1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-15 14:25:00 +00:00
gnss-sdr/src/tests/unit-tests/arithmetic/multiply_test.cc

207 lines
7.8 KiB
C++
Raw Normal View History

/*!
* \file multiply_test.cc
* \brief This file implements tests for the multiplication of long arrays.
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Carles Fernandez-Prades, 2012. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
2015-01-08 18:49:59 +00:00
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
2015-01-08 18:49:59 +00:00
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <algorithm>
#include <chrono>
#include <complex>
#include <numeric>
#include <armadillo>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
DEFINE_int32(size_multiply_test, 100000, "Size of the arrays used for multiply testing");
TEST(MultiplyTest, StandardCDoubleImplementation)
{
double* input = new double[FLAGS_size_multiply_test];
double* output = new double[FLAGS_size_multiply_test];
std::fill_n(input, FLAGS_size_multiply_test, 0.0);
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
output[i] = input[i] * input[i];
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< " doubles in standard C finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
2015-05-13 14:40:46 +00:00
double acc = 0;
double expected = 0;
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
acc += output[i];
}
2015-05-13 14:40:46 +00:00
delete[] input;
delete[] output;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(expected, acc);
}
TEST(MultiplyTest, ArmadilloImplementation)
{
arma::vec input(FLAGS_size_multiply_test, arma::fill::zeros);
arma::vec output(FLAGS_size_multiply_test);
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
output = input % input;
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length double Armadillo vectors finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(0, arma::norm(output, 2));
}
TEST(MultiplyTest, StandardCComplexImplementation)
{
std::complex<float>* input = new std::complex<float>[FLAGS_size_multiply_test];
std::complex<float>* output = new std::complex<float>[FLAGS_size_multiply_test];
std::fill_n(input, FLAGS_size_multiply_test, std::complex<float>(0.0, 0.0));
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
output[i] = input[i] * input[i];
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< " complex<float> in standard C finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
2015-05-13 14:40:46 +00:00
std::complex<float> expected(0, 0);
std::complex<float> result(0, 0);
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
result += output[i];
}
2015-05-13 14:40:46 +00:00
delete[] input;
delete[] output;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(expected, result);
}
TEST(MultiplyTest, C11ComplexImplementation)
{
const std::vector<std::complex<float>> input(FLAGS_size_multiply_test);
std::vector<std::complex<float>> output(FLAGS_size_multiply_test);
int pos = 0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
// Trying a range-based for
for (const auto& item : input)
{
output[pos++] = item * item;
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< " complex<float> vector (C++11-style) finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex<float> expected(0, 0);
auto result = std::inner_product(output.begin(), output.end(), output.begin(), expected);
ASSERT_EQ(expected, result);
}
TEST(MultiplyTest, ArmadilloComplexImplementation)
{
arma::cx_fvec input(FLAGS_size_multiply_test, arma::fill::zeros);
arma::cx_fvec output(FLAGS_size_multiply_test);
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
output = input % input;
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length complex float Armadillo vectors finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(0, arma::norm(output, 2));
}
TEST(MultiplyTest, VolkComplexImplementation)
{
std::complex<float>* input = static_cast<std::complex<float>*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(std::complex<float>), volk_gnsssdr_get_alignment()));
std::complex<float>* output = static_cast<std::complex<float>*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(std::complex<float>), volk_gnsssdr_get_alignment()));
std::fill_n(input, FLAGS_size_multiply_test, std::complex<float>(0.0, 0.0));
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
volk_32fc_x2_multiply_32fc(output, input, input, FLAGS_size_multiply_test);
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length complex float vector using VOLK finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
float* mag = static_cast<float*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(float), volk_gnsssdr_get_alignment()));
volk_32fc_magnitude_32f(mag, output, FLAGS_size_multiply_test);
2014-09-09 20:51:47 +00:00
float* result = new float(0);
volk_32f_accumulator_s32f(result, mag, FLAGS_size_multiply_test);
// Comparing floating-point numbers is tricky.
// Due to round-off errors, it is very unlikely that two floating-points will match exactly.
// See http://code.google.com/p/googletest/wiki/AdvancedGuide#Floating-Point_Comparison
float expected = 0;
ASSERT_FLOAT_EQ(expected, result[0]);
volk_gnsssdr_free(input);
volk_gnsssdr_free(output);
volk_gnsssdr_free(mag);
}