2015-11-14 19:41:28 +00:00
|
|
|
/*!
|
|
|
|
* \file pvt_solution.cc
|
|
|
|
* \brief Implementation of a base class for a PVT solution
|
|
|
|
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* -------------------------------------------------------------------------
|
|
|
|
*
|
|
|
|
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
|
|
|
*
|
|
|
|
* GNSS-SDR is a software defined Global Navigation
|
|
|
|
* Satellite Systems receiver
|
|
|
|
*
|
|
|
|
* This file is part of GNSS-SDR.
|
|
|
|
*
|
|
|
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
* -------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "pvt_solution.h"
|
|
|
|
#include <exception>
|
|
|
|
#include "GPS_L1_CA.h"
|
|
|
|
#include <gflags/gflags.h>
|
|
|
|
#include <glog/logging.h>
|
|
|
|
|
|
|
|
|
|
|
|
using google::LogMessage;
|
|
|
|
|
|
|
|
DEFINE_bool(tropo, true, "Apply tropospheric correction");
|
|
|
|
|
|
|
|
Pvt_Solution::Pvt_Solution()
|
|
|
|
{
|
|
|
|
d_latitude_d = 0.0;
|
|
|
|
d_longitude_d = 0.0;
|
|
|
|
d_height_m = 0.0;
|
|
|
|
d_avg_latitude_d = 0.0;
|
|
|
|
d_avg_longitude_d = 0.0;
|
|
|
|
d_avg_height_m = 0.0;
|
|
|
|
d_GDOP = 0.0;
|
|
|
|
d_PDOP = 0.0;
|
|
|
|
d_HDOP = 0.0;
|
|
|
|
d_VDOP = 0.0;
|
|
|
|
d_TDOP = 0.0;
|
|
|
|
d_flag_averaging = false;
|
|
|
|
b_valid_position = false;
|
|
|
|
d_averaging_depth = 0;
|
|
|
|
d_valid_observations = 0;
|
2017-01-28 14:31:04 +00:00
|
|
|
d_rx_pos = arma::zeros(3,1);
|
2017-01-25 16:15:32 +00:00
|
|
|
d_rx_dt_s = 0.0;
|
2015-11-14 19:41:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
arma::vec Pvt_Solution::rotateSatellite(double const traveltime, const arma::vec & X_sat)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Returns rotated satellite ECEF coordinates due to Earth
|
|
|
|
* rotation during signal travel time
|
|
|
|
*
|
|
|
|
* Inputs:
|
|
|
|
* travelTime - signal travel time
|
|
|
|
* X_sat - satellite's ECEF coordinates
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* X_sat_rot - rotated satellite's coordinates (ECEF)
|
|
|
|
*/
|
|
|
|
|
|
|
|
//--- Find rotation angle --------------------------------------------------
|
|
|
|
double omegatau;
|
|
|
|
omegatau = OMEGA_EARTH_DOT * traveltime;
|
|
|
|
|
|
|
|
//--- Build a rotation matrix ----------------------------------------------
|
|
|
|
arma::mat R3 = arma::zeros(3,3);
|
|
|
|
R3(0, 0) = cos(omegatau);
|
|
|
|
R3(0, 1) = sin(omegatau);
|
|
|
|
R3(0, 2) = 0.0;
|
|
|
|
R3(1, 0) = -sin(omegatau);
|
|
|
|
R3(1, 1) = cos(omegatau);
|
|
|
|
R3(1, 2) = 0.0;
|
|
|
|
R3(2, 0) = 0.0;
|
|
|
|
R3(2, 1) = 0.0;
|
|
|
|
R3(2, 2) = 1;
|
|
|
|
|
|
|
|
//--- Do the rotation ------------------------------------------------------
|
|
|
|
arma::vec X_sat_rot;
|
|
|
|
X_sat_rot = R3 * X_sat;
|
|
|
|
return X_sat_rot;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int Pvt_Solution::cart2geo(double X, double Y, double Z, int elipsoid_selection)
|
|
|
|
{
|
|
|
|
/* Conversion of Cartesian coordinates (X,Y,Z) to geographical
|
|
|
|
coordinates (latitude, longitude, h) on a selected reference ellipsoid.
