1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-15 19:55:47 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into newsatdispatcher

This commit is contained in:
Javier Arribas 2019-07-19 12:01:51 +02:00
commit 0035cd06dd
14 changed files with 107 additions and 134 deletions

View File

@ -397,11 +397,11 @@ set(GNSSSDR_PROTOBUF_MIN_VERSION "3.0.0")
################################################################################
set(GNSSSDR_GFLAGS_LOCAL_VERSION "2.2.2")
set(GNSSSDR_GLOG_LOCAL_VERSION "0.4.0")
set(GNSSSDR_ARMADILLO_LOCAL_VERSION "9.500.x")
set(GNSSSDR_ARMADILLO_LOCAL_VERSION "9.600.x")
set(GNSSSDR_GTEST_LOCAL_VERSION "1.8.1")
set(GNSSSDR_GNSS_SIM_LOCAL_VERSION "master")
set(GNSSSDR_GPSTK_LOCAL_VERSION "2.10.6")
set(GNSSSDR_MATIO_LOCAL_VERSION "1.5.16")
set(GNSSSDR_MATIO_LOCAL_VERSION "1.5.17")
set(GNSSSDR_PUGIXML_LOCAL_VERSION "1.9")
set(GNSSSDR_PROTOCOLBUFFERS_LOCAL_VERSION "3.9.0")

View File

@ -220,9 +220,9 @@ $ sudo apt-get install libblas-dev liblapack-dev # For Debian/Ubuntu/Linux
$ sudo yum install lapack-devel blas-devel # For Fedora/CentOS/RHEL
$ sudo zypper install lapack-devel blas-devel # For OpenSUSE
$ sudo pacman -S blas lapack # For Arch Linux
$ wget http://sourceforge.net/projects/arma/files/armadillo-9.400.4.tar.xz
$ tar xvfz armadillo-9.400.4.tar.xz
$ cd armadillo-9.400.4
$ wget http://sourceforge.net/projects/arma/files/armadillo-9.600.4.tar.xz
$ tar xvfz armadillo-9.600.4.tar.xz
$ cd armadillo-9.600.4
$ cmake .
$ make
$ sudo make install

View File

@ -71,7 +71,7 @@ void beidou_b1i_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _c
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[0];
G2[lcv] = G2_register[-(phase1[prn_idx] - 11)] ^ G2_register[-(phase2[prn_idx] - 11)];
G2[lcv] = G2_register[-(phase1[prn_idx] - 11)] xor G2_register[-(phase2[prn_idx] - 11)];
feedback1 = G1_register[0] xor G1_register[1] xor G1_register[2] xor G1_register[3] xor G1_register[4] xor G1_register[10];
feedback2 = G2_register[0] xor G2_register[2] xor G2_register[3] xor G2_register[6] xor G2_register[7] xor G2_register[8] xor G2_register[9] xor G2_register[10];
@ -94,7 +94,7 @@ void beidou_b1i_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _c
// Generate PRN from G1 and G2 Registers
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[(lcv + _chip_shift) % _code_length] ^ G2[delay];
aux = G1[(lcv + _chip_shift) % _code_length] xor G2[delay];
if (aux == true)
{
_dest[lcv] = 1;

View File

@ -42,9 +42,9 @@ void beidou_b3i_code_gen_int(gsl::span<int> _dest, signed int _prn, unsigned int
const unsigned int _code_length = 10230;
std::bitset<_code_length> G1{};
std::bitset<_code_length> G2{};
auto G1_register = std::move(std::bitset<13>{}.set()); // All true
auto G2_register = std::move(std::bitset<13>{}.set()); // All true
auto G1_register_reset = std::move(std::bitset<13>{}.set());
auto G1_register = std::bitset<13>{}.set(); // All true
auto G2_register = std::bitset<13>{}.set(); // All true
auto G1_register_reset = std::bitset<13>{}.set();
G1_register_reset.reset(0);
G1_register_reset.reset(1); // {false, false, true, true, true, true, true, true, true, true, true, true, true};
@ -148,7 +148,7 @@ void beidou_b3i_code_gen_int(gsl::span<int> _dest, signed int _prn, unsigned int
// Reset G1 register if sequence found
if (G1_register == G1_register_reset)
{
G1_register = std::move(std::bitset<13>{}.set()); // All true
G1_register = std::bitset<13>{}.set(); // All true
}
}

