1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-29 00:13:14 +00:00
gnss-sdr/src/algorithms/observables/gnuradio_blocks/hybrid_observables_cc.cc

919 lines
40 KiB
C++
Raw Normal View History

/*!
* \file hybrid_observables_cc.cc
* \brief Implementation of the pseudorange computation block for Galileo E1
* \author Javier Arribas 2017. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
2015-01-08 18:49:59 +00:00
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
2015-01-08 18:49:59 +00:00
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "hybrid_observables_cc.h"
#include <algorithm>
#include <cmath>
#include <iostream>
2018-02-16 17:10:48 +00:00
#include <limits>
#include <gnuradio/io_signature.h>
#include <gnuradio/block_detail.h>
#include <gnuradio/buffer.h>
#include <glog/logging.h>
#include <matio.h>
2016-01-04 17:06:54 +00:00
#include "Galileo_E1.h"
#include "GPS_L1_CA.h"
using google::LogMessage;
2018-02-16 17:10:48 +00:00
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename)
{
2018-02-16 17:10:48 +00:00
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels_in, nchannels_out, dump, dump_filename));
}
2018-02-16 17:10:48 +00:00
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename) :
gr::block("hybrid_observables_cc",
gr::io_signature::make(nchannels_in, nchannels_in, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels_out, nchannels_out, sizeof(Gnss_Synchro)))
{
2018-02-19 16:20:34 +00:00
set_max_noutput_items(1);
set_max_output_buffer(1);
d_dump = dump;
2018-02-19 16:20:34 +00:00
set_T_rx_s = false;
2018-02-13 17:16:03 +00:00
d_nchannels = nchannels_out;
d_dump_filename = dump_filename;
T_rx_s = 0.0;
2018-02-16 17:10:48 +00:00
T_rx_step_s = 0.001; // 1 ms
2018-02-19 16:20:34 +00:00
max_delta = 0.05; // 50 ms
2018-02-16 17:10:48 +00:00
valid_channels.resize(d_nchannels, false);
d_num_valid_channels = 0;
2018-02-19 09:29:12 +00:00
2018-02-19 16:20:34 +00:00
for(unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history.push_back(std::deque<Gnss_Synchro>());
}
// ############# ENABLE DATA FILE LOG #################
2018-02-16 17:10:48 +00:00
if (d_dump)
{
if (!d_dump_file.is_open())
{
2018-02-16 17:10:48 +00:00
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
d_dump = false;
}
2017-08-02 12:43:38 +00:00
}
2018-02-16 17:10:48 +00:00
}
}
hybrid_observables_cc::~hybrid_observables_cc()
{
2018-02-16 17:10:48 +00:00
if (d_dump_file.is_open())
{
2018-02-16 17:10:48 +00:00
try { d_dump_file.close(); }
2018-01-17 18:02:52 +00:00
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
2018-02-16 17:10:48 +00:00
if(d_dump)
{
2018-01-17 18:02:52 +00:00
std::cout << "Writing observables .mat files ...";
save_matfile();
2018-01-17 18:02:52 +00:00
std::cout << " done." << std::endl;
}
}
int hybrid_observables_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 7;
int epoch_size_bytes = sizeof(double) * number_of_double_vars * d_nchannels;
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
2018-02-16 17:10:48 +00:00
try { dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); }
catch(const std::ifstream::failure &e)
{
2018-02-16 17:10:48 +00:00
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
2018-01-17 18:02:52 +00:00
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
2018-02-16 17:10:48 +00:00
else { return 1; }
double ** RX_time = new double * [d_nchannels];