|
|
|
|
|
|
|
|
Choices of Reference Ellipsoid for Geographical Coordinates
|
|
|
|
0. International Ellipsoid 1924
|
|
|
|
1. International Ellipsoid 1967
|
|
|
|
2. World Geodetic System 1972
|
|
|
|
3. Geodetic Reference System 1980
|
|
|
|
4. World Geodetic System 1984
|
|
|
|
*/
|
|
|
|
|
|
|
|
const double a[5] = {6378388.0, 6378160.0, 6378135.0, 6378137.0, 6378137.0};
|
|
|
|
const double f[5] = {1.0 / 297.0, 1.0 / 298.247, 1.0 / 298.26, 1.0 / 298.257222101, 1.0 / 298.257223563};
|
|
|
|
|
|
|
|
double lambda = atan2(Y, X);
|
|
|
|
double ex2 = (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1.0 - f[elipsoid_selection]) * (1.0 - f[elipsoid_selection]));
|
|
|
|
double c = a[elipsoid_selection] * sqrt(1.0 + ex2);
|
|
|
|
double phi = atan(Z / ((sqrt(X * X + Y * Y) * (1.0 - (2.0 - f[elipsoid_selection])) * f[elipsoid_selection])));
|
|
|
|
|
|
|
|
double h = 0.1;
|
|
|
|
double oldh = 0.0;
|
|
|
|
double N;
|
|
|
|
int iterations = 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
oldh = h;
|
|
|
|
N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi)));
|
|
|
|
phi = atan(Z / ((sqrt(X * X + Y * Y) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h) ))));
|
|
|
|
h = sqrt(X * X + Y * Y) / cos(phi) - N;
|
|
|
|
iterations = iterations + 1;
|
|
|
|
if (iterations > 100)
|
|
|
|
{
|
|
|
|
LOG(WARNING) << "Failed to approximate h with desired precision. h-oldh= " << h - oldh;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (std::abs(h - oldh) > 1.0e-12);
|
|
|
|
d_latitude_d = phi * 180.0 / GPS_PI;
|
|
|
|
d_longitude_d = lambda * 180.0 / GPS_PI;
|
|
|
|
d_height_m = h;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int Pvt_Solution::togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
|
|
|
|
{
|
|
|
|
/* Subroutine to calculate geodetic coordinates latitude, longitude,
|
2017-01-28 14:31:04 +00:00
|
|
|
height given Cartesian coordinates X,Y,Z, and reference ellipsoid
|
|
|
|
values semi-major axis (a) and the inverse of flattening (finv).
|
2015-11-14 19:41:28 +00:00
|
|
|
|
2017-01-28 14:31:04 +00:00
|
|
|
The output units of angular quantities will be in decimal degrees
|
|
|
|
(15.5 degrees not 15 deg 30 min). The output units of h will be the
|
|
|
|
same as the units of X,Y,Z,a.
|
2015-11-14 19:41:28 +00:00
|
|
|
|
2017-01-28 14:31:04 +00:00
|
|
|
Inputs:
|
2015-11-14 19:41:28 +00:00
|
|
|
a - semi-major axis of the reference ellipsoid
|
|
|
|
finv - inverse of flattening of the reference ellipsoid
|
|
|
|
X,Y,Z - Cartesian coordinates
|
|
|
|
|
2017-01-28 14:31:04 +00:00
|
|
|
Outputs:
|
2015-11-14 19:41:28 +00:00
|
|
|
dphi - latitude
|
|
|
|
dlambda - longitude
|
|
|
|
h - height above reference ellipsoid
|
|
|
|
|
2017-01-28 14:31:04 +00:00
|
|
|
Based in a Matlab function by Kai Borre
|
2015-11-14 19:41:28 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
*h = 0;
|
|
|
|
double tolsq = 1.e-10; // tolerance to accept convergence
|
|
|
|
int maxit = 10; // max number of iterations
|
|
|
|
double rtd = 180.0 / GPS_PI;
|
|
|
|
|
|
|
|
