1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-29 00:13:14 +00:00
gnss-sdr/src/algorithms/libs/beidou_b1i_signal_processing.cc

190 lines
7.1 KiB
C++
Raw Normal View History

2018-06-15 02:19:32 +00:00
/*!
* \file beidou_b1i_signal_processing.cc
2018-06-15 02:19:32 +00:00
* \brief This class implements various functions for BeiDou B1I signal
* \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "beidou_b1i_signal_processing.h"
2018-06-15 02:19:32 +00:00
auto auxCeil = [](float x) { return static_cast<int>(static_cast<long>((x) + 1)); };
void beidou_b1i_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shift)
{
const unsigned int _code_length = 2046;
bool G1[_code_length];
bool G2[_code_length];
bool G1_register[11] = {0,1,0,1,0,1,0,1,0,1,0};
bool G2_register[11] = {0,1,0,1,0,1,0,1,0,1,0};
bool feedback1, feedback2;
bool aux;
unsigned int lcv, lcv2;
unsigned int delay;
signed int prn_idx;
/* G2 Delays as defined in GPS-ISD-200D */
const signed int delays[33] = {712 /*PRN1*/, 1581, 1414, 1550, 581, 771, 1311, 1043, 1549, 359, 710, 1579, 1548, 1103, 579, 769, 358, 709, 1411, 1547,
1102, 578, 357, 1577, 1410, 1546, 1101, 707, 1576, 1409, 1545, 354 /*PRN32*/,
705};
2018-06-15 02:19:32 +00:00
const signed int phase1[37] = {1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8, 8, 9, 9, 10};
const signed int phase2[37] = {3, 4, 5, 6, 8, 9, 10, 11, 7, 4, 5, 6, 8, 9, 10, 11, 5, 6, 8, 9, 10, 11, 6, 8, 9, 10, 11, 8, 9, 10, 11, 9, 10, 11, 10, 11, 11};
2018-07-06 12:58:32 +00:00
2018-06-15 02:19:32 +00:00
// compute delay array index for given PRN number
2018-07-06 12:58:32 +00:00
prn_idx = _prn - 1;
2018-06-15 02:19:32 +00:00
/* A simple error check */
if ((prn_idx < 0) || (prn_idx > 51))
return;
/*for (lcv = 0; lcv < 11; lcv++)
{
G1_register[lcv] = 1;
G2_register[lcv] = 1;
}*/
/* Generate G1 & G2 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[0];
2018-07-06 13:55:00 +00:00
G2[lcv] = G2_register[-(phase1[prn_idx] - 11) ] ^ G2_register[-(phase2[prn_idx] - 11) ];
2018-06-15 02:19:32 +00:00
feedback1 = (G1_register[0] + G1_register[1] + G1_register[2] + G1_register[3] + G1_register[4] + G1_register[10]) & 0x1;
feedback2 = (G2_register[0] + G2_register[2] + G2_register[3] + G2_register[6] + G2_register[7] + G2_register[8] + G2_register[9] + G2_register[10]) & 0x1;
for (lcv2 = 0; lcv2 < 10; lcv2++)
{
G1_register[lcv2] = G1_register[lcv2 + 1];
G2_register[lcv2] = G2_register[lcv2 + 1];
}
G1_register[10] = feedback1;
G2_register[10] = feedback2;
}
/* Set the delay */
delay = _code_length - delays[prn_idx]*0; //**********************************
2018-06-15 02:19:32 +00:00
delay += _chip_shift;
delay %= _code_length;
/* Generate PRN from G1 and G2 Registers */
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[(lcv + _chip_shift) % _code_length] ^ G2[delay];
if (aux == true)
{
_dest[lcv] = 1;
}
else
{
_dest[lcv] = -1;
}
2018-07-06 13:55:00 +00:00
2018-06-15 02:19:32 +00:00
delay++;
//std::cout << _dest[lcv] << " ";
2018-06-15 02:19:32 +00:00
delay %= _code_length;
}
}
void beidou_b1i_code_gen_float(float* _dest, signed int _prn, unsigned int _chip_shift)
{
unsigned int _code_length = 2046;
int b1i_code_int[_code_length];
beidou_b1i_code_gen_int(b1i_code_int, _prn, _chip_shift);
for (unsigned int ii = 0; ii < _code_length; ++ii)
{
_dest[ii] = static_cast<float>(b1i_code_int[ii]);
}
}
void beidou_b1i_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift)
{
unsigned int _code_length = 2046;
int b1i_code_int[_code_length];
beidou_b1i_code_gen_int(b1i_code_int, _prn, _chip_shift);
for (unsigned int ii = 0; ii < _code_length; ++ii)
{
_dest[ii] = std::complex<float>(static_cast<float>(b1i_code_int[ii]), 0.0f);
}
}
/*
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
*/
void beidou_b1i_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, int _fs, unsigned int _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[2046];
signed int _samplesPerCode, _codeValueIndex;
float _ts;
float _tc;
float aux;
const signed int _codeFreqBasis = 2046000; //Hz
const signed int _codeLength = 2046;
//--- Find number of samples per spreading code ----------------------------
_samplesPerCode = static_cast<signed int>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength));
//--- Find time constants --------------------------------------------------
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
beidou_b1i_code_gen_complex(_code, _prn, _chip_shift); //generate C/A code 1 sample per chip
for (signed int i = 0; i < _samplesPerCode; i++)
{
//=== Digitizing =======================================================
//--- Make index array to read C/A code values -------------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
//--- Make the digitized version of the C/A code -----------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = _code[_codeLength - 1];
}
else
{
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
}
}
}