double ** TOW_at_current_symbol_s = new double * [d_nchannels];
double ** Carrier_Doppler_hz = new double * [d_nchannels];
double ** Carrier_phase_cycles = new double * [d_nchannels];
double ** Pseudorange_m = new double * [d_nchannels];
double ** PRN = new double * [d_nchannels];
double ** Flag_valid_pseudorange = new double * [d_nchannels];
for(unsigned int i = 0; i < d_nchannels; i++)
2018-01-17 18:02:52 +00:00
{
RX_time[i] = new double [num_epoch];
TOW_at_current_symbol_s[i] = new double[num_epoch];
Carrier_Doppler_hz[i] = new double[num_epoch];
Carrier_phase_cycles[i] = new double[num_epoch];
Pseudorange_m[i] = new double[num_epoch];
PRN[i] = new double[num_epoch];
Flag_valid_pseudorange[i] = new double[num_epoch];
}
try
{
2018-01-17 18:02:52 +00:00
if (dump_file.is_open())
{
2018-01-17 18:02:52 +00:00
for(long int i = 0; i < num_epoch; i++)
{
for(unsigned int chan = 0; chan < d_nchannels; chan++)
{
dump_file.read(reinterpret_cast<char *>(&RX_time[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Carrier_Doppler_hz[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Carrier_phase_cycles[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Pseudorange_m[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Flag_valid_pseudorange[chan][i]), sizeof(double));
}
}
}
2018-01-17 18:02:52 +00:00
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
2018-01-17 18:02:52 +00:00
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
for(unsigned int i = 0; i < d_nchannels; i++)
{
delete[] RX_time[i];
delete[] TOW_at_current_symbol_s[i];
delete[] Carrier_Doppler_hz[i];
delete[] Carrier_phase_cycles[i];
delete[] Pseudorange_m[i];
delete[] PRN[i];
delete[] Flag_valid_pseudorange[i];
}
delete[] RX_time;
delete[] TOW_at_current_symbol_s;
delete[] Carrier_Doppler_hz;
delete[] Carrier_phase_cycles;
delete[] Pseudorange_m;
delete[] PRN;
delete[] Flag_valid_pseudorange;
return 1;
}
double * RX_time_aux = new double [d_nchannels * num_epoch];
double * TOW_at_current_symbol_s_aux = new double [d_nchannels * num_epoch];
double * Carrier_Doppler_hz_aux = new double [d_nchannels * num_epoch];
double * Carrier_phase_cycles_aux = new double [d_nchannels * num_epoch];
double * Pseudorange_m_aux = new double [d_nchannels * num_epoch];
double * PRN_aux = new double [d_nchannels * num_epoch];
double * Flag_valid_pseudorange_aux = new double[d_nchannels * num_epoch];
unsigned int k = 0;
2017-11-20 07:22:04 +00:00
for(long int j = 0; j < num_epoch; j++ )
{
2018-01-17 18:02:52 +00:00
for(unsigned int i = 0; i < d_nchannels; i++ )
{
RX_time_aux[k] = RX_time[i][j];
TOW_at_current_symbol_s_aux[k] = TOW_at_current_symbol_s[i][j];
Carrier_Doppler_hz_aux[k] = Carrier_Doppler_hz[i][j];
Carrier_phase_cycles_aux[k] = Carrier_phase_cycles[i][j];
Pseudorange_m_aux[k] = Pseudorange_m[i][j];
PRN_aux[k] = PRN[i][j];
Flag_valid_pseudorange_aux[k] = Flag_valid_pseudorange[i][j];
k++;
}
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if(reinterpret_cast<long*>(matfp) != NULL)
2018-01-17 18:02:52 +00:00
{
