2018-02-28 12:15:46 +00:00
|
|
|
% /*!
|
|
|
|
% * \file plot_dump.m
|
|
|
|
% * \brief Read GNSS-SDR Tracking dump binary file and plot some internal
|
|
|
|
% variables
|
|
|
|
% * \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es
|
|
|
|
% * -------------------------------------------------------------------------
|
|
|
|
% *
|
|
|
|
% * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
|
|
|
|
% *
|
|
|
|
% * GNSS-SDR is a software defined Global Navigation
|
|
|
|
% * Satellite Systems receiver
|
|
|
|
% *
|
|
|
|
% * This file is part of GNSS-SDR.
|
|
|
|
% *
|
|
|
|
% * GNSS-SDR is free software: you can redistribute it and/or modify
|
|
|
|
% * it under the terms of the GNU General Public License as published by
|
|
|
|
% * the Free Software Foundation, either version 3 of the License, or
|
|
|
|
% * at your option) any later version.
|
|
|
|
% *
|
|
|
|
% * GNSS-SDR is distributed in the hope that it will be useful,
|
|
|
|
% * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
% * GNU General Public License for more details.
|
|
|
|
% *
|
|
|
|
% * You should have received a copy of the GNU General Public License
|
|
|
|
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
% *
|
|
|
|
% * -------------------------------------------------------------------------
|
|
|
|
% */
|
|
|
|
|
|
|
|
clear all;
|
|
|
|
clc;
|
|
|
|
|
|
|
|
n_channel = 0;
|
|
|
|
symbol_period = 20e-3;
|
|
|
|
filename = 'track_ch_';
|
|
|
|
|
|
|
|
fontsize = 12;
|
|
|
|
|
|
|
|
addpath('./data') % Path to gnss-sdr dump files (Tracking and PVT)
|
|
|
|
addpath('./geoFunctions')
|
|
|
|
|
|
|
|
load([filename int2str(n_channel) '.mat']);
|
|
|
|
t = (0 : length(abs_P) - 1) * symbol_period;
|
|
|
|
hf = figure('visible', 'off');
|
|
|
|
set(hf, 'paperorientation', 'landscape');
|
|
|
|
subplot(3, 3, [1,3])
|
|
|
|
plot(t, abs_E, t, abs_P, t, abs_L)
|
|
|
|
xlabel('Time [s]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('Correlation result','fontname','Times','fontsize', fontsize)
|
|
|
|
legend('Early', 'Prompt', 'Late')
|
|
|
|
grid on
|
|
|
|
|
|
|
|
|
|
|
|
subplot(3, 3, 7)
|
|
|
|
plot(Prompt_I./1000, Prompt_Q./1000, 'linestyle', 'none', 'marker', '.')
|
|
|
|
xlabel('I','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('Q','fontname','Times','fontsize', fontsize)
|
|
|
|
axis equal
|
|
|
|
grid on
|
|
|
|
|
|
|
|
subplot(3, 3, [4,6])
|
|
|
|
plot(t, Prompt_I)
|
|
|
|
xlabel('Time [s]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('Navigation data bits','fontname','Times','fontsize', fontsize)
|
|
|
|
grid on
|
|
|
|
|
|
|
|
|
|
|
|
fileID = fopen('data/PVT_ls_pvt.dat', 'r');
|
|
|
|
dinfo = dir('data/PVT_ls_pvt.dat');
|
|
|
|
filesize = dinfo.bytes;
|
|
|
|
aux = 1;
|
|
|
|
while ne(ftell(fileID), filesize)
|
|
|
|
navsol.RX_time(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.X(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.Y(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.Z(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.user_clock(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.lat(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.long(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.height(aux) = fread(fileID, 1, 'double');
|
|
|
|
aux = aux + 1;
|
|
|
|
end
|
|
|
|
fclose(fileID);
|
|
|
|
|
|
|
|
|
|
|
|
mean_Latitude=mean(navsol.lat);
|
|
|
|
mean_Longitude=mean(navsol.long);
|
|
|
|
mean_h=mean(navsol.height);
|
|
|
|
utmZone = findUtmZone(mean_Latitude,mean_Longitude);
|
|
|
|
[ref_X_cart,ref_Y_cart,ref_Z_cart]=geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5);
|
|
|
|
[mean_utm_X,mean_utm_Y,mean_utm_Z]=cart2utm(ref_X_cart,ref_Y_cart,ref_Z_cart,utmZone);
|
|
|
|
|
|
|
|
|
|
|
|
numPoints=length(navsol.X);
|
|
|
|
aux=0;
|
|
|
|
for n=1:numPoints
|
|
|
|
aux=aux+1;
|
|
|
|
[E(aux),N(aux),U(aux)]=cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone);
|
|
|
|
end
|
|
|
|
|
|
|
|
v_2d=[E;N].'; %2D East Nort position vectors
|
|
|
|
v_3d=[E;N;U].'; %2D East Nort position vectors
|
|
|
|
|
|
|
|
|
|
|
|
%% ACCURACY
|
|
|
|
|
|
|
|
% 2D -------------------
|
|
|
|
|
|
|
|
sigma_E_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,1)-mean_utm_X).^2));
|
|
|
|
sigma_N_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,2)-mean_utm_Y).^2));
|
|
|
|
|
|
|
|
sigma_ratio_2d_accuracy=sigma_N_accuracy/sigma_E_accuracy
|
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
|
|
|
|
DRMS_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2)