// compute square of eccentricity
|
|
|
|
double esq;
|
|
|
|
if (finv < 1.0E-20)
|
|
|
|
{
|
|
|
|
esq = 0.0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
esq = (2.0 - 1.0 / finv) / finv;
|
|
|
|
}
|
|
|
|
|
|
|
|
// first guess
|
|
|
|
double P = sqrt(X * X + Y * Y); // P is distance from spin axis
|
|
|
|
|
|
|
|
//direct calculation of longitude
|
|
|
|
if (P > 1.0E-20)
|
|
|
|
{
|
|
|
|
*dlambda = atan2(Y, X) * rtd;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*dlambda = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// correct longitude bound
|
|
|
|
if (*dlambda < 0)
|
|
|
|
{
|
|
|
|
*dlambda = *dlambda + 360.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0)
|
|
|
|
|
|
|
|
double sinphi;
|
|
|
|
if (r > 1.0E-20)
|
|
|
|
{
|
|
|
|
sinphi = Z/r;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sinphi = 0.0;
|
|
|
|
}
|
|
|
|
*dphi = asin(sinphi);
|
|
|
|
|
|
|
|
// initial value of height = distance from origin minus
|
|
|
|
// approximate distance from origin to surface of ellipsoid
|
|
|
|
if (r < 1.0E-20)
|
|
|
|
{
|
|
|
|
*h = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
*h = r - a * (1 - sinphi * sinphi/finv);
|
|
|
|
|
|
|
|
// iterate
|
|
|
|
double cosphi;
|
|
|
|
double N_phi;
|
|
|
|
double dP;
|
|
|
|
double dZ;
|
|
|
|
double oneesq = 1.0 - esq;
|
|
|
|
|
|
|
|
for (int i = 0; i < maxit; i++)
|
|
|
|
{
|
|
|
|
sinphi = sin(*dphi);
|
|
|
|
cosphi = cos(*dphi);
|
|
|
|
|
|
|
|
// compute radius of curvature in prime vertical direction
|
|
|
|
N_phi = a / sqrt(1 - esq * sinphi * sinphi);
|
|
|
|
|
|
|
|
// compute residuals in P and Z
|
|
|
|
dP = P - (N_phi + (*h)) * cosphi;
|
|
|
|
dZ = Z - (N_phi * oneesq + (*h)) * sinphi;
|
|
|
|
|
|
|
|
// update height and latitude
|
|
|
|
*h = *h + (sinphi * dZ + cosphi * dP);
|
|
|
|
*dphi = *dphi + (cosphi * dZ - sinphi * dP)/(N_phi + (*h));
|
|
|
|
|
|
|
|
// test for convergence
|
|
|
|
if ((dP * dP + dZ * dZ) < tolsq)
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i == (maxit - 1))
|
|
|
|
{
|
|
|
|
LOG(WARNING) << "The computation of geodetic coordinates did not converge";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*dphi = (*dphi) * rtd;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int Pvt_Solution::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km)
|
|
|
|
{
|
|
|
|
/* Inputs:
|
|
|
|
sinel - sin of elevation angle of satellite
|
|
|
|
hsta_km - height of station in km
|
|
|
|
p_mb - atmospheric pressure in mb at height hp_km
|
|
|
|
t_kel - surface temperature in degrees Kelvin at height htkel_km
|
|
|
|
hum - humidity in % at height hhum_km
|
|
|
|
hp_km - height of pressure measurement in km
|
|
|
|
htkel_km - height of temperature measurement in km
|
|
|
|
hhum_km - height of humidity measurement in km
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
ddr_m - range correction (meters)
|
|
|
|
|
|
|
|
Reference
|
|
|
|
Goad, C.C. & Goodman, L. (1974) A Modified Hopfield Tropospheric
|
|
|
|
Refraction Correction Model. Paper presented at the
|
|
|
|