size_t dims[2] = {static_cast<size_t>(d_nchannels), static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, RX_time_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("TOW_at_current_symbol_s", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, TOW_at_current_symbol_s_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Carrier_Doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_Doppler_hz_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Carrier_phase_cycles", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_phase_cycles_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Pseudorange_m", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Pseudorange_m_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, PRN_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Flag_valid_pseudorange", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Flag_valid_pseudorange_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
for(unsigned int i = 0; i < d_nchannels; i++)
2018-01-17 18:02:52 +00:00
{
delete[] RX_time[i];
delete[] TOW_at_current_symbol_s[i];
delete[] Carrier_Doppler_hz[i];
delete[] Carrier_phase_cycles[i];
delete[] Pseudorange_m[i];
delete[] PRN[i];
delete[] Flag_valid_pseudorange[i];
2018-01-17 18:02:52 +00:00
}
delete[] RX_time;
delete[] TOW_at_current_symbol_s;
delete[] Carrier_Doppler_hz;
delete[] Carrier_phase_cycles;
delete[] Pseudorange_m;
delete[] PRN;
delete[] Flag_valid_pseudorange;
delete[] RX_time_aux;
delete[] TOW_at_current_symbol_s_aux;
delete[] Carrier_Doppler_hz_aux;
delete[] Carrier_phase_cycles_aux;
delete[] Pseudorange_m_aux;
delete[] PRN_aux;
delete[] Flag_valid_pseudorange_aux;
return 0;
}
2018-02-19 16:20:34 +00:00
double hybrid_observables_cc::interpolate_data(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const double& ti, int parameter)
2018-02-16 17:10:48 +00:00
{
// x(ti) = m * ti + c
// m = [x(t2) - x(t1)] / [t2 - t1]
// c = x(t1) - m * t1
double m = 0.0;
double c = 0.0;
if(!a.first.Flag_valid_word or !a.second.Flag_valid_word) { return 0.0; }
2018-02-16 17:10:48 +00:00
switch(parameter)
{
case 0:// Doppler
m = (a.first.Carrier_Doppler_hz - a.second.Carrier_Doppler_hz) / (a.first.RX_time - a.second.RX_time);
c = a.second.Carrier_Doppler_hz - m * a.second.RX_time;
break;
case 1:// Carrier phase
m = (a.first.Carrier_phase_rads - a.second.Carrier_phase_rads) / (a.first.RX_time - a.second.RX_time);
c = a.second.Carrier_phase_rads - m * a.second.RX_time;
break;
case 2:// TOW
m = (a.first.TOW_at_current_symbol_s - a.second.TOW_at_current_symbol_s) / (a.first.RX_time - a.second.RX_time);
c = a.second.TOW_at_current_symbol_s - m * a.second.RX_time;
break;
case 3:// Code phase samples
m = (a.first.Code_phase_samples - a.second.Code_phase_samples) / (a.first.RX_time - a.second.RX_time);
c = a.second.Code_phase_samples - m * a.second.RX_time;
break;
}
return(m * ti + c);
}
2018-02-19 16:20:34 +00:00
double hybrid_observables_cc::compute_T_rx_s(const Gnss_Synchro& a)
2014-06-13 16:38:16 +00:00
{
2018-02-16 17:10:48 +00:00
if(a.Flag_valid_word)
{
return((static_cast<double>(a.Tracking_sample_counter) + a.Code_phase_samples) / static_cast<double>(a.fs));
}
else { return 0.0; }
}
/*
bool Hybrid_pairCompare_gnss_synchro_T_rx(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
{
if(a.second.Flag_valid_word and !b.second.Flag_valid_word) { return true; }
else if(!a.second.Flag_valid_word and b.second.Flag_valid_word) { return false; }
else if(!a.second.Flag_valid_word and !b.second.Flag_valid_word) {return false; }
else
{
return(Hybrid_Compute_T_rx_s(a.second) < Hybrid_Compute_T_rx_s(b.second));
}
}
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
