20 +170,12 @@ GpsL1CaDllPllTrackingFpga::GpsL1CaDllPllTrackingFpga(
trk_param_fpga.max_carrier_lock_fail = configuration->property(role + ".max_carrier_lock_fail", trk_param_fpga.max_carrier_lock_fail);
trk_param_fpga.carrier_lock_th = configuration->property(role + ".carrier_lock_th", trk_param_fpga.carrier_lock_th);
//int32_t max_lock_fail = configuration->property(role + ".max_lock_fail", 50);
//if (FLAGS_max_lock_fail != 50)
// {
// max_lock_fail = FLAGS_max_lock_fail;
// }
//trk_param_fpga.max_lock_fail = max_lock_fail;
// FPGA configuration parameters
std::string default_device_name = "/dev/uio";
std::string device_name = configuration->property(role + ".devicename", default_device_name);
trk_param_fpga.device_name = device_name;
uint32_t device_base = configuration->property(role + ".device_base", 3);
trk_param_fpga.device_base = device_base;
trk_param_fpga.multicorr_type = 0; //multicorr_type : 0 -> 3 correlators, 1 -> 5 correlators
//################# PRE-COMPUTE ALL THE CODES #################
d_ca_codes = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int32_t), volk_gnsssdr_get_alignment()));

View File

@ -116,8 +116,6 @@ GpsL2MDllPllTrackingFpga::GpsL2MDllPllTrackingFpga(
trk_param_fpga.device_name = device_name;
unsigned int device_base = configuration->property(role + ".device_base", 1);
trk_param_fpga.device_base = device_base;
//unsigned int multicorr_type = configuration->property(role + ".multicorr_type", 0);
trk_param_fpga.multicorr_type = 0; //multicorr_type : 0 -> 3 correlators, 1 -> 5 correlators
auto* ca_codes_f = static_cast<float*>(volk_gnsssdr_malloc(static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));

View File

@ -171,21 +171,12 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
trk_param_fpga.max_carrier_lock_fail = configuration->property(role + ".max_carrier_lock_fail", trk_param_fpga.max_carrier_lock_fail);
trk_param_fpga.carrier_lock_th = configuration->property(role + ".carrier_lock_th", trk_param_fpga.carrier_lock_th);
//int32_t max_lock_fail = configuration->property(role + ".max_lock_fail", 50);
//if (FLAGS_max_lock_fail != 50)
// {
// max_lock_fail = FLAGS_max_lock_fail;
// }
//trk_param_fpga.max_lock_fail = max_lock_fail;
// FPGA configuration parameters
std::string default_device_name = "/dev/uio";
std::string device_name = configuration->property(role + ".devicename", default_device_name);
trk_param_fpga.device_name = device_name;
uint32_t device_base = configuration->property(role + ".device_base", 27);
trk_param_fpga.device_base = device_base;
trk_param_fpga.multicorr_type = 0; //multicorr_type : 0 -> 3 correlators, 1 -> 5 correlators
//################# PRE-COMPUTE ALL THE CODES #################
uint32_t code_samples_per_chip = 1;
auto code_length_chips = static_cast<uint32_t>(GPS_L5I_CODE_LENGTH_CHIPS);

View File

@ -451,8 +451,7 @@ dll_pll_veml_tracking_fpga::dll_pll_veml_tracking_fpga(const Dll_Pll_Conf_Fpga &
uint32_t device_base = trk_parameters.device_base;
int32_t *ca_codes = trk_parameters.ca_codes;
int32_t *data_codes = trk_parameters.data_codes;
uint32_t multicorr_type = trk_parameters.multicorr_type;
multicorrelator_fpga = std::make_shared<Fpga_Multicorrelator_8sc>(d_n_correlator_taps, device_name, device_base, ca_codes, data_codes, d_code_length_chips, trk_parameters.track_pilot, multicorr_type, d_code_samples_per_chip);
