1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-26 15:03:14 +00:00
gnss-sdr/src/core/system_parameters/rtcm.cc

2525 lines
73 KiB
C++
Raw Normal View History

2015-11-21 12:01:50 +00:00
/*!
* \file rtcm.cc
* \brief Implementation of RTCM 3.2 Standard
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "rtcm.h"
#include <algorithm> // for std::reverse
2015-11-23 00:47:21 +00:00
#include <cmath> // for std::fmod
2015-11-21 12:01:50 +00:00
#include <cstdlib> // for strtol
#include <sstream> // for std::stringstream
#include <boost/algorithm/string.hpp> // for to_upper_copy
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/dynamic_bitset.hpp>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include "GPS_L1_CA.h"
#include "GPS_L2C.h"
#include "MATH_CONSTANTS.h"
2015-11-21 12:01:50 +00:00
using google::LogMessage;
DEFINE_int32(RTCM_Ref_Station_ID, 1234, "Reference Station ID in RTCM messages");
Rtcm::Rtcm()
{
Rtcm::reset_data_fields();
preamble = std::bitset<8>("11010011");
reserved_field = std::bitset<6>("000000");
}
// *****************************************************************************************************
//
// TRANSPORT LAYER AS DEFINED AT RTCM STANDARD 10403.2
//
// *****************************************************************************************************
std::string Rtcm::add_CRC (const std::string& message_without_crc)
{
// ****** Computes Qualcomm CRC-24Q ******
crc_24_q_type CRC_RTCM;
2015-11-21 12:01:50 +00:00
// 1) Converts the string to a vector of unsigned char:
boost::dynamic_bitset<unsigned char> frame_bits(message_without_crc);
std::vector<unsigned char> bytes;
boost::to_block_range(frame_bits, std::back_inserter(bytes));
std::reverse(bytes.begin(),bytes.end());
// 2) Computes CRC
CRC_RTCM.process_bytes(bytes.data(), bytes.size());
crc_frame = std::bitset<24>(CRC_RTCM.checksum());
// 3) Builds the complete message
std::string complete_message = message_without_crc + crc_frame.to_string();
return bin_to_hex(complete_message);
}
bool Rtcm::check_CRC(const std::string & message)
{
crc_24_q_type CRC_RTCM_CHECK;
2015-11-21 12:01:50 +00:00
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
// Check CRC
std::string crc = message_bin.substr(message_bin.length() - 24, 24);
std::bitset<24> read_crc = std::bitset<24>(crc);
std::string msg_without_crc = message_bin.substr(0, message_bin.length() - 24);
boost::dynamic_bitset<unsigned char> frame_bits(msg_without_crc);
std::vector<unsigned char> bytes;
boost::to_block_range(frame_bits, std::back_inserter(bytes));
std::reverse(bytes.begin(),bytes.end());
CRC_RTCM_CHECK.process_bytes(bytes.data(), bytes.size());
std::bitset<24> computed_crc = std::bitset<24>(CRC_RTCM_CHECK.checksum());
2015-11-21 12:01:50 +00:00
if(read_crc == computed_crc)
{
return true;
}
else
{
return false;
}
}
std::string Rtcm::bin_to_hex(const std::string& s)
{
std::string s_aux;
std::stringstream ss;
2015-11-23 00:47:21 +00:00
int remainder = static_cast<int>(std::fmod(s.length(), 4));
if (remainder != 0)
{
s_aux.assign(s, 0 , remainder);
boost::dynamic_bitset<> rembits(s_aux);
unsigned n = rembits.to_ulong();
ss << std::hex << n;
}
2015-11-23 02:23:56 +00:00
unsigned int start = std::max(remainder, 0);
for(unsigned int i = start; i < s.length() - 1; i = i + 4)
2015-11-21 12:01:50 +00:00
{
2015-11-23 00:47:21 +00:00
s_aux.assign(s, i, 4);
std::bitset<4> bs(s_aux);
2015-11-21 12:01:50 +00:00
unsigned n = bs.to_ulong();
ss << std::hex << n;
}
return boost::to_upper_copy(ss.str());
}
2015-11-23 00:47:21 +00:00
2015-11-21 12:01:50 +00:00
std::string Rtcm::hex_to_bin(const std::string& s)
{
std::string s_aux;
s_aux.clear();
std::stringstream ss;
ss << s;
std::string s_lower = boost::to_upper_copy(ss.str());
2015-11-23 02:23:56 +00:00
for(unsigned int i = 0; i < s.length(); i++)
2015-11-21 12:01:50 +00:00
{
unsigned long int n;
std::istringstream(s_lower.substr(i,1)) >> std::hex >> n;
std::bitset<4> bs(n);
s_aux += bs.to_string();
}
return s_aux;
}
2015-11-23 00:47:21 +00:00
2015-11-21 12:01:50 +00:00
unsigned long int Rtcm::bin_to_uint(const std::string& s)
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a unsigned long int";
return 0;
}
unsigned long int reading = strtoul(s.c_str(), NULL, 2);
return reading;
}
2015-11-23 00:47:21 +00:00
2015-11-21 12:01:50 +00:00
long int Rtcm::bin_to_int(const std::string& s)
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a long int";
return 0;
}
2015-11-23 00:47:21 +00:00
long int reading;
// Handle negative numbers
if(s.substr(0,1).compare("0"))
{
// Computing two's complement
boost::dynamic_bitset<> original_bitset(s);
original_bitset.flip();
reading = - (original_bitset.to_ulong() + 1);
}
else
{
reading = strtol(s.c_str(), NULL, 2);
}
2015-11-21 12:01:50 +00:00
return reading;
}
double Rtcm::bin_to_double(const std::string& s)
{
double reading;
if(s.length() > 64)
{
LOG(WARNING) << "Cannot convert to a double";
return 0;
}
2015-11-23 00:47:21 +00:00
long long int reading_int;
2015-11-21 12:01:50 +00:00
// Handle negative numbers
if(s.substr(0,1).compare("0"))
{
// Computing two's complement
boost::dynamic_bitset<> original_bitset(s);
original_bitset.flip();
reading_int = - (original_bitset.to_ulong() + 1);
}
2015-11-23 00:47:21 +00:00
else
{
reading_int = strtoll(s.c_str(), NULL, 2);
}
2015-11-21 12:01:50 +00:00
reading = static_cast<double>(reading_int);
return reading;
}
unsigned long int Rtcm::hex_to_uint(const std::string& s)
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a unsigned long int";
return 0;
}
unsigned long int reading = strtoul(s.c_str(), NULL, 16);
return reading;
}
long int Rtcm::hex_to_int(const std::string& s)
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a long int";
return 0;
}
long int reading = strtol(s.c_str(), NULL, 16);
return reading;
}
std::string Rtcm::build_message(std::string data)
{
unsigned int msg_length_bits = data.length();
unsigned int msg_length_bytes = std::ceil(static_cast<float>(msg_length_bits) / 8.0);
message_length = std::bitset<10>(msg_length_bytes);
unsigned int zeros_to_fill = 8 * msg_length_bytes - msg_length_bits;
std::string b(zeros_to_fill, '0');
std::string msg_content = data + b;
std::string msg_without_crc = preamble.to_string() +
reserved_field.to_string() +
message_length.to_string() +
msg_content;
return Rtcm::add_CRC(msg_without_crc);
}
// *****************************************************************************************************
//
// MESSAGES AS DEFINED AT RTCM STANDARD 10403.2
//
// *****************************************************************************************************
2015-11-23 00:47:21 +00:00
// **********************************************
//
// MESSAGE TYPE 1001 (GPS L1 OBSERVATIONS)
//
// **********************************************
std::bitset<64> Rtcm::get_MT1001_4_header(unsigned int msg_number, const Gps_Ephemeris & gps_eph, double obs_time, const std::map<int, Gnss_Synchro> & pseudoranges,
2015-11-23 00:47:21 +00:00
unsigned int ref_id, unsigned int smooth_int, bool sync_flag, bool divergence_free)
{
unsigned int reference_station_id = ref_id; // Max: 4095
const std::map<int, Gnss_Synchro> pseudoranges_ = pseudoranges;
bool synchronous_GNSS_flag = sync_flag;
bool divergence_free_smoothing_indicator = divergence_free;
unsigned int smoothing_interval = smooth_int;
Rtcm::set_DF002(msg_number);
2015-11-23 00:47:21 +00:00
Rtcm::set_DF003(reference_station_id);
Rtcm::set_DF004(gps_eph, obs_time);
Rtcm::set_DF005(synchronous_GNSS_flag);
Rtcm::set_DF006(pseudoranges_);
Rtcm::set_DF007(divergence_free_smoothing_indicator);
Rtcm::set_DF008(smoothing_interval);
std::string header = DF002.to_string() +
DF003.to_string() +
DF004.to_string() +
DF005.to_string() +
DF006.to_string() +
DF007.to_string() +
DF008.to_string();
std::bitset<64> header_msg(header);