{
if(a.second.Flag_valid_word and !b.second.Flag_valid_word) { return true; }
else if(!a.second.Flag_valid_word and b.second.Flag_valid_word) { return false; }
else if(!a.second.Flag_valid_word and !b.second.Flag_valid_word) {return false; }
else
{
return(a.second.Tracking_sample_counter < b.second.Tracking_sample_counter);
}
2014-06-13 16:38:16 +00:00
}
2017-05-11 04:15:06 +00:00
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
{
2018-02-16 17:10:48 +00:00
return(a.Tracking_sample_counter < b);
}
2017-05-11 04:15:06 +00:00
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
{
2018-02-16 17:10:48 +00:00
return((static_cast<double>(a.Tracking_sample_counter) + static_cast<double>(a.Code_phase_samples)) / static_cast<double>(a.fs) ) < (b);
}
2017-05-11 04:15:06 +00:00
2018-02-16 17:10:48 +00:00
bool Hybrid_pairCompare_gnss_synchro_TOW(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
{
2018-02-16 17:10:48 +00:00
if(a.first.Flag_valid_word and !b.first.Flag_valid_word) { return true; }
else if(!a.first.Flag_valid_word and b.first.Flag_valid_word) { return false; }
else if(!a.first.Flag_valid_word and !b.first.Flag_valid_word) {return false; }
else
{
return(a.first.TOW_at_current_symbol_s < b.second.TOW_at_current_symbol_s);
}
}
2017-05-11 04:15:06 +00:00
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
{
2018-02-16 17:10:48 +00:00
return(a.TOW_at_current_symbol_s < b);
}
2018-02-16 17:10:48 +00:00
*/
2018-02-16 17:10:48 +00:00
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items_required)
{
2018-02-19 16:20:34 +00:00
// bool available_items = false;
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// ninput_items_required[i] = 0;
// if(detail()->input(i)->items_available() > 0) { available_items = true; }
// }
// if(available_items) { ninput_items_required[d_nchannels] = 0; }
// else { ninput_items_required[d_nchannels] = 1; }
for(unsigned int i = 0; i < d_nchannels; i++)
2018-02-13 17:16:03 +00:00
{
ninput_items_required[i] = 0;
}
2018-02-19 16:20:34 +00:00
ninput_items_required[d_nchannels] = 1;
}
void hybrid_observables_cc::clean_history(std::deque<Gnss_Synchro>& data)
{
while(data.size() > 0)
{
if((T_rx_s - data.front().RX_time) > max_delta) { data.pop_front(); }
else { return; }
}
}
unsigned int hybrid_observables_cc::find_closest(std::deque<Gnss_Synchro>& data)
{
unsigned int result = 0;
double delta_t = std::numeric_limits<double>::max();
std::deque<Gnss_Synchro>::iterator it;
unsigned int aux = 0;
for(it = data.begin(); it != data.end(); it++)
{
double instant_delta = T_rx_s - it->RX_time;
if((instant_delta > 0) and (instant_delta < delta_t))
{
delta_t = instant_delta;
result = aux;
}
aux++;
}
return result;
}
double hybrid_observables_cc::find_min_RX_time()
{
if(d_num_valid_channels == 0) { return 0.0; }
std::vector<std::deque<Gnss_Synchro>>::iterator it = d_gnss_synchro_history.begin();
double result = std::numeric_limits<double>::max();
for(unsigned int i = 0; i < d_nchannels; i++)
{
if(valid_channels[i])
{
if(it->front().RX_time < result) { result = it->front().RX_time; }
}
it++;
}
return(floor(result * 1000.0) / 1000.0);
}
void hybrid_observables_cc::correct_TOW_and_compute_prange(std::vector<Gnss_Synchro>& data)
{
double TOW_ref = std::numeric_limits<double>::lowest();
std::vector<Gnss_Synchro>::iterator it;
for(it = data.begin(); it != data.end(); it++)