multicorrelator_fpga = std::make_shared<Fpga_Multicorrelator_8sc>(d_n_correlator_taps, device_name, device_base, ca_codes, data_codes, d_code_length_chips, trk_parameters.track_pilot, d_code_samples_per_chip);
multicorrelator_fpga->set_output_vectors(d_correlator_outs, d_Prompt_Data);
d_sample_counter_next = 0ULL;

View File

@ -78,7 +78,6 @@ Dll_Pll_Conf_Fpga::Dll_Pll_Conf_Fpga()
signal[2] = '\0';
device_name = "/dev/uio";
device_base = 1U;
multicorr_type = 0U;
code_length_chips = 0U;
code_samples_per_chip = 0U;
ca_codes = nullptr;

View File

@ -82,7 +82,6 @@ public:
char signal[3];
std::string device_name;
uint32_t device_base;
uint32_t multicorr_type;
uint32_t code_length_chips;
uint32_t code_samples_per_chip;
int32_t* ca_codes;

View File

@ -72,7 +72,8 @@
Fpga_Multicorrelator_8sc::Fpga_Multicorrelator_8sc(int32_t n_correlators,
std::string device_name, uint32_t device_base, int32_t *ca_codes, int32_t *data_codes, uint32_t code_length_chips, bool track_pilot,
uint32_t multicorr_type, uint32_t code_samples_per_chip)
uint32_t code_samples_per_chip)
{
d_n_correlators = n_correlators;
d_device_name = std::move(device_name);
@ -114,7 +115,6 @@ Fpga_Multicorrelator_8sc::Fpga_Multicorrelator_8sc(int32_t n_correlators,
d_code_length_chips = code_length_chips;
d_ca_codes = ca_codes;
d_data_codes = data_codes;
d_multicorr_type = multicorr_type;
d_code_samples_per_chip = code_samples_per_chip;
d_code_length_samples = d_code_length_chips * d_code_samples_per_chip;
@ -142,8 +142,8 @@ Fpga_Multicorrelator_8sc::~Fpga_Multicorrelator_8sc()
uint64_t Fpga_Multicorrelator_8sc::read_sample_counter()
{
uint64_t sample_counter_tmp, sample_counter_msw_tmp;
sample_counter_tmp = d_map_base[SAMPLE_COUNTER_REG_ADDR_LSW];
sample_counter_msw_tmp = d_map_base[SAMPLE_COUNTER_REG_ADDR_MSW];
sample_counter_tmp = d_map_base[sample_counter_reg_addr_lsw];
sample_counter_msw_tmp = d_map_base[sample_counter_reg_addr_msw];
sample_counter_msw_tmp = sample_counter_msw_tmp << 32;
sample_counter_tmp = sample_counter_tmp + sample_counter_msw_tmp; // 2^32
return sample_counter_tmp;
@ -153,8 +153,8 @@ uint64_t Fpga_Multicorrelator_8sc::read_sample_counter()
void Fpga_Multicorrelator_8sc::set_initial_sample(uint64_t samples_offset)
{
d_initial_sample_counter = samples_offset;
d_map_base[INITIAL_COUNTER_VALUE_REG_ADDR_LSW] = (d_initial_sample_counter & 0xFFFFFFFF);
d_map_base[INITIAL_COUNTER_VALUE_REG_ADDR_MSW] = (d_initial_sample_counter >> 32) & 0xFFFFFFFF;
d_map_base[initial_counter_value_reg_addr_lsw] = (d_initial_sample_counter & 0xFFFFFFFF);
d_map_base[initial_counter_value_reg_addr_msw] = (d_initial_sample_counter >> 32) & 0xFFFFFFFF;
}
@ -212,18 +212,11 @@ void Fpga_Multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
// release secondary code indices, keep channel locked
if (d_secondary_code_enabled == true)
{
//printf("in the right place\n");
// debug - force reset counter every time
//d_map_base[DROP_SAMPLES_REG_ADDR] = ENABLE_SECONDARY_CODE | INIT_SECONDARY_CODE_ADDRESSES;
d_map_base[DROP_SAMPLES_REG_ADDR] = ENABLE_SECONDARY_CODE; // keep secondary code enabled
// //printf("do not enable secondary code on purpose\n");
// d_map_base[DROP_SAMPLES_REG_ADDR] = 0; // block samples
d_map_base[drop_samples_reg_addr] = enable_secondary_code; // keep secondary code enabled
}
else
{
//printf("in the wrong place\n");
d_map_base[DROP_SAMPLES_REG_ADDR] = 0; // block samples
d_map_base[drop_samples_reg_addr] = 0; // block samples
}
Fpga_Multicorrelator_8sc::read_tracking_gps_results();