View File

@ -33,10 +33,10 @@
#include "galileo_e1_signal_processing.h"
#include "Galileo_E1.h"
#include "gnss_signal_processing.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <array>
#include <memory>
#include <string>
#include <vector>
void galileo_e1_code_gen_int(gsl::span<int> _dest, const std::array<char, 3>& _Signal, int32_t _prn)
@ -111,8 +111,8 @@ void galileo_e1_code_gen_sinboc11_float(gsl::span<float> _dest, const std::array
{
std::string _galileo_signal = _Signal.data();
const auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS);
std::array<int32_t, 4092> primary_code_E1_chips{}; // _codeLength not accepted by Clang
galileo_e1_code_gen_int(gsl::span<int32_t>(primary_code_E1_chips.data(), 4092), _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
std::array<int32_t, 4092> primary_code_E1_chips{};
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
for (uint32_t i = 0; i < _codeLength; i++)
{
_dest[2 * i] = static_cast<float>(primary_code_E1_chips[i]);
@ -163,35 +163,31 @@ void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, const std::array<
std::string _galileo_signal = _Signal.data();
uint32_t _samplesPerCode;
const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_HZ; // Hz
auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS);
auto* primary_code_E1_chips = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
std::vector<int32_t> primary_code_E1_chips(static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS));
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS));
const int32_t _samplesPerChip = (_cboc == true) ? 12 : 2;
const uint32_t delay = ((static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / GALILEO_E1_B_CODE_LENGTH_CHIPS;
galileo_e1_code_gen_int(gsl::span<int32_t>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)), _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
_codeLength = _samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS;
const uint32_t _codeLength = _samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS;
std::unique_ptr<float> _signal_E1{new float[_codeLength]};
gsl::span<float> _signal_E1_span(_signal_E1, _codeLength);
if (_cboc == true)
{
galileo_e1_gen_float(_signal_E1_span, gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)), _Signal); // generate cboc 12 samples per chip
galileo_e1_gen_float(_signal_E1_span, primary_code_E1_chips, _Signal); // generate cboc 12 samples per chip
}
else
{
auto* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment()));
gsl::span<int32_t> _signal_E1_int_span(_signal_E1_int, _codeLength);
galileo_e1_sinboc_11_gen_int(_signal_E1_int_span, gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS))); // generate sinboc(1,1) 2 samples per chip
std::vector<int32_t> _signal_E1_int(static_cast<int32_t>(_codeLength));
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips); // generate sinboc(1,1) 2 samples per chip
for (uint32_t ii = 0; ii < _codeLength; ++ii)
{
_signal_E1_span[ii] = static_cast<float>(_signal_E1_int_span[ii]);
_signal_E1_span[ii] = static_cast<float>(_signal_E1_int[ii]);
}
volk_gnsssdr_free(_signal_E1_int);
}
if (_fs != _samplesPerChip * _codeFreqBasis)
@ -233,8 +229,6 @@ void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, const std::array<
{
_dest[(i + delay) % _samplesPerCode] = _signal_E1_span_aux2[i];
}
volk_gnsssdr_free(primary_code_E1_chips);
}
@ -245,22 +239,20 @@ void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, c
std::string _galileo_signal = _Signal.data();
const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_HZ; // Hz
auto _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) /
(static_cast<double>(_codeFreqBasis) / static_cast<double>(GALILEO_E1_B_CODE_LENGTH_CHIPS)));
(static_cast<double>(_codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS));
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
_samplesPerCode *= static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH);
}
auto* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment()));
gsl::span<float> real_code_span(real_code, _samplesPerCode);
galileo_e1_code_gen_float_sampled(real_code_span, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);
std::vector<float> real_code(_samplesPerCode);
galileo_e1_code_gen_float_sampled(real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);
for (uint32_t ii = 0; ii < _samplesPerCode; ++ii)
{
_dest[ii] = std::complex<float>(real_code_span[ii], 0.0F);
_dest[ii] = std::complex<float>(real_code[ii], 0.0F);
}
volk_gnsssdr_free(real_code);
}