return header_msg;
}
std::bitset<58> Rtcm::get_MT1001_sat_content(const Gnss_Synchro & gnss_synchro)
2015-11-23 00:47:21 +00:00
{
Gnss_Synchro gnss_synchro_ = gnss_synchro;
bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF009(gnss_synchro_);
Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF011(gnss_synchro_);
Rtcm::set_DF012(gnss_synchro_);
2015-11-23 00:47:21 +00:00
unsigned int lock_time_indicator = 0; // TODO
DF013 = std::bitset<7>(lock_time_indicator);
std::string content = DF009.to_string() +
DF010.to_string() +
DF011.to_string() +
DF012.to_string() +
DF013.to_string();
std::bitset<58> content_msg(content);
return content_msg;
}
std::string Rtcm::print_MT1001(const Gps_Ephemeris & gps_eph, double obs_time, const std::map<int, Gnss_Synchro> & pseudoranges)
2015-11-23 00:47:21 +00:00
{
unsigned int ref_id = static_cast<unsigned int>(FLAGS_RTCM_Ref_Station_ID);
unsigned int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
std::bitset<64> header = Rtcm::get_MT1001_4_header(1001, gps_eph, obs_time, pseudoranges, ref_id, smooth_int, sync_flag, divergence_free);
2015-11-23 00:47:21 +00:00
std::string data = header.to_string();
std::map<int, Gnss_Synchro>::const_iterator pseudoranges_iter;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
2015-11-23 23:55:42 +00:00
std::bitset<58> content = Rtcm::get_MT1001_sat_content(pseudoranges_iter->second);
2015-11-23 00:47:21 +00:00
data += content.to_string();
}
return Rtcm::build_message(data);
}
// **********************************************
//
// MESSAGE TYPE 1002 (EXTENDED GPS L1 OBSERVATIONS)
//
// **********************************************
std::string Rtcm::print_MT1002(const Gps_Ephemeris & gps_eph, double obs_time, const std::map<int, Gnss_Synchro> & pseudoranges)
{
unsigned int ref_id = static_cast<unsigned int>(FLAGS_RTCM_Ref_Station_ID);
unsigned int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
std::bitset<64> header = Rtcm::get_MT1001_4_header(1002, gps_eph, obs_time, pseudoranges, ref_id, smooth_int, sync_flag, divergence_free);
std::string data = header.to_string();
std::map<int, Gnss_Synchro>::const_iterator pseudoranges_iter;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
std::bitset<74> content = Rtcm::get_MT1002_sat_content(pseudoranges_iter->second);
data += content.to_string();
}
return Rtcm::build_message(data);
}
std::bitset<74> Rtcm::get_MT1002_sat_content(const Gnss_Synchro & gnss_synchro)
{
Gnss_Synchro gnss_synchro_ = gnss_synchro;
bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF009(gnss_synchro_);
Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF011(gnss_synchro_);
Rtcm::set_DF012(gnss_synchro_);
unsigned int lock_time_indicator = 0; // TODO
DF013 = std::bitset<7>(lock_time_indicator);
std::string content = DF009.to_string() +
DF010.to_string() +
DF011.to_string() +
DF012.to_string() +
DF013.to_string() +
DF014.to_string() +
DF015.to_string();
std::bitset<74> content_msg(content);
return content_msg;
}
2015-11-23 00:47:21 +00:00
// **********************************************
//
// MESSAGE TYPE 1005 (STATION DESCRIPTION)
//
// **********************************************
2015-11-21 12:01:50 +00:00
/* Stationary Antenna Reference Point, No Height Information
* Reference Station Id = 2003
GPS Service supported, but not GLONASS or Galileo
ARP ECEF-X = 1114104.5999 meters
ARP ECEF-Y = -4850729.7108 meters
ARP ECEF-Z = 3975521.4643 meters
Expected output: D3 00 13 3E D7 D3 02 02 98 0E DE EF 34 B4 BD 62
AC 09 41 98 6F 33 36 0B 98
*/
std::bitset<152> Rtcm::get_MT1005_test ()
2015-11-21 12:01:50 +00:00
{
unsigned int mt1005 = 1005;
2015-11-21 12:01:50 +00:00
unsigned int reference_station_id = 2003; // Max: 4095
double ECEF_X = 1114104.5999; // units: m
double ECEF_Y = -4850729.7108; // units: m
double ECEF_Z = 3975521.4643; // units: m
std::bitset<1> DF001_;
Rtcm::set_DF002(mt1005);
2015-11-21 12:01:50 +00:00
Rtcm::set_DF003(reference_station_id);
Rtcm::set_DF021();
Rtcm::set_DF022(true); // GPS
Rtcm::set_DF023(false); // Glonass
Rtcm::set_DF024(false); // Galileo
DF141 = std::bitset<1>("0"); // 0: Real, physical reference station
DF001_ = std::bitset<1>("0"); // Reserved, set to 0
Rtcm::set_DF025(ECEF_X);
DF142 = std::bitset<1>("0"); // Single Receiver Oscillator Indicator
Rtcm::set_DF026(ECEF_Y);
DF364 = std::bitset<2>("00"); // Quarter Cycle Indicator
Rtcm::set_DF027(ECEF_Z);
std::string message = DF002.to_string() +
DF003.to_string() +
DF021.to_string() +
DF022.to_string() +
DF023.to_string() +
DF024.to_string() +
DF141.to_string() +
DF025.to_string() +
DF142.to_string() +
DF001_.to_string() +
DF026.to_string() +
DF364.to_string() +
DF027.to_string() ;
std::bitset<152> test_msg(message);
return test_msg;
}
std::string Rtcm::print_MT1005( unsigned int ref_id, double ecef_x, double ecef_y, double ecef_z, bool gps, bool glonass, bool galileo, bool non_physical, bool single_oscillator, unsigned int quarter_cycle_indicator)
2015-11-23 00:47:21 +00:00
{
unsigned int msg_number = 1005;
std::bitset<1> DF001_;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF003(ref_id);
Rtcm::set_DF021();
Rtcm::set_DF022(gps);
Rtcm::set_DF023(glonass);
Rtcm::set_DF024(galileo);
DF141 = std::bitset<1>(non_physical);
DF001_ = std::bitset<1>("0");
Rtcm::set_DF025(ecef_x);
DF142 = std::bitset<1>(single_oscillator);
Rtcm::set_DF026(ecef_y);
DF364 = std::bitset<2>(quarter_cycle_indicator);
Rtcm::set_DF027(ecef_z);
std::string data = DF002.to_string() +
DF003.to_string() +
DF021.to_string() +
DF022.to_string() +
DF023.to_string() +
DF024.to_string() +
DF141.to_string() +
DF025.to_string() +
DF142.to_string() +
DF001_.to_string() +
DF026.to_string() +
DF364.to_string() +
DF027.to_string() ;
std::string message = build_message(data);
return message;
}
2015-11-21 12:01:50 +00:00
int Rtcm::read_MT1005(const std::string & message, unsigned int & ref_id, double & ecef_x, double & ecef_y, double & ecef_z, bool & gps, bool & glonass, bool & galileo)
2015-11-21 12:01:50 +00:00
{
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
if(!Rtcm::check_CRC(message) )
{
LOG(WARNING) << " Bad CRC detected in RTCM message MT1005";
2015-11-21 12:01:50 +00:00
return 1;
}
// Check than the message number is correct
unsigned int preamble_length = 8;
unsigned int reserved_field_length = 6;
unsigned int index = preamble_length + reserved_field_length;
unsigned int read_message_length = static_cast<unsigned int>(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
if (read_message_length != 19)
{
LOG(WARNING) << " Message MT1005 with wrong length (19 bytes expected, " << read_message_length << " received)";
2015-11-21 12:01:50 +00:00
return 1;
}
unsigned int msg_number = 1005;
Rtcm::set_DF002(msg_number);
std::bitset<12> read_msg_number(message_bin.substr(index, 12));
index += 12;
if (DF002 != read_msg_number)
{
LOG(WARNING) << " This is not a MT1005 message";
2015-11-21 12:01:50 +00:00
return 1;
}
ref_id = Rtcm::bin_to_uint(message_bin.substr(index, 12));
index += 12;
index += 6; // ITRF year
gps = static_cast<bool>(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
glonass = static_cast<bool>(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
galileo = static_cast<bool>(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
index += 1; // ref_station_indicator
2015-11-21 12:01:50 +00:00
ecef_x = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0;
index += 38;
index += 1; // single rx oscillator
index += 1; // reserved
ecef_y = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0;
index += 38;
index += 2; // quarter cycle indicator
ecef_z = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0;
return 0;
}
std::string Rtcm::print_MT1005_test()
2015-11-21 12:01:50 +00:00
{
std::bitset<152> mt1005 = get_MT1005_test();
return Rtcm::build_message(mt1005.to_string());
2015-11-21 12:01:50 +00:00
}