}
@ -308,9 +301,9 @@ uint32_t Fpga_Multicorrelator_8sc::fpga_acquisition_test_register(
{
uint32_t readval = 0;
// write value to test register
d_map_base[TEST_REG_ADDR] = writeval;
d_map_base[test_reg_addr] = writeval;
// read value from test register
readval = d_map_base[TEST_REG_ADDR];
readval = d_map_base[test_reg_addr];
// return read value
return readval;
}
@ -320,21 +313,21 @@ void Fpga_Multicorrelator_8sc::fpga_configure_tracking_gps_local_code(int32_t PR
{
uint32_t k;
d_map_base[PROG_MEMS_ADDR] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
d_map_base[prog_mems_addr] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
for (k = 0; k < d_code_length_samples; k++)
{
d_map_base[PROG_MEMS_ADDR] = d_ca_codes[(d_code_length_samples * (PRN - 1)) + k];
d_map_base[prog_mems_addr] = d_ca_codes[(d_code_length_samples * (PRN - 1)) + k];
}
if (d_track_pilot)
{
d_map_base[PROG_MEMS_ADDR] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
d_map_base[prog_mems_addr] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
for (k = 0; k < d_code_length_samples; k++)
{
d_map_base[PROG_MEMS_ADDR] = d_data_codes[(d_code_length_samples * (PRN - 1)) + k];
d_map_base[prog_mems_addr] = d_data_codes[(d_code_length_samples * (PRN - 1)) + k];
}
}
d_map_base[CODE_LENGTH_MINUS_1_REG_ADDR] = (d_code_length_samples)-1; // number of samples - 1
d_map_base[code_length_minus_1_reg_addr] = (d_code_length_samples)-1; // number of samples - 1
}
@ -386,13 +379,13 @@ void Fpga_Multicorrelator_8sc::fpga_configure_code_parameters_in_fpga(void)
{
for (uint32_t i = 0; i < d_n_correlators; i++)
{
d_map_base[INITIAL_INDEX_REG_BASE_ADDR + i] = d_initial_index[i];
d_map_base[INITIAL_INTERP_COUNTER_REG_BASE_ADDR + i] = d_initial_interp_counter[i];
d_map_base[initial_index_reg_base_addr + i] = d_initial_index[i];
d_map_base[initial_interp_counter_reg_base_addr + i] = d_initial_interp_counter[i];
}
if (d_track_pilot)
{
d_map_base[INITIAL_INDEX_REG_BASE_ADDR + d_n_correlators] = d_initial_index[d_n_correlators];
d_map_base[INITIAL_INTERP_COUNTER_REG_BASE_ADDR + d_n_correlators] = d_initial_interp_counter[d_n_correlators];
d_map_base[initial_index_reg_base_addr + d_n_correlators] = d_initial_index[d_n_correlators];
d_map_base[initial_interp_counter_reg_base_addr + d_n_correlators] = d_initial_interp_counter[d_n_correlators];
}
}
@ -425,17 +418,17 @@ void Fpga_Multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void)
void Fpga_Multicorrelator_8sc::fpga_configure_signal_parameters_in_fpga(void)
{
d_map_base[CODE_PHASE_STEP_CHIPS_NUM_REG_ADDR] = d_code_phase_step_chips_num; // code phase step
d_map_base[code_phase_step_chips_num_reg_addr] = d_code_phase_step_chips_num; // code phase step
d_map_base[CODE_PHASE_STEP_CHIPS_RATE] = d_code_phase_rate_step_chips_num; // code phase step rate
d_map_base[code_phase_step_chips_rate_reg_addr] = d_code_phase_rate_step_chips_num; // code phase step rate
d_map_base[NSAMPLES_MINUS_1_REG_ADDR] = d_correlator_length_samples - 1; // number of samples
d_map_base[nsamples_minus_1_reg_addr] = d_correlator_length_samples - 1; // number of samples
d_map_base[REM_CARR_PHASE_RAD_REG_ADDR] = d_rem_carr_phase_rad_int; // initial nco phase
d_map_base[rem_carr_phase_rad_reg_addr] = d_rem_carr_phase_rad_int; // initial nco phase
d_map_base[PHASE_STEP_RAD_REG_ADDR] = d_phase_step_rad_int; // nco phase step
d_map_base[phase_step_rad_reg_addr] = d_phase_step_rad_int; // nco phase step
