1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-10-30 06:36:21 +00:00
gnss-sdr/src/utils/matlab/plot_acq_grid.m

78 lines
2.6 KiB
Mathematica
Raw Normal View History

2018-01-23 11:28:29 +00:00
% /*!
% * \file plot_acq_grid.m
% * \brief Read GNSS-SDR Acquisition dump .mat file using the provided
% function and plot acquisition grid of acquisition statistic of PRN sat
%
%
% * \author Antonio Ramos, 2017. antonio.ramos(at)cttc.es
% * -------------------------------------------------------------------------
% *
% * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
% *
% * GNSS-SDR is a software defined Global Navigation
% * Satellite Systems receiver
% *
% * This file is part of GNSS-SDR.
% *
% * GNSS-SDR is free software: you can redistribute it and/or modify
% * it under the terms of the GNU General Public License as published by
% * the Free Software Foundation, either version 3 of the License, or
% * at your option) any later version.
% *
% * GNSS-SDR is distributed in the hope that it will be useful,
% * but WITHOUT ANY WARRANTY; without even the implied warranty of
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% * GNU General Public License for more details.
% *
% * You should have received a copy of the GNU General Public License
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% *
% * -------------------------------------------------------------------------
% */
%%%%%%%%% ¡¡¡ CONFIGURE !!! %%%%%%%%%%%%%
2018-01-24 11:35:57 +00:00
sat = 27;
2018-01-23 11:28:29 +00:00
n_chips = 1023;
system = 'G'; % GPS = 'G', Galileo = 'E'
%%% True for light grid representation
lite_view = true;
%%% If lite_view, it sets the number of samples per chip in the graphical representation
n_samples_per_chip = 4;
path='/home/aramos/signals/GNSS-IN-THE-SPACE/CAPTURES SPIRENT/acq/';
2018-01-23 11:28:29 +00:00
file=['acq_' system '_sat_' num2str(sat) '.mat'];
load([path file]);
[n_fft n_dop_bins] = size(grid);
[d_max f_max] = find(grid == max(max(grid)));
2018-01-23 11:28:29 +00:00
freq = (0 : n_dop_bins - 1) * doppler_step - doppler_max;
delay = (0 : n_fft - 1) / n_fft * n_chips;
figure(1)
if(lite_view == false)
surf(freq, delay, grid)
2018-01-24 11:35:57 +00:00
ylim([min(delay) max(delay)])
2018-01-23 11:28:29 +00:00
else
delay_interp = (0 : n_samples_per_chip * n_chips - 1) / n_samples_per_chip;
grid_interp = spline(delay, grid', delay_interp)';
surf(freq, delay_interp, grid_interp)
2018-01-24 11:35:57 +00:00
ylim([min(delay_interp) max(delay_interp)])
2018-01-23 11:28:29 +00:00
end
xlabel('Doppler shift / Hz')
2018-01-24 11:35:57 +00:00
xlim([min(freq) max(freq)])
2018-01-23 11:28:29 +00:00
ylabel('Code delay / chips')
zlabel('Test statistics')
figure(2)
subplot(2,1,1)
plot(freq, grid(d_max, :))
2018-01-24 11:35:57 +00:00
xlim([min(freq) max(freq)])
xlabel('Doppler shift / Hz')
ylabel('Test statistics (fixed delay)')
subplot(2,1,2)
plot(delay, grid(:, f_max))
2018-01-24 11:35:57 +00:00
xlim([min(delay) max(delay)])
xlabel('Code delay / chips')
ylabel('Test statistics (fixed Doppler shift)')
2018-01-23 11:28:29 +00:00