View File

@ -32,30 +32,26 @@
#include "glonass_l1_signal_processing.h"
#include <array>
#include <bitset>
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void glonass_l1_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, /* int32_t _prn,*/ uint32_t _chip_shift)
{
const uint32_t _code_length = 511;
std::array<bool, _code_length> G1{};
std::array<bool, 9> G1_register{};
std::bitset<_code_length> G1{};
auto G1_register = std::bitset<9>{}.set(); // All true
bool feedback1;
bool aux;
uint32_t delay;
uint32_t lcv, lcv2;
for (lcv = 0; lcv < 9; lcv++)
{
G1_register[lcv] = true;
}
/* Generate G1 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[2];
feedback1 = G1_register[4] ^ G1_register[0];
feedback1 = G1_register[4] xor G1_register[0];
for (lcv2 = 0; lcv2 < 8; lcv2++)
{
@ -123,7 +119,7 @@ void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
glonass_l1_ca_code_gen_complex(gsl::span<std::complex<float>>(_code.data(), 511), _chip_shift); // generate C/A code 1 sample per chip
glonass_l1_ca_code_gen_complex(_code, _chip_shift); // generate C/A code 1 sample per chip
for (int32_t i = 0; i < _samplesPerCode; i++)
{
@ -134,7 +130,6 @@ void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest
// number of samples per millisecond (because one C/A code period is one
// millisecond).
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
@ -148,7 +143,7 @@ void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest
}
else
{
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
_dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample
}
}
}

View File

@ -32,30 +32,26 @@
#include "glonass_l2_signal_processing.h"
#include <array>
#include <bitset>
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void glonass_l2_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, /* int32_t _prn,*/ uint32_t _chip_shift)
{
const uint32_t _code_length = 511;
std::array<bool, _code_length> G1{};
std::array<bool, 9> G1_register{};
std::bitset<_code_length> G1{};
auto G1_register = std::bitset<9>{}.set(); // All true
bool feedback1;
bool aux;
uint32_t delay;
uint32_t lcv, lcv2;
for (lcv = 0; lcv < 9; lcv++)
{
G1_register[lcv] = true;
}
/* Generate G1 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[2];
feedback1 = G1_register[4] ^ G1_register[0];
feedback1 = G1_register[4] xor G1_register[0];
for (lcv2 = 0; lcv2 < 8; lcv2++)
{
@ -123,7 +119,7 @@ void glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
glonass_l2_ca_code_gen_complex(gsl::span<std::complex<float>>(_code.data(), 511), _chip_shift); // generate C/A code 1 sample per chip
glonass_l2_ca_code_gen_complex(_code, _chip_shift); // generate C/A code 1 sample per chip
for (int32_t i = 0; i < _samplesPerCode; i++)
{
@ -134,7 +130,6 @@ void glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest
// number of samples per millisecond (because one C/A code period is one
// millisecond).
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
@ -148,7 +143,7 @@ void glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest
}
else
{
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
_dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample
}
}
}