American Geophysical Union Annual Fall Meeting, San
|
|
|
|
Francisco, December 12-17
|
|
|
|
|
|
|
|
Translated to C++ by Carles Fernandez from a Matlab implementation by Kai Borre
|
|
|
|
*/
|
|
|
|
|
|
|
|
const double a_e = 6378.137; // semi-major axis of earth ellipsoid
|
|
|
|
const double b0 = 7.839257e-5;
|
|
|
|
const double tlapse = -6.5;
|
|
|
|
const double em = -978.77 / (2.8704e6 * tlapse * 1.0e-5);
|
|
|
|
|
|
|
|
double tkhum = t_kel + tlapse * (hhum_km - htkel_km);
|
|
|
|
double atkel = 7.5 * (tkhum - 273.15) / (237.3 + tkhum - 273.15);
|
|
|
|
double e0 = 0.0611 * hum * pow(10, atkel);
|
|
|
|
double tksea = t_kel - tlapse * htkel_km;
|
|
|
|
double tkelh = tksea + tlapse * hhum_km;
|
|
|
|
double e0sea = e0 * pow((tksea / tkelh), (4 * em));
|
|
|
|
double tkelp = tksea + tlapse * hp_km;
|
|
|
|
double psea = p_mb * pow((tksea / tkelp), em);
|
|
|
|
|
|
|
|
if(sinel < 0) { sinel = 0.0; }
|
|
|
|
|
|
|
|
double tropo_delay = 0.0;
|
|
|
|
bool done = false;
|
|
|
|
double refsea = 77.624e-6 / tksea;
|
|
|
|
double htop = 1.1385e-5 / refsea;
|
|
|
|
refsea = refsea * psea;
|
|
|
|
double ref = refsea * pow(((htop - hsta_km) / htop), 4);
|
|
|
|
|
|
|
|
double a;
|
|
|
|
double b;
|
|
|
|
double rtop;
|
|
|
|
|
|
|
|
while(1)
|
|
|
|
{
|
|
|
|
rtop = pow((a_e + htop), 2) - pow((a_e + hsta_km), 2) * (1 - pow(sinel, 2));
|
|
|
|
|
|
|
|
// check to see if geometry is crazy
|
|
|
|
if(rtop < 0) { rtop = 0; }
|
|
|
|
|
|
|
|
rtop = sqrt(rtop) - (a_e + hsta_km) * sinel;
|
|
|
|
|
|
|
|
a = -sinel / (htop - hsta_km);
|
|
|
|
b = -b0 * (1 - pow(sinel,2)) / (htop - hsta_km);
|
|
|
|
|
|
|
|
arma::vec rn = arma::vec(8);
|
|
|
|
rn.zeros();
|
|
|
|
|
|
|
|
for(int i = 0; i<8; i++)
|
|
|
|
{
|
|
|
|
rn(i) = pow(rtop, (i+1+1));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
arma::rowvec alpha = {2 * a, 2 * pow(a, 2) + 4 * b /3, a * (pow(a, 2) + 3 * b),
|
|
|
|
pow(a, 4)/5 + 2.4 * pow(a, 2) * b + 1.2 * pow(b, 2), 2 * a * b * (pow(a, 2) + 3 * b)/3,
|
|
|
|
pow(b, 2) * (6 * pow(a, 2) + 4 * b) * 1.428571e-1, 0, 0};
|
|
|
|
|
|
|
|
if(pow(b, 2) > 1.0e-35)
|
|
|
|
{
|
|
|
|
alpha(6) = a * pow(b, 3) /2;
|
|
|
|
alpha(7) = pow(b, 4) / 9;
|
|
|
|
}
|
|
|
|
|
|
|
|
double dr = rtop;
|
|
|
|
arma::mat aux_ = alpha * rn;
|
|
|
|
dr = dr + aux_(0, 0);
|
|
|
|
tropo_delay = tropo_delay + dr * ref * 1000;
|
|
|
|
|
|
|
|
if(done == true)
|
|
|
|
{
|
|
|
|
*ddr_m = tropo_delay;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
done = true;
|
|
|
|
refsea = (371900.0e-6 / tksea - 12.92e-6) / tksea;
|
|
|
|
htop = 1.1385e-5 * (1255 / tksea + 0.05) / refsea;
|
|
|
|
ref = refsea * e0sea * pow(((htop - hsta_km) / htop), 4);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Pvt_Solution::topocent(double *Az, double *El, double *D, const arma::vec & x, const arma::vec & dx)
|
|
|
|
{
|
|
|
|
/* Transformation of vector dx into topocentric coordinate
|
|
|
|
system with origin at x
|
|
|
|
Inputs:
|
|
|
|
x - vector origin coordinates (in ECEF system [X; Y; Z;])
|
|
|
|
dx - vector ([dX; dY; dZ;]).