2015-11-23 00:47:21 +00:00
// **********************************************
//
// MESSAGE TYPE 1019 (GPS EPHEMERIS)
//
// **********************************************
2015-11-21 12:01:50 +00:00
std::string Rtcm::print_MT1019(const Gps_Ephemeris & gps_eph)
2015-11-21 12:01:50 +00:00
{
unsigned int msg_number = 1019;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF009(gps_eph);
Rtcm::set_DF076(gps_eph);
Rtcm::set_DF077(gps_eph);
Rtcm::set_DF078(gps_eph);
Rtcm::set_DF079(gps_eph);
Rtcm::set_DF071(gps_eph);
Rtcm::set_DF081(gps_eph);
Rtcm::set_DF082(gps_eph);
Rtcm::set_DF083(gps_eph);
Rtcm::set_DF084(gps_eph);
Rtcm::set_DF085(gps_eph);
Rtcm::set_DF086(gps_eph);
Rtcm::set_DF087(gps_eph);
Rtcm::set_DF088(gps_eph);
Rtcm::set_DF089(gps_eph);
Rtcm::set_DF090(gps_eph);
Rtcm::set_DF091(gps_eph);
Rtcm::set_DF092(gps_eph);
Rtcm::set_DF093(gps_eph);
Rtcm::set_DF094(gps_eph);
Rtcm::set_DF095(gps_eph);
Rtcm::set_DF096(gps_eph);
Rtcm::set_DF097(gps_eph);
Rtcm::set_DF098(gps_eph);
Rtcm::set_DF099(gps_eph);
Rtcm::set_DF100(gps_eph);
Rtcm::set_DF101(gps_eph);
Rtcm::set_DF102(gps_eph);
Rtcm::set_DF103(gps_eph);
Rtcm::set_DF137(gps_eph);
std::string data;
data.clear();
data = DF002.to_string() +
DF009.to_string() +
DF076.to_string() +
DF077.to_string() +
DF078.to_string() +
DF079.to_string() +
DF071.to_string() +
DF081.to_string() +
DF082.to_string() +
DF083.to_string() +
DF084.to_string() +
DF085.to_string() +
DF086.to_string() +
DF087.to_string() +
DF088.to_string() +
DF089.to_string() +
DF090.to_string() +
DF091.to_string() +
DF092.to_string() +
DF093.to_string() +
DF094.to_string() +
DF095.to_string() +
DF096.to_string() +
DF097.to_string() +
DF098.to_string() +
DF099.to_string() +
DF100.to_string() +
DF101.to_string() +
DF102.to_string() +
DF103.to_string() +
DF137.to_string();
if (data.length() != 488)
{
LOG(WARNING) << "Bad-formatted RTCM MT1019 (488 bits expected, found " << data.length() << ")";
2015-11-21 12:01:50 +00:00
}
message1019_content = std::bitset<488>(data);
std::string message = build_message(data);
return message;
}
int Rtcm::read_MT1019(const std::string & message, Gps_Ephemeris & gps_eph)
2015-11-21 12:01:50 +00:00
{
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
if(!Rtcm::check_CRC(message) )
{
LOG(WARNING) << " Bad CRC detected in RTCM message MT1019";
2015-11-21 12:01:50 +00:00
return 1;
}
unsigned int preamble_length = 8;
unsigned int reserved_field_length = 6;
2015-11-23 00:47:21 +00:00
unsigned int index = preamble_length + reserved_field_length;
2015-11-21 12:01:50 +00:00
unsigned int read_message_length = static_cast<unsigned int>(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
if (read_message_length != 61)
{
LOG(WARNING) << " Message MT1019 seems too long (61 bytes expected, " << read_message_length << " received)";
2015-11-21 12:01:50 +00:00
return 1;
}
// Check than the message number is correct
2015-11-23 00:47:21 +00:00
unsigned int read_msg_number = Rtcm::bin_to_uint(message_bin.substr(index, 12));
2015-11-21 12:01:50 +00:00
index += 12;
2015-11-23 00:47:21 +00:00
if (1019 != read_msg_number)
2015-11-21 12:01:50 +00:00
{
LOG(WARNING) << " This is not a MT1019 message";
2015-11-21 12:01:50 +00:00
return 1;
}
2015-11-23 00:47:21 +00:00
// Fill Gps Ephemeris with message data content
2015-11-21 12:01:50 +00:00
gps_eph.i_satellite_PRN = static_cast<unsigned int>(Rtcm::bin_to_uint(message_bin.substr(index, 6)));
index += 6;
2015-11-23 00:47:21 +00:00
gps_eph.i_GPS_week = static_cast<int>(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
gps_eph.i_SV_accuracy = static_cast<int>(Rtcm::bin_to_uint(message_bin.substr(index, 4)));
index += 4;
gps_eph.i_code_on_L2 = static_cast<int>(Rtcm::bin_to_uint(message_bin.substr(index, 2)));
index += 2;
gps_eph.d_IDOT = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 14))) * I_DOT_LSB;
index += 14;
gps_eph.d_IODE_SF2 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 8)));
gps_eph.d_IODE_SF3 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 8)));
index += 8;
gps_eph.d_Toc = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 16))) * T_OC_LSB;
index += 16;
gps_eph.d_A_f2 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 8))) * A_F2_LSB;
index += 8;
gps_eph.d_A_f1 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * A_F1_LSB;
index += 16;
gps_eph.d_A_f0 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 22))) * A_F0_LSB;
index += 22;
gps_eph.d_IODC = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
gps_eph.d_Crs = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_RS_LSB;
index += 16;
gps_eph.d_Delta_n = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * DELTA_N_LSB;
index += 16;
gps_eph.d_M_0 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * M_0_LSB;
index += 32;
gps_eph.d_Cuc = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_UC_LSB;
index += 16;
gps_eph.d_e_eccentricity = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * E_LSB;
index += 32;
gps_eph.d_Cus = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_US_LSB;
index += 16;
gps_eph.d_sqrt_A = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * SQRT_A_LSB;
index += 32;
gps_eph.d_Toe = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 16))) * T_OE_LSB;
index += 16;
gps_eph.d_Cic = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_IC_LSB;
index += 16;
gps_eph.d_OMEGA0 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_0_LSB;
index += 32;
gps_eph.d_Cis = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_IS_LSB;
index += 16;
gps_eph.d_i_0 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * I_0_LSB;
index += 32;
gps_eph.d_Crc = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_RC_LSB;
index += 16;
gps_eph.d_OMEGA = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_LSB;
index += 32;
gps_eph.d_OMEGA_DOT = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 24))) * OMEGA_DOT_LSB;
index += 24;
gps_eph.d_TGD = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 8))) * T_GD_LSB;
index += 8;
gps_eph.i_SV_health = static_cast<int>(Rtcm::bin_to_uint(message_bin.substr(index, 6)));
index += 6;
gps_eph.b_L2_P_data_flag = static_cast<bool>(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
2015-11-21 12:01:50 +00:00
2015-11-23 00:47:21 +00:00
gps_eph.b_fit_interval_flag = static_cast<bool>(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
2015-11-21 12:01:50 +00:00
return 0;
}
2015-11-23 00:47:21 +00:00
// **********************************************
//
// MESSAGE TYPE 1045 (GALILEO EPHEMERIS)
//
// **********************************************
std::string Rtcm::print_MT1045(const Galileo_Ephemeris & gal_eph)
2015-11-21 12:01:50 +00:00
{
unsigned int msg_number = 1045;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF252(gal_eph);
Rtcm::set_DF289(gal_eph);
Rtcm::set_DF290(gal_eph);
Rtcm::set_DF291(gal_eph);
Rtcm::set_DF293(gal_eph);
Rtcm::set_DF294(gal_eph);
Rtcm::set_DF295(gal_eph);
Rtcm::set_DF296(gal_eph);
Rtcm::set_DF297(gal_eph);
Rtcm::set_DF298(gal_eph);
Rtcm::set_DF299(gal_eph);
Rtcm::set_DF300(gal_eph);
Rtcm::set_DF301(gal_eph);
Rtcm::set_DF302(gal_eph);
Rtcm::set_DF303(gal_eph);
Rtcm::set_DF304(gal_eph);
Rtcm::set_DF305(gal_eph);
Rtcm::set_DF306(gal_eph);
Rtcm::set_DF307(gal_eph);
Rtcm::set_DF308(gal_eph);
Rtcm::set_DF309(gal_eph);
Rtcm::set_DF310(gal_eph);
Rtcm::set_DF311(gal_eph);
Rtcm::set_DF312(gal_eph);
Rtcm::set_DF314(gal_eph);
Rtcm::set_DF315(gal_eph);
unsigned int seven_zero = 0;
std::bitset<7> DF001_ = std::bitset<7>(seven_zero);
std::string data;
data.clear();
data = DF002.to_string() +
DF252.to_string() +
DF289.to_string() +
DF290.to_string() +
DF291.to_string() +
DF292.to_string() +
DF293.to_string() +
DF294.to_string() +
DF295.to_string() +
DF296.to_string() +
DF297.to_string() +
DF298.to_string() +
DF299.to_string() +
DF300.to_string() +
DF301.to_string() +