{
if(it->RX_time > TOW_ref) { TOW_ref = it->RX_time; }
}
for(it = data.begin(); it != data.end(); it++)
{
double traveltime_s = TOW_ref - it->RX_time + GPS_STARTOFFSET_ms / 1000.0;
it->RX_time = TOW_ref + GPS_STARTOFFSET_ms / 1000.0;
it->Pseudorange_m = traveltime_s * SPEED_OF_LIGHT;
}
}
2017-05-11 04:15:06 +00:00
2018-01-17 18:02:52 +00:00
2018-02-16 17:10:48 +00:00
int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
2018-02-16 17:10:48 +00:00
const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]);
Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]);
unsigned int i;
int total_input_items = 0;
for(i = 0; i < d_nchannels; i++) { total_input_items += ninput_items[i]; }
2018-02-19 16:20:34 +00:00
consume(d_nchannels, 1);
2018-02-16 17:10:48 +00:00
//////////////////////////////////////////////////////////////////////////
2018-02-19 16:20:34 +00:00
if((total_input_items == 0) and (d_num_valid_channels == 0))
2018-02-13 17:16:03 +00:00
{
2018-02-16 17:10:48 +00:00
return 0;
2018-02-13 17:16:03 +00:00
}
2018-02-19 16:20:34 +00:00
if(set_T_rx_s) { T_rx_s += T_rx_step_s; }
2018-02-16 17:10:48 +00:00
//////////////////////////////////////////////////////////////////////////
2018-02-13 17:16:03 +00:00
2018-02-19 09:29:12 +00:00
std::vector<std::deque<Gnss_Synchro>>::iterator it;
2018-02-16 17:10:48 +00:00
if (total_input_items > 0)
{
i = 0;
2018-02-19 16:20:34 +00:00
for(it = d_gnss_synchro_history.begin(); it != d_gnss_synchro_history.end(); it++)
2018-02-16 17:10:48 +00:00
{
2018-02-19 16:20:34 +00:00
if(ninput_items[i] > 0)
2018-02-13 17:16:03 +00:00
{
2018-02-19 09:29:12 +00:00
for(int aux = 0; aux < ninput_items[i]; aux++)
{
2018-02-19 16:20:34 +00:00
if(in[i][aux].Flag_valid_word)
{
it->push_back(in[i][aux]);
it->back().RX_time = compute_T_rx_s(in[i][aux]);
}
2018-02-19 09:29:12 +00:00
}
2018-02-19 16:20:34 +00:00
consume(i, ninput_items[i]);
2018-02-19 09:29:12 +00:00
}
2018-02-16 17:10:48 +00:00
i++;
2018-02-13 17:16:03 +00:00
}
}
2018-02-19 16:20:34 +00:00
for(i = 0; i < d_nchannels; i++)
{
if(d_gnss_synchro_history.at(i).size() > 2) { valid_channels[i] = true; }
else { valid_channels[i] = false; }
}
2018-02-16 17:10:48 +00:00
d_num_valid_channels = valid_channels.count();
// Check if there is any valid channel after reading the new incoming Gnss_Synchro data
2018-02-19 16:20:34 +00:00
if(d_num_valid_channels == 0)
{
set_T_rx_s = false;
return 0;
}
if(!set_T_rx_s) //Find the lowest RX_time among the valid observables in the history
{
T_rx_s = find_min_RX_time();
set_T_rx_s = true;
}
2018-02-16 17:10:48 +00:00
2018-02-19 16:20:34 +00:00
for(i = 0; i < d_nchannels; i++) //Discard observables with T_rx higher than the threshold
{
2018-02-16 17:10:48 +00:00
if(valid_channels[i])
{
2018-02-19 16:20:34 +00:00
clean_history(d_gnss_synchro_history.at(i));
if(d_gnss_synchro_history.at(i).size() < 2) { valid_channels[i] = false; }
2018-02-16 17:10:48 +00:00
}
}
2018-02-16 17:10:48 +00:00
// Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time
2018-02-19 16:20:34 +00:00
d_num_valid_channels = valid_channels.count();
if(d_num_valid_channels == 0)
{
set_T_rx_s = false;
return 0;
}
std::vector<Gnss_Synchro> epoch_data;
i = 0;
for(it = d_gnss_synchro_history.begin(); it != d_gnss_synchro_history.end(); it++)
{
if(valid_channels[i])
{
unsigned int index_closest = find_closest(*it);