d_map_base[PHASE_STEP_RATE_REG_ADDR] = d_carrier_phase_rate_step_rad_int; // nco phase step rate
d_map_base[phase_step_rate_reg_addr] = d_carrier_phase_rate_step_rad_int; // nco phase step rate
}
@ -449,7 +442,7 @@ void Fpga_Multicorrelator_8sc::fpga_launch_multicorrelator_fpga(void)
std::cerr << "Error launching the FPGA multicorrelator" << std::endl;
}
// writing 1 to reg 14 launches the tracking
d_map_base[START_FLAG_ADDR] = 1;
d_map_base[start_flag_addr] = 1;
}
@ -460,14 +453,14 @@ void Fpga_Multicorrelator_8sc::read_tracking_gps_results(void)
for (uint32_t k = 0; k < d_n_correlators; k++)
{
readval_real = d_map_base[RESULT_REG_REAL_BASE_ADDR + k];
readval_imag = d_map_base[RESULT_REG_IMAG_BASE_ADDR + k];
readval_real = d_map_base[result_reg_real_base_addr + k];
readval_imag = d_map_base[result_reg_imag_base_addr + k];
d_corr_out[k] = gr_complex(readval_real, readval_imag);
}
if (d_track_pilot)
{
readval_real = d_map_base[RESULT_REG_REAL_BASE_ADDR + d_n_correlators];
readval_imag = d_map_base[RESULT_REG_IMAG_BASE_ADDR + d_n_correlators];
readval_real = d_map_base[result_reg_real_base_addr + d_n_correlators];
readval_imag = d_map_base[result_reg_imag_base_addr + d_n_correlators];
d_Prompt_Data[0] = gr_complex(readval_real, readval_imag);
}
}
@ -476,8 +469,8 @@ void Fpga_Multicorrelator_8sc::read_tracking_gps_results(void)
void Fpga_Multicorrelator_8sc::unlock_channel(void)
{
// unlock the channel to let the next samples go through
d_map_base[DROP_SAMPLES_REG_ADDR] = DROP_SAMPLES; // unlock the channel and disable secondary codes
d_map_base[STOP_TRACKING_REG_ADDR] = 1; // set the tracking module back to idle
d_map_base[drop_samples_reg_addr] = drop_samples; // unlock the channel and disable secondary codes
d_map_base[stop_tracking_reg_addr] = 1; // set the tracking module back to idle
d_secondary_code_enabled = false;
}
@ -497,7 +490,7 @@ void Fpga_Multicorrelator_8sc::close_device()
void Fpga_Multicorrelator_8sc::lock_channel(void)
{
// lock the channel for processing
d_map_base[DROP_SAMPLES_REG_ADDR] = 0; // lock the channel
d_map_base[drop_samples_reg_addr] = 0; // lock the channel
}
@ -506,24 +499,16 @@ void Fpga_Multicorrelator_8sc::set_secondary_code_lengths(uint32_t secondary_cod
d_secondary_code_0_length = secondary_code_0_length;
d_secondary_code_1_length = secondary_code_1_length;
// debug
//printf("warning extending the code length 0 to 20\n");
//d_secondary_code_0_length = 20;
uint32_t secondary_code_length_0_minus_1 = d_secondary_code_0_length - 1;
uint32_t secondary_code_length_1_minus_1 = d_secondary_code_1_length - 1;
d_map_base[SECONDARY_CODE_LENGTHS_REG_ADDR] = secondary_code_length_1_minus_1 * 256 + secondary_code_length_0_minus_1;
//std::cout << "setting secondary code lengths : \n";
//std::cout << "initialized correlator 1 sec code length = " << d_secondary_code_1_length << " correlator 0 sec code length = " << d_secondary_code_0_length << std::endl;
d_map_base[secondary_code_lengths_reg_addr] = secondary_code_length_1_minus_1 * 256 + secondary_code_length_0_minus_1;
}
void Fpga_Multicorrelator_8sc::update_secondary_code_length(uint32_t first_length_secondary_code, uint32_t next_length_secondary_code)
{
d_map_base[FIRST_PRN_LENGTH_MINUS_1_REG_ADDR] = first_length_secondary_code - 1;
d_map_base[NEXT_PRN_LENGTH_MINUS_1_REG_ADDR] = next_length_secondary_code - 1;