DF302.to_string() +
DF303.to_string() +
DF304.to_string() +
DF305.to_string() +
DF306.to_string() +
DF307.to_string() +
DF308.to_string() +
DF309.to_string() +
DF310.to_string() +
DF311.to_string() +
DF312.to_string() +
DF314.to_string() +
DF315.to_string() +
DF001_.to_string();
if (data.length() != 496)
{
LOG(WARNING) << "Bad-formatted RTCM MT1045 (496 bits expected, found " << data.length() << ")";
2015-11-21 12:01:50 +00:00
}
message1045_content = std::bitset<496>(data);
std::string message = build_message(data);
return message;
}
int Rtcm::read_MT1045(const std::string & message, Galileo_Ephemeris & gal_eph)
{
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
if(!Rtcm::check_CRC(message) )
{
LOG(WARNING) << " Bad CRC detected in RTCM message MT1045";
return 1;
}
unsigned int preamble_length = 8;
unsigned int reserved_field_length = 6;
unsigned int index = preamble_length + reserved_field_length;
unsigned int read_message_length = static_cast<unsigned int>(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
if (read_message_length != 62)
{
LOG(WARNING) << " Message MT1045 seems too long (62 bytes expected, " << read_message_length << " received)";
return 1;
}
// Check than the message number is correct
unsigned int read_msg_number = Rtcm::bin_to_uint(message_bin.substr(index, 12));
index += 12;
if (1045 != read_msg_number)
{
LOG(WARNING) << " This is not a MT1045 message";
return 1;
}
// Fill Galileo Ephemeris with message data content
gal_eph.i_satellite_PRN = static_cast<unsigned int>(Rtcm::bin_to_uint(message_bin.substr(index, 6)));
index += 6;
gal_eph.WN_5 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 12)));
index += 12;
gal_eph.IOD_nav_1 = static_cast<int>(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
gal_eph.SISA_3 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 8)));
index += 8;
gal_eph.iDot_2 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 14))) * iDot_2_LSB;
index += 14;
gal_eph.t0c_4 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 14))) * t0c_4_LSB;
index += 14;
gal_eph.af2_4 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 6))) * af2_4_LSB;
index += 6;
gal_eph.af1_4 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 21))) * af1_4_LSB;
index += 21;
gal_eph.af0_4 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 31))) * af0_4_LSB;
index += 31;
gal_eph.C_rs_3 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_rs_3_LSB;
index += 16;
gal_eph.delta_n_3 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * delta_n_3_LSB;
index += 16;
gal_eph.M0_1 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * M0_1_LSB;
index += 32;
gal_eph.C_uc_3 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_uc_3_LSB;
index += 16;
gal_eph.e_1 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * e_1_LSB;
index += 32;
gal_eph.C_us_3 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_us_3_LSB;
index += 16;
gal_eph.A_1 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * A_1_LSB_gal;
index += 32;
gal_eph.t0e_1 = static_cast<double>(Rtcm::bin_to_uint(message_bin.substr(index, 14))) * t0e_1_LSB;
index += 14;
gal_eph.C_ic_4 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_ic_4_LSB;
index += 16;
gal_eph.OMEGA_0_2 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_0_2_LSB;
index += 32;
gal_eph.C_is_4 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_is_4_LSB;
index += 16;
gal_eph.i_0_2 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * i_0_2_LSB;
index += 32;
gal_eph.C_rc_3 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_rc_3_LSB;
index += 16;
gal_eph.omega_2 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 32))) * omega_2_LSB;
index += 32;
gal_eph.OMEGA_dot_3 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 24))) * OMEGA_dot_3_LSB;
index += 24;
gal_eph.BGD_E1E5a_5 = static_cast<double>(Rtcm::bin_to_int(message_bin.substr(index, 10)));
index += 10;
gal_eph.E5a_HS = static_cast<unsigned int>(Rtcm::bin_to_uint(message_bin.substr(index, 2)));
index += 2;
gal_eph.E5a_DVS = static_cast<bool>(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
return 0;
}
2015-11-21 12:01:50 +00:00
// **********************************************
//
// MESSAGE TYPE MSM1 (COMPACT PSEUDORANGES)
//
// **********************************************
std::string Rtcm::print_MSM_1( const Gps_Ephemeris & gps_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map<int, Gnss_Synchro> & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 1071; /// check for Galileo, it's 1091
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
sync_flag,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_1_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_1_content_signal_data(pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_header(unsigned int msg_number, const Gps_Ephemeris & gps_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map<int, Gnss_Synchro> & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
Rtcm::set_DF002(msg_number);
Rtcm::set_DF003(ref_id);
if(gps_eph.i_satellite_PRN != 0)
{
Rtcm::set_DF004(gps_eph, obs_time);
}
else
{
Rtcm::set_DF248(gal_eph, obs_time);
}
Rtcm::set_DF393(more_messages);
Rtcm::set_DF409(0); // Issue of Data Station. 0: not utilized
std::bitset<7> DF001_ = std::bitset<7>("0000000");
Rtcm::set_DF411(clock_steering_indicator);
Rtcm::set_DF412(external_clock_indicator);
Rtcm::set_DF417(divergence_free);
Rtcm::set_DF418(smooth_int);
Rtcm::set_DF394(pseudoranges);
Rtcm::set_DF395(pseudoranges);
std::string header = DF002.to_string() + DF003.to_string();
if(gps_eph.i_satellite_PRN != 0)
{
header += DF004.to_string();
}
else
{
header += DF248.to_string();
}
header = header + DF393.to_string() +
DF409.to_string() +
DF001_.to_string() +
DF411.to_string() +
DF417.to_string() +
DF412.to_string() +
DF418.to_string() +
DF394.to_string() +
DF395.to_string() +
Rtcm::set_DF396(pseudoranges);
return header;
}
std::string Rtcm::get_MSM_1_content_sat_data(const std::map<int, Gnss_Synchro> & pseudoranges)
{
std::string sat_data;
sat_data.clear();
Rtcm::set_DF394(pseudoranges);
unsigned int num_satellites = DF394.count();
std::vector<std::pair<int, Gnss_Synchro> > pseudoranges_vector;
std::map<int, Gnss_Synchro>::const_iterator gnss_synchro_iter;
std::vector<unsigned int> pos;
std::vector<unsigned int>::iterator it;
for(gnss_synchro_iter = pseudoranges.begin();
gnss_synchro_iter != pseudoranges.end();
gnss_synchro_iter++)
{
it = std::find (pos.begin(), pos.end(), 65 - gnss_synchro_iter->second.PRN);
if(it == pos.end())
{
pos.push_back(65 - gnss_synchro_iter->second.PRN);
pseudoranges_vector.push_back(*gnss_synchro_iter);
}
}
std::vector<std::pair<int, Gnss_Synchro> > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(pseudoranges_vector);
for(unsigned int nsat = 0; nsat < num_satellites; nsat++)
{
Rtcm::set_DF398( ordered_by_PRN_pos.at(nsat).second );
sat_data += DF398.to_string();
}
return sat_data;
}
std::string Rtcm::get_MSM_1_content_signal_data(const std::map<int, Gnss_Synchro> & pseudoranges)
{
std::string signal_data;
signal_data.clear();
unsigned int Ncells = pseudoranges.size();
std::vector<std::pair<int, Gnss_Synchro> > pseudoranges_vector;
std::map<int, Gnss_Synchro>::const_iterator gnss_synchro_iter;
for(gnss_synchro_iter = pseudoranges.begin();
gnss_synchro_iter != pseudoranges.end();
gnss_synchro_iter++)
{
pseudoranges_vector.push_back(*gnss_synchro_iter);
}
std::vector<std::pair<int, Gnss_Synchro> > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(pseudoranges_vector);
std::vector<std::pair<int, Gnss_Synchro> > ordered_by_signal = Rtcm::sort_by_signal(ordered_by_PRN_pos);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF400(ordered_by_PRN_pos.at( cell ).second);
signal_data += DF400.to_string();
}
return signal_data;
}
std::string Rtcm::get_MSM_4_content_sat_data(const std::map<int, Gnss_Synchro> & pseudoranges)