unsigned int index1;
unsigned int index2;
if(index_closest == (it->size() - 1))
{
index1 = index_closest - 1;
index2 = index_closest;
}
else
{
index1 = index_closest;
index2 = index_closest + 1;
}
Gnss_Synchro interpolated_gnss_synchro = it->at(index1);
interpolated_gnss_synchro.Carrier_Doppler_hz = interpolate_data(
std::pair<Gnss_Synchro, Gnss_Synchro>(it->at(index2), it->at(index1)), T_rx_s, 0);
interpolated_gnss_synchro.Carrier_phase_rads = interpolate_data(
std::pair<Gnss_Synchro, Gnss_Synchro>(it->at(index2), it->at(index1)), T_rx_s, 1);
interpolated_gnss_synchro.RX_time = interpolate_data(
std::pair<Gnss_Synchro, Gnss_Synchro>(it->at(index2), it->at(index1)), T_rx_s, 2);
//interpolated_gnss_synchro.Code_phase_samples = interpolate_data(
// std::pair<Gnss_Synchro, Gnss_Synchro>(it->at(index2), it->at(index1)), T_rx_s, 3);
epoch_data.push_back(interpolated_gnss_synchro);
}
i++;
}
correct_TOW_and_compute_prange(epoch_data);
std::vector<Gnss_Synchro>::iterator it2 = epoch_data.begin();
for(i = 0; i < d_nchannels; i++)
{
if(valid_channels[i])
{
out[i][0] = (*it2);
out[i][0].Flag_valid_pseudorange = true;
it2++;
}
else
{
out[i][0] = Gnss_Synchro();
out[i][0].Flag_valid_pseudorange = false;
}
}
return 1;
2017-08-02 12:43:38 +00:00
2018-02-19 16:20:34 +00:00
/* ANTONIO
2018-02-16 17:10:48 +00:00
it = d_gnss_synchro_history.begin();
double TOW_ref = std::numeric_limits<double>::max();
for(i = 0; i < d_nchannels; i++)
2018-02-13 17:16:03 +00:00
{
2018-02-16 17:10:48 +00:00
if(!valid_channels[i]) { out[i][0] = Gnss_Synchro(); }
else
{
out[i][0] = it->first;
out[i][0].Flag_valid_pseudorange = true;
out[i][0].Carrier_Doppler_hz = Hybrid_Interpolate_data(*it, T_rx_s, 0);
out[i][0].Carrier_phase_rads = Hybrid_Interpolate_data(*it, T_rx_s, 1);
out[i][0].RX_time = Hybrid_Interpolate_data(*it, T_rx_s, 2);
out[i][0].Code_phase_samples = Hybrid_Interpolate_data(*it, T_rx_s, 3);
//std::cout<<"T2: "<< it->first.RX_time<<". T1: "<< it->second.RX_time <<" T i: " << T_rx_s <<std::endl;
//std::cout<<"Doppler origin: "<< it->first.Carrier_Doppler_hz<<","<< it->second.Carrier_Doppler_hz<<" Doppler interp: " << out[i][0].Carrier_Doppler_hz <<std::endl;
if(out[i][0].RX_time < TOW_ref) { TOW_ref = out[i][0].RX_time; }
}
it++;
2018-02-13 17:16:03 +00:00
}
2018-02-16 17:10:48 +00:00
for(i = 0; i < d_nchannels; i++)
{
if(valid_channels[i])
{
2018-02-19 09:29:12 +00:00
double traveltime_ms = (out[i][0].RX_time - TOW_ref) * 1000.0 + GPS_STARTOFFSET_ms;
2018-02-16 17:10:48 +00:00
out[i][0].Pseudorange_m = traveltime_ms * GPS_C_m_ms;
out[i][0].RX_time = TOW_ref + GPS_STARTOFFSET_ms / 1000.0;
//std::cout << "Sat " << out[i][0].PRN << ". Prang = " << out[i][0].Pseudorange_m << ". TOW = " << out[i][0].RX_time << std::endl;
}
}
return 1;
2018-02-19 16:20:34 +00:00
*/
2018-02-16 17:10:48 +00:00
/******************************* OLD ALGORITHM ********************************/
// const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
// Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
// int n_outputs = 0;
// int n_consume[d_nchannels];
// double past_history_s = 100e-3;
//
// Gnss_Synchro current_gnss_synchro[d_nchannels];
// Gnss_Synchro aux = Gnss_Synchro();
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// current_gnss_synchro[i] = aux;
// }
// /*
// * 1. Read the GNSS SYNCHRO objects from available channels.
// * Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
// * Record all synchronization data into queues
// */
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// n_consume[i] = ninput_items[i]; // full throttle
// for(int j = 0; j < n_consume[i]; j++)
// {
// d_gnss_synchro_history_queue[i].push_back(in[i][j]);
// }
// }
//
// bool channel_history_ok;
//
// do
// {
//
// try
// {
//
// channel_history_ok = true;
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
// {
// channel_history_ok = false;
// }
// }
// if (channel_history_ok == true)
// {
// std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
// std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
//
// // 1. If the RX time is not set, set the Rx time
// if (T_rx_s == 0)
// {
// // 0. Read a gnss_synchro snapshot from the queue and store it in a map
// std::map<int,Gnss_Synchro> gnss_synchro_map;
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
// d_gnss_synchro_history_queue.at(i).front()));
// }
// }
// if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
//
// gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
// gnss_synchro_map.cend(),
// Hybrid_pairCompare_gnss_synchro_sample_counter);
// T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
// T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
// T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
// }
//
// // 2. Realign RX time in all valid channels
// std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
// std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
// // shift channels history to match the reference TOW
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
// d_gnss_synchro_history_queue.at(i).cend(),
// T_rx_s,
// Hybrid_valueCompare_gnss_synchro_receiver_time);
// if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
// {
// if (gnss_synchro_deque_iter->Flag_valid_word == true)
// {
// double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
// double delta_T_rx_s = T_rx_channel - T_rx_s;
//
// // check that T_rx difference is less than a threshold (the correlation interval)
// if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
// {
// // record the word structure in a map for pseudorange computation
// // save the previous observable
// int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
// if (distance > 0)
// {
// if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
// {
// double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
// double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
// if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// }
// else
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
// }
// }
//
// }
// else
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// }
//
// }
// }
// }
// }
// }
//
// if(!realigned_gnss_synchro_map.empty())
// {
// /*
// * 2.1 Use CURRENT set of measurements and find the nearest satellite
// * common RX time algorithm
// */
// // what is the most recent symbol TOW in the current set? -> this will be the reference symbol
// gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
// realigned_gnss_synchro_map.cend(),
// Hybrid_pairCompare_gnss_synchro_d_TOW);
// double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
//
// // compute interpolated TOW value at T_rx_s
// int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
// Gnss_Synchro adj_obs;
// adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
// double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
//
// double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
// double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
//
// double selected_T_rx_s = T_rx_s;
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
// (selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
//
// // Now compute RX time differences due to the PRN alignment in the correlators
// double traveltime_ms;
// double pseudorange_m;
// double channel_T_rx_s;
// double channel_fs_hz;
// double channel_TOW_s;
// for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
// {
// channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
// channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// // compute interpolated observation values
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// // TOW at the selected receiver time T_rx_s
// int element_key = gnss_synchro_map_iter->second.Channel_ID;
// adj_obs = adjacent_gnss_synchro_map.at(element_key);
//
// double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
//
// double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
//
// // Doppler and Accumulated carrier phase
// double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
// double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
//
// // compute the pseudorange (no rx time offset correction)
// traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
// // convert to meters
// pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// // update the pseudorange object
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// // Save the estimated RX time (no RX clock offset correction yet!)
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
//
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
// }
//
// if(d_dump == true)
// {
// // MULTIPLEXED FILE RECORDING - Record results to file
// try
// {
// double tmp_double;
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// tmp_double = current_gnss_synchro[i].RX_time;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Pseudorange_m;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].PRN;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// }
// }
// catch (const std::ifstream::failure& e)
// {
// LOG(WARNING) << "Exception writing observables dump file " << e.what();
// d_dump = false;
// }
// }
//
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// out[i][n_outputs] = current_gnss_synchro[i];
// }
//
// n_outputs++;
// }
//
// // Move RX time
// T_rx_s += T_rx_step_s;
// // pop old elements from queue
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
// {
// d_gnss_synchro_history_queue.at(i).pop_front();
// }
// }
// }
// }
//
// }// End of try{...}
// catch(const std::out_of_range& e)
// {
// LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
// std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
// return gr::block::WORK_DONE;
// }
// catch(const std::exception& e)
// {
// LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
// std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
// return gr::block::WORK_DONE;
// }
//
// }while(channel_history_ok == true && noutput_items > n_outputs);
//
// // Multi-rate consume!
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// consume(i, n_consume[i]); // which input, how many items
// }
//
// //consume monitor channel always
// consume(d_nchannels, 1);
// return n_outputs;
//
//
}