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
D - vector length. Units like the input
|
|
|
|
Az - azimuth from north positive clockwise, degrees
|
|
|
|
El - elevation angle, degrees
|
|
|
|
|
|
|
|
Based on a Matlab function by Kai Borre
|
|
|
|
*/
|
|
|
|
|
|
|
|
double lambda;
|
|
|
|
double phi;
|
|
|
|
double h;
|
|
|
|
double dtr = GPS_PI / 180.0;
|
|
|
|
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
|
|
|
|
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
|
|
|
|
|
|
|
|
// Transform x into geodetic coordinates
|
|
|
|
Pvt_Solution::togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
|
|
|
|
|
|
|
|
double cl = cos(lambda * dtr);
|
|
|
|
double sl = sin(lambda * dtr);
|
|
|
|
double cb = cos(phi * dtr);
|
|
|
|
double sb = sin(phi * dtr);
|
|
|
|
|
|
|
|
arma::mat F = arma::zeros(3,3);
|
|
|
|
|
|
|
|
F(0,0) = -sl;
|
|
|
|
F(0,1) = -sb * cl;
|
|
|
|
F(0,2) = cb * cl;
|
|
|
|
|
|
|
|
F(1,0) = cl;
|
|
|
|
F(1,1) = -sb * sl;
|
|
|
|
F(1,2) = cb * sl;
|
|
|
|
|
|
|
|
F(2,0) = 0;
|
|
|
|
F(2,1) = cb;
|
|
|
|
F(2,2) = sb;
|
|
|
|
|
|
|
|
arma::vec local_vector;
|
|
|
|
|
|
|
|
local_vector = arma::htrans(F) * dx;
|
|
|
|
|
|
|
|
double E = local_vector(0);
|
|
|
|
double N = local_vector(1);
|
|
|
|
double U = local_vector(2);
|
|
|
|
|
|
|
|
double hor_dis;
|
|
|
|
hor_dis = sqrt(E * E + N * N);
|
|
|
|
|
|
|
|
if (hor_dis < 1.0E-20)
|
|
|
|
{
|
|
|
|
*Az = 0;
|
|
|
|
*El = 90;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*Az = atan2(E, N) / dtr;
|
|
|
|
*El = atan2(U, hor_dis) / dtr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*Az < 0)
|
|
|
|
{
|
|
|
|
*Az = *Az + 360.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int Pvt_Solution::compute_DOP()
|
|
|
|
{
|
|
|
|
// ###### Compute DOPs ########
|
|
|
|
|
|
|
|
// 1- Rotation matrix from ECEF coordinates to ENU coordinates
|
|
|
|
// ref: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
|
|
|
|
arma::mat F = arma::zeros(3,3);
|
|
|
|
F(0,0) = -sin(GPS_TWO_PI * (d_longitude_d/360.0));
|
|
|
|
F(0,1) = -sin(GPS_TWO_PI * (d_latitude_d/360.0)) * cos(GPS_TWO_PI * (d_longitude_d/360.0));
|
|
|
|
F(0,2) = cos(GPS_TWO_PI * (d_latitude_d/360.0)) * cos(GPS_TWO_PI * (d_longitude_d/360.0));
|
|
|
|
|
|
|
|
F(1,0) = cos((GPS_TWO_PI * d_longitude_d)/360.0);
|
|
|
|
F(1,1) = -sin((GPS_TWO_PI * d_latitude_d)/360.0) * sin((GPS_TWO_PI * d_longitude_d)/360.0);
|
|
|
|
F(1,2) = cos((GPS_TWO_PI * d_latitude_d/360.0)) * sin((GPS_TWO_PI * d_longitude_d)/360.0);
|
|
|
|
|
|
|
|
F(2,0) = 0;
|
|
|
|
F(2,1) = cos((GPS_TWO_PI * d_latitude_d)/360.0);
|
|
|
|
F(2,2) = sin((GPS_TWO_PI * d_latitude_d/360.0));
|
|
|
|
|
|
|
|
// 2- Apply the rotation to the latest covariance matrix (available in ECEF from LS)
|
|
|
|