View File

@ -154,6 +154,8 @@ void hex_to_binary_converter(gsl::span<int32_t> _dest, char _from)
_dest[2] = -1;
_dest[3] = -1;
break;
default:
break;
}
}
@ -168,13 +170,12 @@ void resampler(const gsl::span<float> _from, gsl::span<float> _dest, float _fs_i
const float _t_out = 1 / _fs_out; // Out sampling period in sec
for (uint32_t i = 0; i < _dest.size() - 1; i++)
{
//=== Digitizing =======================================================
//--- compute index array to read sampled values -------------------------
//_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1;
//=== Digitizing ===================================================
//--- compute index array to read sampled values -------------------
aux = (_t_out * (i + 1)) / _t_in;
_codeValueIndex = auxCeil2(aux) - 1;
//if repeat the chip -> upsample by nearest neighborhood interpolation
// if repeat the chip -> upsample by nearest neighborhood interpolation
_dest[i] = _from[_codeValueIndex];
}
//--- Correct the last index (due to number rounding issues) -----------
@ -192,13 +193,12 @@ void resampler(gsl::span<const std::complex<float>> _from, gsl::span<std::comple
const float _t_out = 1 / _fs_out; // Out sampling period in sec
for (uint32_t i = 0; i < _dest.size() - 1; i++)
{
//=== Digitizing =======================================================
//--- compute index array to read sampled values -------------------------
//_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1;
//=== Digitizing ===================================================
//--- compute index array to read sampled values -------------------
aux = (_t_out * (i + 1)) / _t_in;
_codeValueIndex = auxCeil2(aux) - 1;
//if repeat the chip -> upsample by nearest neighborhood interpolation
// if repeat the chip -> upsample by nearest neighborhood interpolation
_dest[i] = _from[_codeValueIndex];
}
//--- Correct the last index (due to number rounding issues) -----------

View File

@ -32,13 +32,14 @@
#include "gps_l2c_signal.h"
#include "GPS_L2C.h"
#include <array>
#include <cmath>
#include <memory>
uint32_t gps_l2c_m_shift(uint32_t x)
{
return static_cast<uint32_t>((x >> 1U) ^ ((x & 1U) * 0445112474U));
return static_cast<uint32_t>((x >> 1U) xor ((x & 1U) * 0445112474U));
}
@ -56,32 +57,30 @@ void gps_l2c_m_code(gsl::span<int32_t> _dest, uint32_t _prn)
void gps_l2c_m_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L2_M_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L2_M_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
gps_l2c_m_code(_code_span, _prn);
gps_l2c_m_code(_code, _prn);
}
for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[i], 0.0);
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[i], 0.0);
}
}
void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L2_M_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L2_M_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
gps_l2c_m_code(_code_span, _prn);
gps_l2c_m_code(_code, _prn);
}
for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code_span[i]);
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code[i]);
}
}
@ -91,11 +90,10 @@ void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
*/
void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L2_M_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L2_M_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
gps_l2c_m_code(_code_span, _prn);
gps_l2c_m_code(_code, _prn);
}
int32_t _samplesPerCode, _codeValueIndex;
@ -121,11 +119,11 @@ void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, ui
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeLength - 1], 0);
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeLength - 1], 0);
}
else
{
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeValueIndex], 0); //repeat the chip -> upsample
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeValueIndex], 0); //repeat the chip -> upsample
}
}
}