//std::cout << " first_length_secondary_code = " << first_length_secondary_code << " next_length_secondary_code = " << next_length_secondary_code << " sum = " << first_length_secondary_code + next_length_secondary_code << std::endl;
d_map_base[first_prn_length_minus_1_reg_addr] = first_length_secondary_code - 1;
d_map_base[next_prn_length_minus_1_reg_addr] = next_length_secondary_code - 1;
}
void Fpga_Multicorrelator_8sc::initialize_secondary_code(uint32_t secondary_code, std::string *secondary_code_string)
@ -533,67 +518,26 @@ void Fpga_Multicorrelator_8sc::initialize_secondary_code(uint32_t secondary_code
if (secondary_code == 0)
{
secondary_code_length = d_secondary_code_0_length;
reg_addr = PROG_SECONDARY_CODE_0_DATA_REG_ADDR;
reg_addr = prog_secondary_code_0_data_reg_addr;
}
else
{
secondary_code_length = d_secondary_code_1_length;
reg_addr = PROG_SECONDARY_CODE_1_DATA_REG_ADDR;
reg_addr = prog_secondary_code_1_data_reg_addr;
}
Fpga_Multicorrelator_8sc::write_secondary_code(secondary_code_length, secondary_code_string, reg_addr);
}
//void Fpga_Multicorrelator_8sc::initialize_secondary_codes(bool track_pilot,
// uint32_t secondary_code_length_data, std::string *secondary_code_string_data,
// uint32_t secondary_code_length_pilot, std::string *secondary_code_string_pilot)
//{
// if (track_pilot)
// {
// // write secondary_code_length_pilot | secondary_code_length_data << 8
// d_map_base[SECONDARY_CODE_LENGTHS_REG_ADDR] = secondary_code_length_pilot + secondary_code_length_data*256;
//
// // write pilot secondary code
// Fpga_Multicorrelator_8sc::write_secondary_code(secondary_code_length_pilot, secondary_code_string_pilot, PROG_SECONDARY_CODE_0_DATA_REG_ADDR);
//
// // write data secondary code
// Fpga_Multicorrelator_8sc::write_secondary_code(secondary_code_length_data, secondary_code_string_pilot, PROG_SECONDARY_CODE_1_DATA_REG_ADDR);
//
// }
// else
// {
// d_map_base[SECONDARY_CODE_LENGTHS_REG_ADDR] = secondary_code_length_data;
//
// // write data secondary code
// Fpga_Multicorrelator_8sc::write_secondary_code(secondary_code_length_data, secondary_code_string_pilot, PROG_SECONDARY_CODE_0_DATA_REG_ADDR);
// }
//
// std::cout << "going to print string " << std::endl;
// std::cout << secondary_code_string_data << std::endl;
//
//
//}
void Fpga_Multicorrelator_8sc::write_secondary_code(uint32_t secondary_code_length, std::string *secondary_code_string, uint32_t reg_addr)
{
uint32_t num_words = ceil(((float)secondary_code_length) / SECONDARY_CODE_WORD_SIZE);
uint32_t last_word_size = secondary_code_length % SECONDARY_CODE_WORD_SIZE;
//uint32_t initial_pointer;
uint32_t num_words = ceil(((float)secondary_code_length) / secondary_code_word_size);
uint32_t last_word_size = secondary_code_length % secondary_code_word_size;
if (last_word_size == 0)
{
last_word_size = SECONDARY_CODE_WORD_SIZE;
last_word_size = secondary_code_word_size;
}
// debug
//std::cout << "secondary_code_length = " << secondary_code_length << std::endl;
//std::cout << "secondary code string = " << *secondary_code_string << std::endl;
//std::cout << "reg_addr = " << reg_addr << std::endl;
// debug
//std::cout << "num_words = " << num_words << std::endl;
//std::cout << "last_word_size = " << last_word_size << std::endl;
uint32_t write_val = 0U;
uint32_t pow_k;
@ -602,134 +546,42 @@ void Fpga_Multicorrelator_8sc::write_secondary_code(uint32_t secondary_code_leng
{
for (mem_addr = 0; mem_addr < num_words - 1; mem_addr++)
{