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
|
|
|
TWO_DRMS_accuracy=2*DRMS_accuracy
|
|
|
|
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
|
|
|
|
CEP_accuracy=0.62*sigma_E_accuracy+0.56*sigma_N_accuracy
|
|
|
|
|
|
|
|
% 3D -------------------
|
|
|
|
|
|
|
|
sigma_U_accuracy=sqrt((1/(numPoints-1))*sum((v_3d(:,3)-mean_utm_Z).^2));
|
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
|
|
|
|
SEP_accuracy=0.51*sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2)
|
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
|
|
|
|
MRSE_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2)
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
|
|
|
TWO_MRSE_accuracy=2*MRSE_accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%% PRECISION
|
|
|
|
|
|
|
|
% 2D analysis
|
|
|
|
% Simulated X,Y measurements
|
|
|
|
%v1=randn(1000,2);
|
|
|
|
|
|
|
|
% 2D Mean and Variance
|
|
|
|
mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))];
|
|
|
|
sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))];
|
|
|
|
|
|
|
|
sigma_ratio_2d=sigma_2d(2)/sigma_2d(1)
|
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
|
|
|
|
DRMS=sqrt(sigma_2d(1)^2+sigma_2d(2)^2)
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
|
|
|
TWO_DRMS=2*DRMS
|
|
|
|
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
|
|
|
|
CEP=0.62*sigma_2d(1)+0.56*sigma_2d(2)
|
|
|
|
|
|
|
|
|
|
|
|
% Mean and Variance
|
|
|
|
mean_3d=[mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))];
|
|
|
|
sigma_3d=[sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))];
|
|
|
|
|
|
|
|
% absolute mean error
|
|
|
|
% 2D
|
|
|
|
|
|
|
|
error_2D_vec=[mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)];
|
|
|
|
error_2D_m=norm(error_2D_vec)
|
|
|
|
|
|
|
|
error_3D_vec=[mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)];
|
|
|
|
error_3D_m=norm(error_3D_vec)
|
|
|
|
|
|
|
|
% RMSE 2D
|
|
|
|
|
|
|
|
RMSE_X=sqrt(mean((v_3d(:,1)-mean_utm_X).^2))
|
|
|
|
RMSE_Y=sqrt(mean((v_3d(:,2)-mean_utm_Y).^2))
|
|
|
|
RMSE_Z=sqrt(mean((v_3d(:,3)-mean_utm_Z).^2))
|
|
|
|
|
|
|
|
|
|
|
|
RMSE_2D=sqrt(mean((v_2d(:,1)-mean_utm_X).^2+(v_2d(:,2)-mean_utm_Y).^2))
|
|
|
|
|
|
|
|
RMSE_3D=sqrt(mean((v_3d(:,1)-mean_utm_X).^2+(v_3d(:,2)-mean_utm_Y).^2+(v_3d(:,3)-mean_utm_Z).^2))
|
|
|
|
|
|
|
|
% SCATTER PLOT
|
|
|
|
subplot(3,3,8)
|
|
|
|
scatter(v_2d(:,1)-mean_2d(1),v_2d(:,2)-mean_2d(2));
|
|
|
|
hold on;
|
|
|
|
|
|
|
|
plot(0,0,'k*');
|
|
|
|
|
|
|
|
|
|
|
|
[x,y,z] = cylinder([TWO_DRMS TWO_DRMS],200);
|
2018-03-10 22:01:12 +00:00
|
|
|
plot(x(1,:),y(1,:),'Color',[0 0.6 0]);
|
2018-02-28 12:15:46 +00:00
|
|
|
str = strcat('2DRMS=',num2str(TWO_DRMS), ' m');
|
|
|
|
text(cosd(65)*TWO_DRMS,sind(65)*TWO_DRMS,str,'Color',[0 0.6 0]);
|
|
|
|
|
|
|
|
|
|
|
|
[x,y,z] = cylinder([CEP CEP],200);
|
|
|
|
|
|
|
|
plot(x(1,:),y(1,:),'r--');
|
|
|
|
str = strcat('CEP=',num2str(CEP), ' m');
|
|
|
|
text(cosd(80)*CEP,sind(80)*CEP,str,'Color','r');
|
|
|
|
|
|
|
|
grid on
|
|
|
|
axis equal;
|
|
|
|
xlabel('North [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('East [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
|
|
|
|
% 3D analysis
|
|
|
|
% Simulated X,Y,Z measurements
|
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
|
|
|
|
SEP=0.51*sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2)
|
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
|
|
|
|
MRSE=sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2)
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
|
|
|
TWO_MRSE=2*MRSE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% SCATTER PLOT
|
|
|
|
subplot(3,3,9)
|
|
|
|
scatter3(v_3d(:,1)-mean_3d(1),v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3));
|
|
|
|
|
|
|
|
hold on;
|
|
|
|
|
|
|
|
[x,y,z] = sphere();
|
|
|
|
hSurface=surf(MRSE*x,MRSE*y,MRSE*z); % sphere centered at origin
|
|
|
|
|
|
|
|
set(hSurface,'facecolor','none','edgecolor',[0 0.6 0],'edgealpha',1,'facealpha',1);
|
|
|
|
|
|
|
|
%axis equal;
|
|
|
|
xlabel('North [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('East [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
zlabel('Up [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
str = strcat('MRSE=',num2str(MRSE), ' m');
|
|
|
|
text(cosd(45)*MRSE,sind(45)*MRSE,20,str,'Color',[0 0.6 0]);
|
|
|
|
|
|
|
|
hh=findall(hf,'-property','FontName');
|
|
|
|
set(hh,'FontName','Times');
|
|
|
|
print(hf, 'Figure2.eps', '-depsc')
|
|
|
|
close(hf);
|