arma::mat Q_ECEF = d_Q.submat(0, 0, 2, 2);
|
|
|
|
arma::mat DOP_ENU = arma::zeros(3, 3);
|
|
|
|
|
|
|
|
try
|
|
|
|
{
|
|
|
|
DOP_ENU = arma::htrans(F) * Q_ECEF * F;
|
|
|
|
d_GDOP = sqrt(arma::trace(DOP_ENU)); // Geometric DOP
|
|
|
|
d_PDOP = sqrt(DOP_ENU(0, 0) + DOP_ENU(1, 1) + DOP_ENU(2, 2));// PDOP
|
|
|
|
d_HDOP = sqrt(DOP_ENU(0, 0) + DOP_ENU(1, 1)); // HDOP
|
|
|
|
d_VDOP = sqrt(DOP_ENU(2, 2)); // VDOP
|
|
|
|
d_TDOP = sqrt(d_Q(3, 3)); // TDOP
|
|
|
|
}
|
|
|
|
catch(std::exception& ex)
|
|
|
|
{
|
|
|
|
d_GDOP = -1; // Geometric DOP
|
|
|
|
d_PDOP = -1; // PDOP
|
|
|
|
d_HDOP = -1; // HDOP
|
|
|
|
d_VDOP = -1; // VDOP
|
|
|
|
d_TDOP = -1; // TDOP
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int Pvt_Solution::set_averaging_depth(int depth)
|
|
|
|
{
|
|
|
|
d_averaging_depth = depth;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int Pvt_Solution::pos_averaging(bool flag_averaring)
|
|
|
|
{
|
|
|
|
// MOVING AVERAGE PVT
|
|
|
|
bool avg = flag_averaring;
|
|
|
|
if (avg == true)
|
|
|
|
{
|
|
|
|
if (d_hist_longitude_d.size() == (unsigned int)d_averaging_depth)
|
|
|
|
{
|
|
|
|
// Pop oldest value
|
|
|
|
d_hist_longitude_d.pop_back();
|
|
|
|
d_hist_latitude_d.pop_back();
|
|
|
|
d_hist_height_m.pop_back();
|
|
|
|
// Push new values
|
|
|
|
d_hist_longitude_d.push_front(d_longitude_d);
|
|
|
|
d_hist_latitude_d.push_front(d_latitude_d);
|
|
|
|
d_hist_height_m.push_front(d_height_m);
|
|
|
|
|
2015-11-15 22:31:27 +00:00
|
|
|
d_avg_latitude_d = 0.0;
|
|
|
|
d_avg_longitude_d = 0.0;
|
|
|
|
d_avg_height_m = 0.0;
|
2015-11-14 19:41:28 +00:00
|
|
|
for (unsigned int i = 0; i < d_hist_longitude_d.size(); i++)
|
|
|
|
{
|
|
|
|
d_avg_latitude_d = d_avg_latitude_d + d_hist_latitude_d.at(i);
|
|
|
|
d_avg_longitude_d = d_avg_longitude_d + d_hist_longitude_d.at(i);
|
|
|
|
d_avg_height_m = d_avg_height_m + d_hist_height_m.at(i);
|
|
|
|
}
|
|
|
|
d_avg_latitude_d = d_avg_latitude_d / static_cast<double>(d_averaging_depth);
|
|
|
|
d_avg_longitude_d = d_avg_longitude_d / static_cast<double>(d_averaging_depth);
|
|
|
|
d_avg_height_m = d_avg_height_m / static_cast<double>(d_averaging_depth);
|
|
|
|
b_valid_position = true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//int current_depth=d_hist_longitude_d.size();
|
|
|
|
// Push new values
|
|
|
|
d_hist_longitude_d.push_front(d_longitude_d);
|
|
|
|
d_hist_latitude_d.push_front(d_latitude_d);
|
|
|
|
d_hist_height_m.push_front(d_height_m);
|
|
|
|
|
|
|
|
d_avg_latitude_d = d_latitude_d;
|
|
|
|
d_avg_longitude_d = d_longitude_d;
|
|
|
|
d_avg_height_m = d_height_m;
|
|
|
|
b_valid_position = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
b_valid_position = true;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|