{
//std::map<int, Gnss_Synchro>::const_iterator gnss_synchro_iter;
std::string data("Not implemented");
return data;
}
// *****************************************************************************************************
// Some utilities
// *****************************************************************************************************
std::vector<std::pair<int, Gnss_Synchro> > Rtcm::sort_by_PRN_mask(const std::vector<std::pair<int, Gnss_Synchro> > & synchro_map)
{
std::vector<std::pair<int, Gnss_Synchro> >::const_iterator synchro_map_iter;
std::vector<std::pair<int, Gnss_Synchro> > my_vec;
struct {
bool operator()(const std::pair<int, Gnss_Synchro> & a, const std::pair<int, Gnss_Synchro> & b)
{
unsigned int value_a = 64 - a.second.PRN;
unsigned int value_b = 64 - b.second.PRN;
return value_a < value_b;
}
} has_lower_pos;
for(synchro_map_iter = synchro_map.begin();
synchro_map_iter != synchro_map.end();
synchro_map_iter++)
{
std::pair<int, Gnss_Synchro> p(synchro_map_iter->first, synchro_map_iter->second);
my_vec.push_back(p);
}
std::sort(my_vec.begin(), my_vec.end(), has_lower_pos);
std::reverse(my_vec.begin(), my_vec.end());
return my_vec;
}
std::vector<std::pair<int, Gnss_Synchro> > Rtcm::sort_by_signal(const std::vector<std::pair<int, Gnss_Synchro> > & synchro_map)
{
std::vector<std::pair<int, Gnss_Synchro> >::const_iterator synchro_map_iter;
std::vector<std::pair<int, Gnss_Synchro> > my_vec;
struct {
bool operator()(const std::pair<int, Gnss_Synchro> & a, const std::pair<int, Gnss_Synchro> & b)
{
unsigned int value_a = 0;
unsigned int value_b = 0;
std::string system_a(&a.second.System, 1);
std::string system_b(&b.second.System, 1);
std::string sig_a_(a.second.Signal);
std::string sig_a = sig_a_.substr(0,2);
std::string sig_b_(b.second.Signal);
std::string sig_b = sig_b_.substr(0,2);
if(system_a.compare("G") == 0)
{
value_a = gps_signal_map.at(sig_a);
}
if(system_a.compare("E") == 0)
{
value_a = galileo_signal_map.at(sig_a);
}
if(system_b.compare("G") == 0)
{
value_b = gps_signal_map.at(sig_b);
}
if(system_b.compare("E") == 0)
{
value_b = galileo_signal_map.at(sig_b);
}
return value_a < value_b;
}
} has_lower_signalID;
for(synchro_map_iter = synchro_map.begin();
synchro_map_iter != synchro_map.end();
synchro_map_iter++)
{
std::pair<int, Gnss_Synchro> p(synchro_map_iter->first, synchro_map_iter->second);
my_vec.push_back(p);
}
std::sort(my_vec.begin(), my_vec.end(), has_lower_signalID);
return my_vec;
}
auto Rtcm::gps_signal_map = []
{
std::map<std::string, int> gps_signal_map_;
// Table 3.5-91
gps_signal_map_["1C"] = 2;
gps_signal_map_["1P"] = 3;
gps_signal_map_["1W"] = 4;
gps_signal_map_["2C"] = 8;
gps_signal_map_["2P"] = 9;
gps_signal_map_["2W"] = 10;
gps_signal_map_["2S"] = 15;
gps_signal_map_["2L"] = 16;
gps_signal_map_["2X"] = 17;
gps_signal_map_["5I"] = 22;
gps_signal_map_["5Q"] = 23;
gps_signal_map_["5X"] = 24;
return gps_signal_map_;
}();
auto Rtcm::galileo_signal_map = []
{
std::map<std::string, int> galileo_signal_map_;
// Table 3.5-100
galileo_signal_map_["1C"] = 2;
galileo_signal_map_["1A"] = 3;
galileo_signal_map_["1B"] = 4;
galileo_signal_map_["1X"] = 5;
galileo_signal_map_["1Z"] = 6;
galileo_signal_map_["6C"] = 8;
galileo_signal_map_["6A"] = 9;
galileo_signal_map_["6B"] = 10;
galileo_signal_map_["6X"] = 11;
galileo_signal_map_["6Z"] = 12;
galileo_signal_map_["7I"] = 14;
galileo_signal_map_["7Q"] = 15;
galileo_signal_map_["7X"] = 16;
galileo_signal_map_["8I"] = 18;
galileo_signal_map_["8Q"] = 19;
galileo_signal_map_["8X"] = 20;
galileo_signal_map_["5I"] = 22;
galileo_signal_map_["5Q"] = 23;
galileo_signal_map_["5X"] = 24;
return galileo_signal_map_;
}();
2015-11-21 12:01:50 +00:00
// *****************************************************************************************************
//
// DATA FIELDS AS DEFINED AT RTCM STANDARD 10403.2
//
// *****************************************************************************************************
int Rtcm::reset_data_fields()
{
//DF001.reset();
DF002.reset();
DF003.reset();
DF004.reset();
DF005.reset();
DF006.reset();
DF007.reset();
DF008.reset();
DF009.reset();
DF010.reset();
DF011.reset();
DF012.reset();
DF013.reset();
DF014.reset();
DF015.reset();
// Contents of GPS Satellite Ephemeris Data, Message Type 1019
DF071.reset();
DF076.reset();
DF077.reset();
DF078.reset();
DF079.reset();
DF081.reset();
DF082.reset();
DF083.reset();
DF084.reset();
DF085.reset();
DF086.reset();
DF087.reset();
DF088.reset();
DF089.reset();
DF090.reset();
DF091.reset();
DF092.reset();
DF093.reset();
DF094.reset();
DF095.reset();
DF096.reset();
DF097.reset();
DF098.reset();
DF099.reset();
DF100.reset();
DF101.reset();
DF102.reset();
DF103.reset();
DF137.reset();
DF248.reset();
2015-11-21 12:01:50 +00:00
// Contents of Galileo F/NAV Satellite Ephemeris Data, Message Type 1045
DF252.reset();
DF289.reset();
DF290.reset();
DF291.reset();
DF292.reset();
DF293.reset();
DF294.reset();
DF295.reset();
DF296.reset();
DF297.reset();
DF298.reset();
DF299.reset();
DF300.reset();
DF301.reset();
DF302.reset();
DF303.reset();
DF304.reset();
DF305.reset();
DF306.reset();
DF307.reset();
DF308.reset();
DF309.reset();
DF310.reset();
DF311.reset();
DF312.reset();
DF314.reset();
DF315.reset();
DF364.reset();
DF393.reset();
DF394.reset();
DF395.reset();
DF397.reset();
DF398.reset();
DF399.reset();
2015-11-21 12:01:50 +00:00
DF409.reset();
DF400.reset();
2015-11-21 12:01:50 +00:00
DF411.reset();
DF412.reset();
DF417.reset();
DF418.reset();
DF420.reset();
2015-11-21 12:01:50 +00:00
return 0;
}
int Rtcm::set_DF002(unsigned int message_number)
{
if (message_number > 4095)
{
LOG(WARNING) << "RTCM message number must be between 0 and 4095, but it has been set to " << message_number;
}
DF002 = std::bitset<12>(message_number);
return 0;
}
int Rtcm::set_DF003(unsigned int ref_station_ID)
{
//unsigned int station_ID = ref_station_ID;
if (ref_station_ID > 4095)
{
LOG(WARNING) << "RTCM reference station ID must be between 0 and 4095, but it has been set to " << ref_station_ID;
}
DF003 = std::bitset<12>(ref_station_ID);
return 0;
}
int Rtcm::set_DF004(const Gps_Ephemeris & gps_eph, double obs_time)
{
// TOW in milliseconds from the beginning of the GPS week, measured in GPS time
unsigned long int tow = static_cast<unsigned long int>(std::round((obs_time + 604800 * static_cast<double>(gps_eph.i_GPS_week % 1024)) * 1000));
if(tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
tow = 604799999;
}
DF004 = std::bitset<30>(tow);
return 0;
}
int Rtcm::set_DF005(bool sync_flag)
{
// 0 - No further GNSS observables referenced to the same Epoch Time will be transmitted. This enables the receiver to begin processing
// the data immediately after decoding the message.
// 1 - The next message will contain observables of another GNSS source referenced to the same Epoch Time.
DF005 = std::bitset<1>(sync_flag);
return 0;
}
int Rtcm::set_DF006(const std::map<int, Gnss_Synchro> & pseudoranges)
{
//Number of satellites observed in current epoch
unsigned short int nsats = 0;
std::map<int, Gnss_Synchro>::const_iterator pseudoranges_iter;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
nsats++;
}
if (nsats > 31)
{
LOG(WARNING) << "The number of processed GPS satellites must be between 0 and 31, but it seems that you are processing " << nsats;
nsats = 31;
}
DF006 = std::bitset<5>(nsats);
return 0;
}
int Rtcm::set_DF007(bool divergence_free_smoothing_indicator)
{
// 0 - Divergence-free smoothing not used 1 - Divergence-free smoothing used
DF007 = std::bitset<1>(divergence_free_smoothing_indicator);
return 0;
}
int Rtcm::set_DF008(short int smoothing_interval)
{
2015-11-23 02:23:56 +00:00
DF008 = std::bitset<3>(smoothing_interval);
2015-11-21 12:01:50 +00:00
return 0;
}
int Rtcm::set_DF009(const Gnss_Synchro & gnss_synchro)
