2018-03-30 10:04:14 +00:00
|
|
|
function [dphi, dlambda, h] = togeod(a, finv, X, Y, Z)
|
|
|
|
% TOGEOD Subroutine to calculate geodetic coordinates latitude, longitude,
|
|
|
|
% height given Cartesian coordinates X,Y,Z, and reference ellipsoid
|
|
|
|
% values semi-major axis (a) and the inverse of flattening (finv).
|
|
|
|
%
|
|
|
|
% [dphi, dlambda, h] = togeod(a, finv, X, Y, Z);
|
|
|
|
%
|
|
|
|
% The units of linear parameters X,Y,Z,a must all agree (m,km,mi,ft,..etc)
|
|
|
|
% The output units of angular quantities will be in decimal degrees
|
|
|
|
% (15.5 degrees not 15 deg 30 min). The output units of h will be the
|
|
|
|
% same as the units of X,Y,Z,a.
|
|
|
|
%
|
|
|
|
% Inputs:
|
|
|
|
% a - semi-major axis of the reference ellipsoid
|
|
|
|
% finv - inverse of flattening of the reference ellipsoid
|
|
|
|
% X,Y,Z - Cartesian coordinates
|
|
|
|
%
|
|
|
|
% Outputs:
|
|
|
|
% dphi - latitude
|
|
|
|
% dlambda - longitude
|
|
|
|
% h - height above reference ellipsoid
|
|
|
|
|
2020-12-30 12:35:06 +00:00
|
|
|
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
2020-02-08 00:20:02 +00:00
|
|
|
% This file is part of GNSS-SDR.
|
|
|
|
%
|
2020-12-30 12:35:06 +00:00
|
|
|
% SPDX-FileCopyrightText: 1987 C. Goad, 1996 Kai Borre
|
2020-02-08 00:20:02 +00:00
|
|
|
% SPDX-License-Identifier: GPL-3.0-or-later
|
2018-03-30 10:04:14 +00:00
|
|
|
%==========================================================================
|
|
|
|
|
|
|
|
h = 0;
|
|
|
|
tolsq = 1.e-10;
|
|
|
|
maxit = 10;
|
|
|
|
|
|
|
|
% compute radians-to-degree factor
|
|
|
|
rtd = 180/pi;
|
|
|
|
|
|
|
|
% compute square of eccentricity
|
|
|
|
if finv < 1.e-20
|
|
|
|
esq = 0;
|
|
|
|
else
|
|
|
|
esq = (2 - 1/finv) / finv;
|
|
|
|
end
|
|
|
|
|
|
|
|
oneesq = 1 - esq;
|
|
|
|
|
|
|
|
% first guess
|
|
|
|
% P is distance from spin axis
|
|
|
|
P = sqrt(X^2+Y^2);
|
|
|
|
% direct calculation of longitude
|
|
|
|
|
|
|
|
if P > 1.e-20
|
|
|
|
dlambda = atan2(Y,X) * rtd;
|
|
|
|
else
|
|
|
|
dlambda = 0;
|
|
|
|
end
|
|
|
|
|
|
|
|
if (dlambda < 0)
|
|
|
|
dlambda = dlambda + 360;
|
|
|
|
end
|
|
|
|
|
|
|
|
% r is distance from origin (0,0,0)
|
|
|
|
r = sqrt(P^2 + Z^2);
|
|
|
|
|
|
|
|
if r > 1.e-20
|
|
|
|
sinphi = Z/r;
|
|
|
|
else
|
|
|
|
sinphi = 0;
|
|
|
|
end
|
|
|
|
|
|
|
|
dphi = asin(sinphi);
|
|
|
|
|
|
|
|
% initial value of height = distance from origin minus
|
|
|
|
% approximate distance from origin to surface of ellipsoid
|
|
|
|
if r < 1.e-20
|
|
|
|
h = 0;
|
|
|
|
return
|
|
|
|
end
|
|
|
|
|
|
|
|
h = r - a*(1-sinphi*sinphi/finv);
|
|
|
|
|
|
|
|
% iterate
|
|
|
|
for i = 1:maxit
|
|
|
|
sinphi = sin(dphi);
|
|
|
|
cosphi = cos(dphi);
|
2020-02-08 00:20:02 +00:00
|
|
|
|
2018-03-30 10:04:14 +00:00
|
|
|
% compute radius of curvature in prime vertical direction
|
|
|
|
N_phi = a/sqrt(1-esq*sinphi*sinphi);
|
2020-02-08 00:20:02 +00:00
|
|
|
|
2018-03-30 10:04:14 +00:00
|
|
|
% compute residuals in P and Z
|
|
|
|
dP = P - (N_phi + h) * cosphi;
|
|
|
|
dZ = Z - (N_phi*oneesq + h) * sinphi;
|
2020-02-08 00:20:02 +00:00
|
|
|
|
2018-03-30 10:04:14 +00:00
|
|
|
% update height and latitude
|
|
|
|
h = h + (sinphi*dZ + cosphi*dP);
|
|
|
|
dphi = dphi + (cosphi*dZ - sinphi*dP)/(N_phi + h);
|
2020-02-08 00:20:02 +00:00
|
|
|
|
2018-03-30 10:04:14 +00:00
|
|
|
% test for convergence
|
|
|
|
if (dP*dP + dZ*dZ < tolsq)
|
|
|
|
break;
|
|
|
|
end
|
2020-02-08 00:20:02 +00:00
|
|
|
|
2018-03-30 10:04:14 +00:00
|
|
|
% Not Converged--Warn user
|
|
|
|
if i == maxit
|
|
|
|
fprintf([' Problem in TOGEOD, did not converge in %2.0f',...
|
|
|
|
' iterations\n'], i);
|
|
|
|
end
|
|
|
|
end % for i = 1:maxit
|
|
|
|
|
|
|
|
dphi = dphi * rtd;
|
|
|
|
%%%%%%%% end togeod.m %%%%%%%%%%%%%%%%%%%%%%
|