1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 05:00:35 +00:00
gnss-sdr/src/tests/unit-tests/arithmetic/complex_carrier_test.cc

144 lines
5.3 KiB
C++
Raw Normal View History

/*!
* \file complex_carrier_test.cc
* \brief This file implements tests for the generation of complex exponentials.
* \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
2015-01-08 18:49:59 +00:00
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
2019-03-05 18:31:41 +00:00
#include "GPS_L1_CA.h"
#include "gnss_signal_processing.h"
#include <armadillo>
#include <chrono>
#include <complex>
DEFINE_int32(size_carrier_test, 100000, "Size of the arrays used for complex carrier testing");
TEST(ComplexCarrierTest, StandardComplexImplementation)
{
// Dynamic allocation creates new usable space on the program STACK
// (an area of RAM specifically allocated to the program)
2019-02-11 14:33:24 +00:00
auto* output = new std::complex<float>[FLAGS_size_carrier_test];
const double _f = 2000.0;
const double _fs = 2000000.0;
2019-02-11 14:33:24 +00:00
const auto phase_step = static_cast<double>((GPS_TWO_PI * _f) / _fs);
double phase = 0.0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
output[i] = std::complex<float>(cos(phase), sin(phase));
phase += phase_step;
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "A " << FLAGS_size_carrier_test
<< "-length complex carrier in standard C++ (dynamic allocation) generated in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
2015-05-13 14:40:46 +00:00
std::complex<float> expected(1, 0);
std::vector<std::complex<float>> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
mag[i] = output[i] * std::conj(output[i]);
2015-05-13 14:40:46 +00:00
}
delete[] output;
for (int i = 0; i < FLAGS_size_carrier_test; i++)
2015-05-13 14:40:46 +00:00
{
ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i]));
}
2015-05-13 14:40:46 +00:00
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(ComplexCarrierTest, C11ComplexImplementation)
{
// declaration: load data onto the program data segment
std::vector<std::complex<float>> output(FLAGS_size_carrier_test);
const double _f = 2000.0;
const double _fs = 2000000.0;
2019-02-11 14:33:24 +00:00
const auto phase_step = static_cast<double>((GPS_TWO_PI * _f) / _fs);
double phase = 0.0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
output[i] = std::complex<float>(cos(phase), sin(phase));
phase += phase_step;
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "A " << FLAGS_size_carrier_test
<< "-length complex carrier in standard C++ (declaration) generated in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex<float> expected(1, 0);
std::vector<std::complex<float>> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
mag[i] = output[i] * std::conj(output[i]);
ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i]));
}
}
TEST(ComplexCarrierTest, OwnComplexImplementation)
{
2019-02-11 14:33:24 +00:00
auto* output = new std::complex<float>[FLAGS_size_carrier_test];
double _f = 2000.0;
double _fs = 2000000.0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
complex_exp_gen(output, _f, _fs, static_cast<unsigned int>(FLAGS_size_carrier_test));
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "A " << FLAGS_size_carrier_test
<< "-length complex carrier using fixed point generated in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
2015-05-13 14:40:46 +00:00
std::complex<float> expected(1, 0);
std::vector<std::complex<float>> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
mag[i] = output[i] * std::conj(output[i]);
2015-05-13 14:40:46 +00:00
}
delete[] output;
for (int i = 0; i < FLAGS_size_carrier_test; i++)
2015-05-13 14:40:46 +00:00
{
ASSERT_NEAR(std::norm(expected), std::norm(mag[i]), 0.0001);
}
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}