{
unsigned int prn_ = gnss_synchro.PRN;
if(prn_ > 31)
{
LOG(WARNING) << "GPS satellite ID must be between 0 and 31, but PRN " << prn_ << " was found";
}
DF009 = std::bitset<6>(prn_);
return 0;
}
int Rtcm::set_DF009(const Gps_Ephemeris & gps_eph)
{
unsigned int prn_ = gps_eph.i_satellite_PRN;
if(prn_ > 31)
{
LOG(WARNING) << "GPS satellite ID must be between 0 and 31, but PRN " << prn_ << " was found";
}
DF009 = std::bitset<6>(prn_);
return 0;
}
int Rtcm::set_DF010(bool code_indicator)
{
DF010 = std::bitset<1>(code_indicator);
return 0;
}
int Rtcm::set_DF011(const Gnss_Synchro & gnss_synchro)
{
double ambiguity = std::floor( gnss_synchro.Pseudorange_m / 299792.458 );
unsigned long int gps_L1_pseudorange = static_cast<unsigned long int>(std::round(( gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02 ));
2015-11-21 12:01:50 +00:00
DF011 = std::bitset<24>(gps_L1_pseudorange);
return 0;
}
int Rtcm::set_DF012(const Gnss_Synchro & gnss_synchro)
{
const double lambda = GPS_C_m_s / GPS_L1_FREQ_HZ;
double ambiguity = std::floor( gnss_synchro.Pseudorange_m / 299792.458 );
double gps_L1_pseudorange = std::round(( gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02 );
double gps_L1_pseudorange_c = static_cast<double>(gps_L1_pseudorange) * 0.02 + ambiguity * 299792.458;
double L1_phaserange_c = gnss_synchro.Carrier_phase_rads / GPS_TWO_PI;
double L1_phaserange_c_r = std::fmod(L1_phaserange_c - gps_L1_pseudorange_c / lambda + 1500.0, 3000.0) - 1500.0;
long int gps_L1_phaserange_minus_L1_pseudorange = static_cast<long int>(std::round(L1_phaserange_c_r * lambda / 0.0005 ));
2015-11-21 12:01:50 +00:00
DF012 = std::bitset<20>(gps_L1_phaserange_minus_L1_pseudorange);
return 0;
}
int Rtcm::set_DF014(const Gnss_Synchro & gnss_synchro)
{
unsigned int gps_L1_pseudorange_ambiguity = static_cast<unsigned int>(std::floor(gnss_synchro.Pseudorange_m / 299792.458));
DF014 = std::bitset<8>(gps_L1_pseudorange_ambiguity);
return 0;
}
int Rtcm::set_DF015(const Gnss_Synchro & gnss_synchro)
{
double CN0_dB_Hz_est = gnss_synchro.CN0_dB_hz;
if (CN0_dB_Hz_est > 63.75)
{
CN0_dB_Hz_est = 63.75;
}
unsigned int CN0_dB_Hz = static_cast<unsigned int>(std::round(CN0_dB_Hz_est / 0.25 ));
DF015 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
int Rtcm::set_DF021()
{
unsigned short int itfr_year = 0;
DF021 = std::bitset<6>(itfr_year);
return 0;
}
int Rtcm::set_DF022(bool gps_indicator)
{
DF022 = std::bitset<1>(gps_indicator);
return 0;
}
int Rtcm::set_DF023(bool glonass_indicator)
{
DF023 = std::bitset<1>(glonass_indicator);
return 0;
}
int Rtcm::set_DF024(bool galileo_indicator)
{
DF024 = std::bitset<1>(galileo_indicator);
return 0;
}
int Rtcm::set_DF025(double antenna_ECEF_X_m)
{
long long int ant_ref_x = static_cast<long long int>(std::round( antenna_ECEF_X_m * 10000));
DF025 = std::bitset<38>(ant_ref_x);
return 0;
}
int Rtcm::set_DF026(double antenna_ECEF_Y_m)
{
long long int ant_ref_y = static_cast<long long int>(std::round( antenna_ECEF_Y_m * 10000));
DF026 = std::bitset<38>(ant_ref_y);
return 0;
}
int Rtcm::set_DF027(double antenna_ECEF_Z_m)
{
long long int ant_ref_z = static_cast<long long int>(std::round( antenna_ECEF_Z_m * 10000));
DF027 = std::bitset<38>(ant_ref_z);
return 0;
}
int Rtcm::set_DF071(const Gps_Ephemeris & gps_eph)
{
unsigned int iode = static_cast<unsigned int>(gps_eph.d_IODE_SF2);
DF071 = std::bitset<8>(iode);
return 0;
}
int Rtcm::set_DF076(const Gps_Ephemeris & gps_eph)
{
unsigned int week_number = static_cast<unsigned int>(gps_eph.i_GPS_week);
DF076 = std::bitset<10>(week_number);
return 0;
}
int Rtcm::set_DF077(const Gps_Ephemeris & gps_eph)
{
unsigned short int ura = static_cast<unsigned short int>(gps_eph.i_SV_accuracy);
DF077 = std::bitset<4>(ura);
return 0;
}
int Rtcm::set_DF078(const Gps_Ephemeris & gps_eph)
{
unsigned short int code_on_L2 = static_cast<unsigned short int>(gps_eph.i_code_on_L2);
DF078 = std::bitset<2>(code_on_L2);
return 0;
}
int Rtcm::set_DF079(const Gps_Ephemeris & gps_eph)
{
unsigned int idot = static_cast<unsigned int>(std::round(gps_eph.d_IDOT / I_DOT_LSB ));
DF079 = std::bitset<14>(idot);
return 0;
}
int Rtcm::set_DF080(const Gps_Ephemeris & gps_eph)
{
unsigned short int iode = static_cast<unsigned short int>(gps_eph.d_IODE_SF2);
DF080 = std::bitset<8>(iode);
return 0;
}
int Rtcm::set_DF081(const Gps_Ephemeris & gps_eph)
{
unsigned int toc = static_cast<unsigned int>(std::round(gps_eph.d_Toc / T_OC_LSB ));
DF081 = std::bitset<16>(toc);
return 0;
}
int Rtcm::set_DF082(const Gps_Ephemeris & gps_eph)
{
short int af2 = static_cast<short int>(std::round(gps_eph.d_A_f2 / A_F2_LSB ));
DF082 = std::bitset<8>(af2);
return 0;
}
int Rtcm::set_DF083(const Gps_Ephemeris & gps_eph)
{
int af1 = static_cast<int>(std::round(gps_eph.d_A_f1 / A_F1_LSB ));
DF083 = std::bitset<16>(af1);
return 0;
}
int Rtcm::set_DF084(const Gps_Ephemeris & gps_eph)
{
long int af0 = static_cast<long int>(std::round(gps_eph.d_A_f0 / A_F0_LSB ));
DF084 = std::bitset<22>(af0);
return 0;
}
int Rtcm::set_DF085(const Gps_Ephemeris & gps_eph)
{
unsigned int iodc = static_cast<unsigned int>(gps_eph.d_IODC);
DF085 = std::bitset<10>(iodc);
return 0;
}
int Rtcm::set_DF086(const Gps_Ephemeris & gps_eph)
{
int crs = static_cast<int>(std::round(gps_eph.d_Crs / C_RS_LSB ));
DF086 = std::bitset<16>(crs);
return 0;
}
int Rtcm::set_DF087(const Gps_Ephemeris & gps_eph)
{
int delta_n = static_cast<int>(std::round(gps_eph.d_Delta_n / DELTA_N_LSB ));
DF087 = std::bitset<16>(delta_n);
return 0;
}
int Rtcm::set_DF088(const Gps_Ephemeris & gps_eph)
{
long int m0 = static_cast<long int>(std::round(gps_eph.d_M_0 / M_0_LSB ));
DF088 = std::bitset<32>(m0);
return 0;
}
int Rtcm::set_DF089(const Gps_Ephemeris & gps_eph)
{
int cuc = static_cast<int>(std::round(gps_eph.d_Cuc / C_UC_LSB ));
DF089 = std::bitset<16>(cuc);
return 0;
}
int Rtcm::set_DF090(const Gps_Ephemeris & gps_eph)
{
unsigned long int ecc = static_cast<unsigned long int>(std::round(gps_eph.d_e_eccentricity / E_LSB ));
DF090 = std::bitset<32>(ecc);
return 0;
}
int Rtcm::set_DF091(const Gps_Ephemeris & gps_eph)
{
int cus = static_cast<int>(std::round(gps_eph.d_Cus / C_US_LSB ));
DF091 = std::bitset<16>(cus);
return 0;
}
int Rtcm::set_DF092(const Gps_Ephemeris & gps_eph)
{
unsigned long int sqr_a = static_cast<unsigned long int>(std::round(gps_eph.d_sqrt_A / SQRT_A_LSB ));
DF092 = std::bitset<32>(sqr_a);
return 0;
}
int Rtcm::set_DF093(const Gps_Ephemeris & gps_eph)
{
unsigned int toe = static_cast<unsigned int>(std::round(gps_eph.d_Toe / T_OE_LSB ));
DF093 = std::bitset<16>(toe);
return 0;
}
int Rtcm::set_DF094(const Gps_Ephemeris & gps_eph)
{
int cic = static_cast<int>(std::round(gps_eph.d_Cic / C_IC_LSB ));
DF094 = std::bitset<16>(cic);
return 0;
}
int Rtcm::set_DF095(const Gps_Ephemeris & gps_eph)
{
long int Omega0 = static_cast<long int>(std::round(gps_eph.d_OMEGA0 / OMEGA_0_LSB ));
DF095 = std::bitset<32>(Omega0);
return 0;
}
int Rtcm::set_DF096(const Gps_Ephemeris & gps_eph)
{
int cis = static_cast<int>(std::round(gps_eph.d_Cis / C_IS_LSB ));
DF096 = std::bitset<16>(cis);
return 0;
}
int Rtcm::set_DF097(const Gps_Ephemeris & gps_eph)
{
long int i0 = static_cast<long int>(std::round(gps_eph.d_i_0 / I_0_LSB ));
DF097 = std::bitset<32>(i0);
return 0;
}
int Rtcm::set_DF098(const Gps_Ephemeris & gps_eph)
{
int crc = static_cast<int>(std::round(gps_eph.d_Crc / C_RC_LSB ));
DF098 = std::bitset<16>(crc);
return 0;
}
int Rtcm::set_DF099(const Gps_Ephemeris & gps_eph)
{
long int omega = static_cast<long int>(std::round(gps_eph.d_OMEGA / OMEGA_LSB ));
DF099 = std::bitset<32>(omega);
return 0;
}
int Rtcm::set_DF100(const Gps_Ephemeris & gps_eph)
{
long int omegadot = static_cast<long int>(std::round(gps_eph.d_OMEGA_DOT / OMEGA_DOT_LSB ));
DF100 = std::bitset<24>(omegadot);
return 0;
}
int Rtcm::set_DF101(const Gps_Ephemeris & gps_eph)
{