//std::cout << "------------------------------------------------------ going to write word " << mem_addr << std::endl;
write_val = 0U;
pow_k = 1;
for (unsigned int k = 0; k < SECONDARY_CODE_WORD_SIZE; k++)
for (unsigned int k = 0; k < secondary_code_word_size; k++)
{
// debug
//std::cout << "reading bit position = " << mem_addr*SECONDARY_CODE_WORD_SIZE + k << std::endl;
//std::cout << "bit shift = " << pow_k << std::endl;
std::string string_tmp(1, secondary_code_string->at(mem_addr * SECONDARY_CODE_WORD_SIZE + k));
std::string string_tmp(1, secondary_code_string->at(mem_addr * secondary_code_word_size + k));
write_val = write_val | std::stoi(string_tmp) * pow_k;
// debug
//std::cout << "computing bit k = " << k << " bit k value = "<< std::stoi(string_tmp) << std::endl;
//std::cout << "computing bit k displaced = " << std::stoi(string_tmp)*pow_k << std::endl;
//std::cout << "write val = " << write_val << std::endl;
pow_k = pow_k * 2;
}
//std::cout << "writing secondary code reg addr " << reg_addr << "secondary code value " << write_val << std::endl;
// debug
//write_val = 0;
write_val = write_val | mem_addr * SECONDARY_CODE_ADDR_BITS | SECONDARY_CODE_WR_STROBE;
write_val = write_val | mem_addr * secondary_code_addr_bits | secondary_code_wr_strobe;
d_map_base[reg_addr] = write_val;
//std::cout << "writing fpga register value " << write_val << std::endl;
// debug
// std::cout << "wrote word " << mem_addr << "value is ";
// while (write_val) {
// if (write_val & 1)
// printf("1");
// else
// printf("0");
//
// write_val >>= 1;
// }
// printf("\n");
}
}
write_val = 0U;
pow_k = 1;
mem_addr = num_words - 1;
//std::cout << "------------------------------------------------------ going to write word " << mem_addr << std::endl;
for (unsigned int k = 0; k < last_word_size; k++)
{
// debug
//std::cout << "reading bit position = " << mem_addr*SECONDARY_CODE_WORD_SIZE + k << std::endl;
//std::cout << "bit shift = " << pow_k << std::endl;
std::string string_tmp(1, secondary_code_string->at(mem_addr * SECONDARY_CODE_WORD_SIZE + k));
std::string string_tmp(1, secondary_code_string->at(mem_addr * secondary_code_word_size + k));
write_val = write_val | std::stoi(string_tmp) * pow_k;
// debug
//std::cout << "computing bit k = " << k << " bit k value = "<< std::stoi(string_tmp) << std::endl;
//std::cout << "computing bit k displaced = " << std::stoi(string_tmp)*pow_k << std::endl;
//std::cout << "write val = " << write_val << std::endl;
pow_k = pow_k * 2;
}
// debug
//write_val = 0;
//std::cout << "writing secondary code reg addr " << reg_addr << "secondary code value " << write_val << std::endl;
write_val = write_val | (mem_addr * SECONDARY_CODE_ADDR_BITS) | (SECONDARY_CODE_WR_STROBE);
write_val = write_val | (mem_addr * secondary_code_addr_bits) | (secondary_code_wr_strobe);
d_map_base[reg_addr] = write_val;
//std::cout << "writing fpga register value " << write_val << std::endl;
// // debug
// write_val = write_val | 705200;
// d_map_base[reg_addr] = write_val;
// printf("warning : extending the code length to 20\n");
// std::cout << "writing fpga register value " << write_val << std::endl;
// // debug
// //write_val = (SECONDARY_CODE_WR_STROBE) | 0x00055400;
// write_val = (SECONDARY_CODE_WR_STROBE) | 0x00000155;
// d_map_base[reg_addr] = write_val;
// for (unsigned int k=1;k<5;k++)
// {
// write_val = (k*SECONDARY_CODE_ADDR_BITS) | (SECONDARY_CODE_WR_STROBE) | 0x00055555;
// d_map_base[reg_addr] = write_val;
// }
// // debug