View File

@ -32,9 +32,9 @@
#include "gps_l5_signal.h"
#include "GPS_L5.h"
#include <array>
#include <deque>
std::deque<bool> l5i_xa_shift(std::deque<bool> xa) // GPS-IS-705E Figure 3-4 pp. 15
{
if (xa == std::deque<bool>{true, true, true, true, true, true, true, true, true, true, true, false, true})
@ -173,32 +173,30 @@ void make_l5q(gsl::span<int32_t> _dest, int32_t prn)
void gps_l5i_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L5I_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L5I_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
make_l5i(_code_span, _prn - 1);
make_l5i(_code, _prn - 1);
}
for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[i], 0.0);
_dest[i] = std::complex<float>(1.0 - 2.0 * static_cast<float>(_code[i]), 0.0);
}
}
void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L5I_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L5I_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
make_l5i(_code_span, _prn - 1);
make_l5i(_code, _prn - 1);
}
for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code_span[i]);
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code[i]);
}
}
@ -208,11 +206,10 @@ void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
*/
void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L5I_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L5I_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
make_l5i(_code_span, _prn - 1);
make_l5i(_code, _prn - 1);
}
int32_t _samplesPerCode, _codeValueIndex;
@ -238,11 +235,11 @@ void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeLength - 1], 0.0);
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeLength - 1], 0.0);
}
else
{
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeValueIndex], 0.0); // repeat the chip -> upsample
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeValueIndex], 0.0); // repeat the chip -> upsample
}
}
}
@ -250,32 +247,30 @@ void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint
void gps_l5q_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L5Q_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L5Q_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
make_l5q(_code_span, _prn - 1);
make_l5q(_code, _prn - 1);
}
for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[i], 0.0);
_dest[i] = std::complex<float>(1.0 - 2.0 * static_cast<float>(_code[i]), 0.0);
}
}
void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L5Q_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L5Q_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
make_l5q(_code_span, _prn - 1);
make_l5q(_code, _prn - 1);
}
for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code_span[i]);
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code[i]);
}
}
@ -285,11 +280,10 @@ void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
*/
void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{
std::unique_ptr<int32_t> _code{new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]};
gsl::span<int32_t> _code_span(_code, GPS_L5Q_CODE_LENGTH_CHIPS);
std::array<int32_t, GPS_L5Q_CODE_LENGTH_CHIPS> _code{};
if (_prn > 0 and _prn < 51)
{
make_l5q(_code_span, _prn - 1);
make_l5q(_code, _prn - 1);
}
int32_t _samplesPerCode, _codeValueIndex;
@ -316,11 +310,11 @@ void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeLength - 1], 0);
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeLength - 1], 0);
}
else
{
_dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeValueIndex], 0); // repeat the chip -> upsample
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeValueIndex], 0); // repeat the chip -> upsample
}
}
}

View File

@ -83,7 +83,7 @@ void gps_l1_ca_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _ch
G1[lcv] = G1_register[0];
G2[lcv] = G2_register[0];
feedback1 = G1_register[7] ^ G1_register[0];
feedback1 = G1_register[7] xor G1_register[0];
feedback2 = G2_register[8] xor G2_register[7] xor G2_register[4] xor G2_register[2] xor G2_register[1] xor G2_register[0];
for (lcv2 = 0; lcv2 < 9; lcv2++)
@ -104,7 +104,7 @@ void gps_l1_ca_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _ch
// Generate PRN from G1 and G2 Registers
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[(lcv + _chip_shift) % _code_length] ^ G2[delay];
aux = G1[(lcv + _chip_shift) % _code_length] xor G2[delay];
if (aux == true)
{
_dest[lcv] = 1;
@ -172,28 +172,27 @@ void gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, ui
for (int32_t i = 0; i < _samplesPerCode; i++)
{
//=== Digitizing =======================================================
//=== Digitizing ===================================================
//--- Make index array to read C/A code values -------------------------
//--- Make index array to read C/A code values ---------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
//--- Make the digitized version of the C/A code -----------------------
//--- Make the digitized version of the C/A code -------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
//--- Correct the last index (due to number rounding issues)
_dest[i] = _code[_codeLength - 1];
}
else
{
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
_dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample
}
}
}