short int tgd = static_cast<short int>(std::round(gps_eph.d_TGD / T_GD_LSB ));
DF101 = std::bitset<8>(tgd);
return 0;
}
int Rtcm::set_DF102(const Gps_Ephemeris & gps_eph)
{
unsigned short int sv_heath = static_cast<unsigned short int>(gps_eph.i_SV_health);
DF102 = std::bitset<6>(sv_heath);
return 0;
}
int Rtcm::set_DF103(const Gps_Ephemeris & gps_eph)
{
DF103 = std::bitset<1>(gps_eph.b_L2_P_data_flag);
return 0;
}
int Rtcm::set_DF137(const Gps_Ephemeris & gps_eph)
{
DF137 = std::bitset<1>(gps_eph.b_fit_interval_flag);
return 0;
}
int Rtcm::set_DF248(const Galileo_Ephemeris & gal_eph, double obs_time)
{
// TOW in milliseconds from the beginning of the Galileo week, measured in Galileo time
unsigned long int tow = static_cast<unsigned long int>(std::round((obs_time + 604800 * static_cast<double>(gal_eph.WN_5)) * 1000));
if(tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
tow = 604799999;
}
DF248 = std::bitset<30>(tow);
return 0;
}
2015-11-21 12:01:50 +00:00
int Rtcm::set_DF252(const Galileo_Ephemeris & gal_eph)
{
unsigned int prn_ = gal_eph.i_satellite_PRN;
if(prn_ > 63)
{
LOG(WARNING) << "Galileo satellite ID must be between 0 and 63, but PRN " << prn_ << " was found";
}
DF252 = std::bitset<6>(prn_);
return 0;
}
int Rtcm::set_DF289(const Galileo_Ephemeris & gal_eph)
{
unsigned int galileo_week_number = static_cast<unsigned int>(gal_eph.WN_5);
if(galileo_week_number > 4095)
{
LOG(WARNING) << "Error decoding Galileo week number (it has a 4096 roll-off, but " << galileo_week_number << " was detected)";
}
DF289 = std::bitset<12>(galileo_week_number);
return 0;
}
int Rtcm::set_DF290(const Galileo_Ephemeris & gal_eph)
{
unsigned int iod_nav = static_cast<unsigned int>(gal_eph.IOD_nav_1);
if(iod_nav > 1023)
{
LOG(WARNING) << "Error decoding Galileo IODnav (it has a max of 1023, but " << iod_nav << " was detected)";
}
DF290 = std::bitset<10>(iod_nav);
return 0;
}
int Rtcm::set_DF291(const Galileo_Ephemeris & gal_eph)
{
unsigned short int SISA = static_cast<unsigned short int>(gal_eph.SISA_3);
//SISA = 0; // SIS Accuracy, data content definition not given in Galileo OS SIS ICD, Issue 1.1, Sept 2010
DF291 = std::bitset<8>(SISA);
return 0;
}
int Rtcm::set_DF292(const Galileo_Ephemeris & gal_eph)
{
int idot = static_cast<int>(std::round(gal_eph.iDot_2 / FNAV_idot_2_LSB));
DF292 = std::bitset<14>(idot);
return 0;
}
int Rtcm::set_DF293(const Galileo_Ephemeris & gal_eph)
{
unsigned int toc = static_cast<unsigned int>(gal_eph.t0c_4);
if(toc > 604740)
{
LOG(WARNING) << "Error decoding Galileo ephemeris time (max of 604740, but " << toc << " was detected)";
}
DF293 = std::bitset<14>(toc);
return 0;
}
int Rtcm::set_DF294(const Galileo_Ephemeris & gal_eph)
{
short int af2 = static_cast<short int>(std::round(gal_eph.af2_4 / FNAV_af2_1_LSB));
DF294 = std::bitset<6>(af2);
return 0;
}
int Rtcm::set_DF295(const Galileo_Ephemeris & gal_eph)
{
long int af1 = static_cast<long int>(std::round(gal_eph.af1_4 / FNAV_af1_1_LSB));
DF295 = std::bitset<21>(af1);
return 0;
}
int Rtcm::set_DF296(const Galileo_Ephemeris & gal_eph)
{
long int af0 = static_cast<unsigned int>(std::round(gal_eph.af0_4 / FNAV_af0_1_LSB));
DF296 = std::bitset<31>(af0);
return 0;
}
int Rtcm::set_DF297(const Galileo_Ephemeris & gal_eph)
{
int crs = static_cast<int>(std::round(gal_eph.C_rs_3 / FNAV_Crs_3_LSB));
DF297 = std::bitset<16>(crs);
return 0;
}
int Rtcm::set_DF298(const Galileo_Ephemeris & gal_eph)
{
int delta_n = static_cast<int>(std::round(gal_eph.delta_n_3 / FNAV_deltan_3_LSB));
DF298 = std::bitset<16>(delta_n);
return 0;
}
int Rtcm::set_DF299(const Galileo_Ephemeris & gal_eph)
{
long int m0 = static_cast<long int>(std::round(gal_eph.M0_1 / FNAV_M0_2_LSB));
DF299 = std::bitset<32>(m0);
return 0;
}
int Rtcm::set_DF300(const Galileo_Ephemeris & gal_eph)
{
int cuc = static_cast<unsigned int>(std::round(gal_eph.C_uc_3 / FNAV_Cuc_3_LSB));
DF300 = std::bitset<16>(cuc);
return 0;
}
int Rtcm::set_DF301(const Galileo_Ephemeris & gal_eph)
{
unsigned long int ecc = static_cast<unsigned long int>(std::round(gal_eph.e_1 / FNAV_e_2_LSB));
DF301 = std::bitset<32>(ecc);
return 0;
}
int Rtcm::set_DF302(const Galileo_Ephemeris & gal_eph)
{
int cus = static_cast<int>(std::round(gal_eph.C_us_3 / FNAV_Cus_3_LSB));
DF302 = std::bitset<16>(cus);
return 0;
}
int Rtcm::set_DF303(const Galileo_Ephemeris & gal_eph)
{
unsigned long int sqr_a = static_cast<unsigned long int>(std::round(gal_eph.A_1 / FNAV_a12_2_LSB));
DF303 = std::bitset<32>(sqr_a);
return 0;
}
int Rtcm::set_DF304(const Galileo_Ephemeris & gal_eph)
{
unsigned int toe = static_cast<unsigned int>(std::round(gal_eph.t0e_1 / FNAV_t0e_3_LSB));
DF304 = std::bitset<14>(toe);
return 0;
}
int Rtcm::set_DF305(const Galileo_Ephemeris & gal_eph)
{
int cic = static_cast<int>(std::round(gal_eph.C_ic_4 / FNAV_Cic_4_LSB));
DF305 = std::bitset<16>(cic);
return 0;
}
int Rtcm::set_DF306(const Galileo_Ephemeris & gal_eph)
{
long int Omega0 = static_cast<long int>(std::round(gal_eph.OMEGA_0_2 / FNAV_omega0_2_LSB));
DF306 = std::bitset<32>(Omega0);
return 0;
}
int Rtcm::set_DF307(const Galileo_Ephemeris & gal_eph)
{
int cis = static_cast<int>(std::round(gal_eph.C_is_4 / FNAV_Cis_4_LSB));
DF307 = std::bitset<16>(cis);
return 0;
}
int Rtcm::set_DF308(const Galileo_Ephemeris & gal_eph)
{
long int i0 = static_cast<long int>(std::round(gal_eph.i_0_2 / FNAV_i0_3_LSB));
DF308 = std::bitset<32>(i0);
return 0;
}
int Rtcm::set_DF309(const Galileo_Ephemeris & gal_eph)
{
int crc = static_cast<unsigned int>(std::round(gal_eph.C_rc_3 / FNAV_Crc_3_LSB));
DF309 = std::bitset<16>(crc);
return 0;
}
int Rtcm::set_DF310(const Galileo_Ephemeris & gal_eph)
{
int omega = static_cast<int>(std::round(gal_eph.omega_2 / FNAV_omega0_2_LSB));
DF310 = std::bitset<32>(omega);
return 0;
}
int Rtcm::set_DF311(const Galileo_Ephemeris & gal_eph)
{
long int Omegadot = static_cast<long int>(std::round(gal_eph.OMEGA_dot_3 / FNAV_omegadot_2_LSB));
DF311 = std::bitset<24>(Omegadot);
return 0;
}
int Rtcm::set_DF312(const Galileo_Ephemeris & gal_eph)
{
int bdg_E1_E5a = static_cast<int>(std::round(gal_eph.BGD_E1E5a_5 / FNAV_BGD_1_LSB));
DF312 = std::bitset<10>(bdg_E1_E5a);
return 0;
}
int Rtcm::set_DF313(const Galileo_Ephemeris & gal_eph)
{
unsigned int bdg_E5b_E1 = static_cast<unsigned int>(std::round(gal_eph.BGD_E1E5b_5 ));
//bdg_E5b_E1 = 0; //reserved
DF313 = std::bitset<10>(bdg_E5b_E1);
return 0;
}
int Rtcm::set_DF314(const Galileo_Ephemeris & gal_eph)
{
DF314 = std::bitset<2>(gal_eph.E5a_HS);
return 0;
}
int Rtcm::set_DF315(const Galileo_Ephemeris & gal_eph)
{
DF315 = std::bitset<1>(gal_eph.E5a_DVS);
return 0;
}
int Rtcm::set_DF393(bool more_messages)
{
DF393 = std::bitset<1>(more_messages);
return 0;
}
int Rtcm::set_DF394(const std::map<int, Gnss_Synchro> & gnss_synchro)
{
DF394.reset();
std::map<int, Gnss_Synchro>::const_iterator gnss_synchro_iter;
unsigned int mask_position;
for(gnss_synchro_iter = gnss_synchro.begin();
gnss_synchro_iter != gnss_synchro.end();
gnss_synchro_iter++)
{
mask_position = 64 - gnss_synchro_iter->second.PRN;
2015-11-21 12:01:50 +00:00
DF394.set(mask_position, true);
}
return 0;
}
int Rtcm::set_DF395(const std::map<int, Gnss_Synchro> & gnss_synchro)
{
DF395.reset();
if(gnss_synchro.size() == 0)
{
return 1;
}
2015-11-21 12:01:50 +00:00
std::map<int, Gnss_Synchro>::const_iterator gnss_synchro_iter;
std::string sig;
unsigned int mask_position;
for(gnss_synchro_iter = gnss_synchro.begin();
gnss_synchro_iter != gnss_synchro.end();
gnss_synchro_iter++)
{
std::string sig_(gnss_synchro_iter->second.Signal);
sig = sig_.substr(0,2);
std::string sys(&gnss_synchro_iter->second.System, 1);
2015-11-21 12:01:50 +00:00
if ((sig.compare("1C") == 0) && (sys.compare("G") == 0 ) )
{
mask_position = 32 - 2;
2015-11-21 12:01:50 +00:00
DF395.set(mask_position, true);
}
if ((sig.compare("2S") == 0) && (sys.compare("G") == 0 ) )
{
mask_position = 32 - 15;