// std::cout << "wrote word " << mem_addr << " value is " << write_val << " = ";
// while (write_val) {
// if (write_val & 1)
// printf("1");
// else
// printf("0");
//
// write_val >>= 1;
// }
// printf("\n");
//printf("\n=============================================================================* END OF THIS\n");
}
//void Fpga_Multicorrelator_8sc::init_secondary_code_indices(void)
//{
// d_map_base[DROP_SAMPLES_REG_ADDR] = 5; // leave channel unlocked, and init
//}
void Fpga_Multicorrelator_8sc::enable_secondary_codes()
{
d_map_base[DROP_SAMPLES_REG_ADDR] = INIT_SECONDARY_CODE_ADDRESSES | ENABLE_SECONDARY_CODE; // enable secondary codes and clear secondary code indices
d_map_base[drop_samples_reg_addr] = init_secondary_code_addresses | enable_secondary_code; // enable secondary codes and clear secondary code indices
d_secondary_code_enabled = true;
//std::cout << "enabling secondary codes d_map_base[DROP_SAMPLES_REG_ADDR] = " << (INIT_SECONDARY_CODE_ADDRESSES | ENABLE_SECONDARY_CODE) << std::endl;
// // debug
// printf("do not enable secondary code on purpose\n");
// d_map_base[DROP_SAMPLES_REG_ADDR] = 0;
}
void Fpga_Multicorrelator_8sc::disable_secondary_codes()
{
// this function is to be called before starting the tracking process in order to disable the secondary codes by default
//printf("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx disabling secondary codes in fpga\n");
d_map_base[DROP_SAMPLES_REG_ADDR] = DROP_SAMPLES;
d_map_base[drop_samples_reg_addr] = drop_samples;
}

View File

@ -29,7 +29,7 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
@ -40,45 +40,8 @@
#include <gnuradio/block.h>
#include <cstdint>
// FPGA register addresses
// write addresses
#define CODE_PHASE_STEP_CHIPS_NUM_REG_ADDR 0
#define INITIAL_INDEX_REG_BASE_ADDR 1
#define INITIAL_INTERP_COUNTER_REG_BASE_ADDR 7
#define NSAMPLES_MINUS_1_REG_ADDR 13
#define CODE_LENGTH_MINUS_1_REG_ADDR 14
#define REM_CARR_PHASE_RAD_REG_ADDR 15
#define PHASE_STEP_RAD_REG_ADDR 16
#define PROG_MEMS_ADDR 17
#define DROP_SAMPLES_REG_ADDR 18
#define INITIAL_COUNTER_VALUE_REG_ADDR_LSW 19
#define INITIAL_COUNTER_VALUE_REG_ADDR_MSW 20
#define CODE_PHASE_STEP_CHIPS_RATE 21
#define PHASE_STEP_RATE_REG_ADDR 22
#define STOP_TRACKING_REG_ADDR 23
#define INT_ON_RST_REG_ADDR 24 // cause interrupt on reset to prevent deadlock
#define SECONDARY_CODE_LENGTHS_REG_ADDR 25
#define PROG_SECONDARY_CODE_0_DATA_REG_ADDR 26
#define PROG_SECONDARY_CODE_1_DATA_REG_ADDR 27
#define FIRST_PRN_LENGTH_MINUS_1_REG_ADDR 28
#define NEXT_PRN_LENGTH_MINUS_1_REG_ADDR 29
#define START_FLAG_ADDR 30
// read-write addresses
#define TEST_REG_ADDR 31
// read addresses
#define RESULT_REG_REAL_BASE_ADDR 1
#define RESULT_REG_IMAG_BASE_ADDR 7
#define SAMPLE_COUNTER_REG_ADDR_LSW 13
#define SAMPLE_COUNTER_REG_ADDR_MSW 14
// FPGA-related constants
#define SECONDARY_CODE_WORD_SIZE 20 // the secondary codes are written in to the FPGA in words of SECONDARY_CODE_WORD_SIZE bits
#define SECONDARY_CODE_WR_STROBE 0x800000 // write strobe position in the secondary code write register
#define SECONDARY_CODE_ADDR_BITS 0x100000 // memory address position in the secondary code write register
#define DROP_SAMPLES 1 // bit 0 of DROP_SAMPLES_REG_ADDR
#define ENABLE_SECONDARY_CODE 2 // bit 1 of DROP_SAMPLES_REG_ADDR
#define INIT_SECONDARY_CODE_ADDRESSES 4 // bit 2 of DROP_SAMPLES_REG_ADDR
/*!
* \brief Class that implements carrier wipe-off and correlators.