View File

@ -51,11 +51,11 @@ static const uint8_t BITN[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}
*/
uint8_t parity(uint32_t x)
{
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
x &= 0xF;
return (0x6996 >> x) & 1;
x ^= x >> 16U;
x ^= x >> 8U;
x ^= x >> 4U;
x &= 0xFU;
return (0x6996U >> x) & 1U;
}
@ -74,7 +74,7 @@ uint32_t getbitu(const uint8_t *buff, uint32_t pos, uint8_t len)
uint32_t i = 0;
for (i = pos; i < pos + len; i++)
{
bits = (bits << 1) +
bits = (bits << 1U) +
((buff[i / 8] >> (7 - i % 8)) & 1U);
}
@ -121,7 +121,7 @@ void setbitu(uint8_t *buff, uint32_t pos, uint32_t len, uint32_t data)
return;
}
uint32_t i = 0;
for (i = pos; i < pos + len; i++, mask >>= 1)
for (i = pos; i < pos + len; i++, mask >>= 1U)
{
if (data & mask)
{
@ -246,10 +246,10 @@ void bitcopy(void *dst, uint32_t dst_index, const void *src, uint32_t src_index,
uint8_t count_bits_u64(uint64_t v, uint8_t bv)
{
uint8_t r = 0;
int i = 0;
uint32_t i = 0;
for (i = 0; i < 16; i++)
{
r += BITN[(v >> (i * 4)) & 0xf];
r += BITN[(v >> (i * 4U)) & 0xFU];
}
return bv == 1 ? r : 64 - r;
}
@ -265,10 +265,10 @@ uint8_t count_bits_u64(uint64_t v, uint8_t bv)
uint8_t count_bits_u32(uint32_t v, uint8_t bv)
{
uint8_t r = 0;
int i = 0;
uint32_t i = 0;
for (i = 0; i < 8; i++)
{
r += BITN[(v >> (i * 4)) & 0xf];
r += BITN[(v >> (i * 4U)) & 0xFU];
}
return bv == 1 ? r : 32 - r;
}
@ -284,10 +284,10 @@ uint8_t count_bits_u32(uint32_t v, uint8_t bv)
uint8_t count_bits_u16(uint16_t v, uint8_t bv)
{
uint8_t r = 0;
int i = 0;
uint32_t i = 0;
for (i = 0; i < 4; i++)
{
r += BITN[(v >> (i * 4)) & 0xf];
r += BITN[(v >> (i * 4U)) & 0xFU];
}
return bv == 1 ? r : 16 - r;
}
@ -303,10 +303,10 @@ uint8_t count_bits_u16(uint16_t v, uint8_t bv)
uint8_t count_bits_u8(uint8_t v, uint8_t bv)
{
uint8_t r = 0;
int i = 0;
uint32_t i = 0;
for (i = 0; i < 2; i++)
{
r += BITN[(v >> (i * 4)) & 0xf];
r += BITN[(v >> (i * 4U)) & 0xFU];
}
return bv == 1 ? r : 8 - r;
}

View File

@ -106,7 +106,7 @@ static uint32_t _cnav_extract_crc(const cnav_v27_part_t *part)
GPS_CNAV_MSG_CRC_LENGTH);
if (part->invert)
{
crc ^= 0xFFFFFF;
crc ^= 0xFFFFFFU;
}
return crc;
}

View File

@ -93,7 +93,7 @@ uint32_t crc24q(const uint8_t *buf, uint32_t len, uint32_t crc)
uint32_t i = 0;
for (i = 0; i < len; i++)
{
crc = ((crc << 8) & 0xFFFFFF) ^ CRC24QTAB[((crc >> 16) ^ buf[i]) & 0xff];
crc = ((crc << 8U) & 0xFFFFFFU) ^ CRC24QTAB[((crc >> 16U) ^ buf[i]) & 0xFFU];
}
return crc;
}
@ -122,21 +122,21 @@ uint32_t crc24q_bits(uint32_t crc, const uint8_t *buf, uint32_t n_bits, bool inv
uint32_t i = 0;
for (i = 0; i < n_bits / 8; ++i)
{
acc = (acc << 8) | *buf++;
acc = (acc << 8U) | *buf++;
if (invert)
{
acc ^= 0xFFU;
}
b = (acc >> shift) & 0xFFU;
crc = ((crc << 8) & 0xFFFFFFU) ^ CRC24QTAB[((crc >> 16) ^ b) & 0xFFU];
crc = ((crc << 8U) & 0xFFFFFFU) ^ CRC24QTAB[((crc >> 16U) ^ b) & 0xFFU];
}
acc = (acc << 8) | *buf;
acc = (acc << 8U) | *buf;
if (invert)
{
acc ^= 0xFFU;
}
b = (acc >> shift) & 0xFFU;
crc = ((crc << 8) & 0xFFFFFFU) ^ CRC24QTAB[((crc >> 16) ^ b) & 0xFFU];
crc = ((crc << 8U) & 0xFFFFFFU) ^ CRC24QTAB[((crc >> 16U) ^ b) & 0xFFU];
return crc;
}