2015-11-21 12:01:50 +00:00
DF395.set(mask_position, true);
}
if ((sig.compare("5X") == 0) && (sys.compare("G") == 0 ) )
{
mask_position = 32 - 24;
2015-11-21 12:01:50 +00:00
DF395.set(mask_position, true);
}
if ((sig.compare("1B") == 0) && (sys.compare("E") == 0 ) )
{
mask_position = 32 - 4;
2015-11-21 12:01:50 +00:00
DF395.set(mask_position, true);
}
if ((sig.compare("5X") == 0) && (sys.compare("E") == 0 ) )
{
mask_position = 32 - 24;
2015-11-21 12:01:50 +00:00
DF395.set(mask_position, true);
}
if ((sig.compare("7X") == 0) && (sys.compare("E") == 0 ) )
{
mask_position = 32 - 16;
2015-11-21 12:01:50 +00:00
DF395.set(mask_position, true);
}
}
2015-11-21 12:01:50 +00:00
return 0;
}
std::string Rtcm::set_DF396(const std::map<int, Gnss_Synchro> & pseudoranges)
{
std::string DF396;
std::map<int, Gnss_Synchro>::const_iterator pseudoranges_iter;
Rtcm::set_DF394(pseudoranges);
Rtcm::set_DF395(pseudoranges);
unsigned int num_signals = DF395.count();
unsigned int num_satellites = DF394.count();
if ((num_signals == 0) || (num_satellites == 0))
{
std::string s("");
return s;
}
std::vector<std::vector<bool> > matrix(num_signals, std::vector<bool>());
std::string sig;
std::vector<unsigned int> list_of_sats;
std::vector<int> list_of_signals;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
list_of_sats.push_back(pseudoranges_iter->second.PRN);
std::string sig_(pseudoranges_iter->second.Signal);
sig = sig_.substr(0,2);
std::string sys(&pseudoranges_iter->second.System, 1);
if ((sig.compare("1C") == 0) && (sys.compare("G") == 0 ) )
{
list_of_signals.push_back(32 - 2);
}
if ((sig.compare("2S") == 0) && (sys.compare("G") == 0 ) )
{
list_of_signals.push_back(32 - 15);
}
if ((sig.compare("5X") == 0) && (sys.compare("G") == 0 ) )
{
list_of_signals.push_back(32 - 24);
}
if ((sig.compare("1B") == 0) && (sys.compare("E") == 0 ) )
{
list_of_signals.push_back(32 - 4);
}
if ((sig.compare("5X") == 0) && (sys.compare("E") == 0 ) )
{
list_of_signals.push_back(32 - 24);
}
if ((sig.compare("7X") == 0) && (sys.compare("E") == 0 ) )
{
list_of_signals.push_back(32 - 16);
}
}
std::sort( list_of_sats.begin(), list_of_sats.end() );
list_of_sats.erase( std::unique( list_of_sats.begin(), list_of_sats.end() ), list_of_sats.end() );
std::sort( list_of_signals.begin(), list_of_signals.end() );
std::reverse(list_of_signals.begin(), list_of_signals.end());
list_of_signals.erase( std::unique( list_of_signals.begin(), list_of_signals.end() ), list_of_signals.end() );
// fill the matrix
bool value;
for(unsigned int row = 0; row < num_signals; row++)
{
for(unsigned int sat = 0; sat < num_satellites; sat++)
{
value = false;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
std::string sig_(pseudoranges_iter->second.Signal);
sig = sig_.substr(0,2);
std::string sys(&pseudoranges_iter->second.System, 1);
if ((sig.compare("1C") == 0) && (sys.compare("G") == 0 ) && (list_of_signals.at(row) == 32 - 2) && (pseudoranges_iter->second.PRN == list_of_sats.at(sat) ) )
{
value = true;
}
if ((sig.compare("2S") == 0) && (sys.compare("G") == 0 ) && (list_of_signals.at(row) == 32 - 15) && (pseudoranges_iter->second.PRN == list_of_sats.at(sat) ) )
{
value = true;
}
if ((sig.compare("5X") == 0) && (sys.compare("G") == 0 ) && (list_of_signals.at(row) == 32 - 24) && (pseudoranges_iter->second.PRN == list_of_sats.at(sat) ) )
{
value = true;
}
if ((sig.compare("1B") == 0) && (sys.compare("E") == 0 ) && (list_of_signals.at(row) == 32 - 4) && (pseudoranges_iter->second.PRN == list_of_sats.at(sat) ) )
{
value = true;
}
if ((sig.compare("5X") == 0) && (sys.compare("E") == 0 ) && (list_of_signals.at(row) == 32 - 24) && (pseudoranges_iter->second.PRN == list_of_sats.at(sat) ) )
{
value = true;
}
if ((sig.compare("7X") == 0) && (sys.compare("E") == 0 ) && (list_of_signals.at(row) == 32 - 16) && (pseudoranges_iter->second.PRN == list_of_sats.at(sat) ) )
{
value = true;
}
}
matrix[row].push_back(value);
}
}
// write the matrix column-wise
DF396.clear();
for(unsigned int col = 0; col < num_satellites; col++)
{
for(unsigned int row = 0; row < num_signals; row++)
{
std::string ss;
if(matrix[row].at(col))
{
ss = "1";
}
else
{
ss = "0";
}
DF396 += ss;
}
}
return DF396;
}
int Rtcm::set_DF397(const Gnss_Synchro & gnss_synchro)
{
double meters_to_miliseconds = GPS_C_m_s * 0.001;
double rough_range_s = std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10;
unsigned int int_ms = 0;
if (rough_range_s == 0.0)
{
int_ms = 255;
}
else if((rough_range_s < 0.0) || (rough_range_s > meters_to_miliseconds * 255.0))
{
int_ms = 255;
}
else
{
int_ms = static_cast<unsigned int>(std::floor(rough_range_s / meters_to_miliseconds / TWO_N10) + 0.5) >> 10;
}
DF397 = std::bitset<8>(int_ms);
return 0;
}
int Rtcm::set_DF398(const Gnss_Synchro & gnss_synchro)
{
double meters_to_miliseconds = GPS_C_m_s * 0.001;
double rough_range_m = std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10;
unsigned int rr_mod_ms;
if((rough_range_m <= 0.0) || (rough_range_m > meters_to_miliseconds * 255.0))
{
rr_mod_ms = 0;
}
else
{
rr_mod_ms = static_cast<unsigned int>(std::floor(rough_range_m / meters_to_miliseconds / TWO_N10) + 0.5) & 0x3FFu;
}
DF398 = std::bitset<10>(rr_mod_ms);
return 0;
}
int Rtcm::set_DF399(const Gnss_Synchro & gnss_synchro)
{
double lambda = 0.0;
std::string sig_(gnss_synchro.Signal);
std::string sig = sig_.substr(0,2);
if (sig.compare("1C") == 0 )
{
lambda = GPS_C_m_s / GPS_L1_FREQ_HZ;
}
if (sig.compare("2S") == 0 )
{
lambda = GPS_C_m_s / GPS_L2_FREQ_HZ;
}
if (sig.compare("5X") == 0 )
{
lambda = GPS_C_m_s / Galileo_E5a_FREQ_HZ;
}
if (sig.compare("1B") == 0 )
{
lambda = GPS_C_m_s / Galileo_E1_FREQ_HZ;
}
double rough_phase_range_ms = std::round(- gnss_synchro.Carrier_Doppler_hz / lambda);
DF399 = std::bitset<14>(static_cast<int>(rough_phase_range_ms));
return 0;
}
2015-11-21 12:01:50 +00:00
int Rtcm::set_DF400(const Gnss_Synchro & gnss_synchro)
{
double meters_to_miliseconds = GPS_C_m_s * 0.001;
double rough_range_m = std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10;
double psrng_s;
int fine_pseudorange;
psrng_s = gnss_synchro.Pseudorange_m - rough_range_m;
if(psrng_s == 0)
{
fine_pseudorange = - 16384;
}
else if(std::fabs(psrng_s) > 292.7)
{
fine_pseudorange = - 16384;
}
else
{
fine_pseudorange = static_cast<int>(std::round(psrng_s / meters_to_miliseconds / TWO_N24));
}
DF400 = std::bitset<15>(fine_pseudorange);
return 0;
}
2015-11-21 12:01:50 +00:00
int Rtcm::set_DF409(unsigned int iods)
{
DF409 = std::bitset<3>(iods);
return 0;
}
int Rtcm::set_DF411(unsigned int clock_steering_indicator)
{
DF411 = std::bitset<2>(clock_steering_indicator);
return 0;
}
int Rtcm::set_DF412(unsigned int external_clock_indicator)
{
DF412 = std::bitset<2>(external_clock_indicator);
return 0;
}
2015-11-21 12:01:50 +00:00
int Rtcm::set_DF417(bool using_divergence_free_smoothing)
{
DF417 = std::bitset<1>(using_divergence_free_smoothing);
return 0;
}
int Rtcm::set_DF418(int carrier_smoothing_interval_s)
{
unsigned int smoothing_int = abs(carrier_smoothing_interval_s);
if(carrier_smoothing_interval_s < 0)
{
DF418 = std::bitset<3>("111");
}
else
{
if(carrier_smoothing_interval_s == 0)
{
DF418 = std::bitset<3>("000");
}
else if(carrier_smoothing_interval_s < 30)
{
DF418 = std::bitset<3>("001");
}
else if(carrier_smoothing_interval_s < 60)
{
DF418 = std::bitset<3>("010");
}
else if(carrier_smoothing_interval_s < 120)
{
DF418 = std::bitset<3>("011");
}
else if(carrier_smoothing_interval_s < 240)
{
DF418 = std::bitset<3>("100");
}
else if(carrier_smoothing_interval_s < 480)
{
DF418 = std::bitset<3>("101");
}
else
{
DF418 = std::bitset<3>("110");
}
}
return 0;
}
int Rtcm::set_DF420(const Gnss_Synchro & gnss_synchro)
{
// todo: read the value from gnss_synchro
bool half_cycle_ambiguity_indicator = true;
DF420 = std::bitset<1>(half_cycle_ambiguity_indicator);
return 0;
}