@ -87,7 +50,7 @@ class Fpga_Multicorrelator_8sc
{
public:
Fpga_Multicorrelator_8sc(int32_t n_correlators, std::string device_name,
uint32_t device_base, int32_t *ca_codes, int32_t *data_codes, uint32_t code_length_chips, bool track_pilot, uint32_t multicorr_type, uint32_t code_samples_per_chip);
uint32_t device_base, int32_t *ca_codes, int32_t *data_codes, uint32_t code_length_chips, bool track_pilot, uint32_t code_samples_per_chip);
~Fpga_Multicorrelator_8sc();
void set_output_vectors(gr_complex *corr_out, gr_complex *Prompt_Data);
void set_local_code_and_taps(
@ -105,18 +68,54 @@ public:
uint64_t read_sample_counter();
void lock_channel(void);
void unlock_channel(void);
// void initialize_secondary_codes(bool track_pilot,
// uint32_t secondary_code_length_data, std::string *secondary_code_string_data,
// uint32_t secondary_code_length_pilot, std::string *secondary_code_string_pilot);
void set_secondary_code_lengths(uint32_t secondary_code_0_length, uint32_t secondary_code_1_length);
void initialize_secondary_code(uint32_t secondary_code, std::string *secondary_code_string);
void update_secondary_code_length(uint32_t first_length_secondary_code, uint32_t next_length_secondary_code);
void enable_secondary_codes();
void disable_secondary_codes();
// void init_secondary_code_indices();
private:
// FPGA register addresses
// write addresses
static const uint32_t code_phase_step_chips_num_reg_addr = 0;
static const uint32_t initial_index_reg_base_addr = 1;
static const uint32_t initial_interp_counter_reg_base_addr = 7;
static const uint32_t nsamples_minus_1_reg_addr = 13;
static const uint32_t code_length_minus_1_reg_addr = 14;
static const uint32_t rem_carr_phase_rad_reg_addr = 15;
static const uint32_t phase_step_rad_reg_addr = 16;
static const uint32_t prog_mems_addr = 17;
static const uint32_t drop_samples_reg_addr = 18;
static const uint32_t initial_counter_value_reg_addr_lsw = 19;
static const uint32_t initial_counter_value_reg_addr_msw = 20;
static const uint32_t code_phase_step_chips_rate_reg_addr = 21;
static const uint32_t phase_step_rate_reg_addr = 22;
static const uint32_t stop_tracking_reg_addr = 23;
static const uint32_t secondary_code_lengths_reg_addr = 25;
static const uint32_t prog_secondary_code_0_data_reg_addr = 26;
static const uint32_t prog_secondary_code_1_data_reg_addr = 27;
static const uint32_t first_prn_length_minus_1_reg_addr = 28;
static const uint32_t next_prn_length_minus_1_reg_addr = 29;
static const uint32_t start_flag_addr = 30;
// read-write addresses
static const uint32_t test_reg_addr = 31;
// read addresses
static const uint32_t result_reg_real_base_addr = 1;
static const uint32_t result_reg_imag_base_addr = 7;
static const uint32_t sample_counter_reg_addr_lsw = 13;
static const uint32_t sample_counter_reg_addr_msw = 14;
// FPGA-related constants
static const uint32_t secondary_code_word_size = 20; // the secondary codes are written in to the FPGA in words of secondary_code_word_size bits
static const uint32_t secondary_code_wr_strobe = 0x800000; // write strobe position in the secondary code write register
static const uint32_t secondary_code_addr_bits = 0x100000; // memory address position in the secondary code write register
static const uint32_t drop_samples = 1; // bit 0 of drop_samples_reg_addr
static const uint32_t enable_secondary_code = 2; // bit 1 of drop_samples_reg_addr
static const uint32_t init_secondary_code_addresses = 4; // bit 2 of drop_samples_reg_addr
gr_complex *d_corr_out;
gr_complex *d_Prompt_Data;
float *d_shifts_chips;
@ -138,6 +137,8 @@ private:
float d_rem_carrier_phase_in_rad;
float d_phase_step_rad;
float d_carrier_phase_rate_step_rad;
uint32_t d_code_samples_per_chip;
bool d_track_pilot;
// configuration data computed in the format that the FPGA expects
uint32_t *d_initial_index;
@ -153,18 +154,15 @@ private:
std::string d_device_name;
uint32_t d_device_base;
// PRN codes
int32_t *d_ca_codes;
int32_t *d_data_codes;
uint32_t d_code_samples_per_chip;
bool d_track_pilot;
uint32_t d_multicorr_type;
// secondary code configuration
uint32_t d_secondary_code_0_length;
uint32_t d_secondary_code_1_length;
bool d_secondary_code_enabled;
// private functions
uint32_t fpga_acquisition_test_register(uint32_t writeval);
void fpga_configure_tracking_gps_local_code(int32_t PRN);