1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-15 14:25:00 +00:00
gnss-sdr/src/algorithms/libs/galileo_e5_signal_processing.cc

132 lines
5.4 KiB
C++
Raw Normal View History

2014-05-21 07:42:26 +00:00
/*!
* \file galileo_e5_signal_processing.cc
2014-05-21 07:42:26 +00:00
* \brief This library implements various functions for Galileo E5 signals such
* as replica code generation
* \author Marc Sales, 2014. marcsales92(at)gmail.com
*
2014-05-21 07:42:26 +00:00
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
2015-01-08 18:49:59 +00:00
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
2014-05-21 07:42:26 +00:00
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
2015-01-08 18:49:59 +00:00
* (at your option) any later version.
2014-05-21 07:42:26 +00:00
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5_signal_processing.h"
void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, signed int _prn, char _Signal[3])
{
2015-03-16 23:22:20 +00:00
unsigned int prn = _prn - 1;
unsigned int index = 0;
int a[4];
if ((_prn < 1) || (_prn > 50))
{
return;
}
2015-03-16 23:22:20 +00:00
if (_Signal[0] == '5' && _Signal[1] == 'Q')
{
2015-03-16 23:22:20 +00:00
for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1; i++)
{
2015-03-16 23:22:20 +00:00
hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index] = std::complex<float>(0.0, float(a[0]));
_dest[index + 1] = std::complex<float>(0.0, float(a[1]));
_dest[index + 2] = std::complex<float>(0.0, float(a[2]));
_dest[index + 3] = std::complex<float>(0.0, float(a[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
2015-03-16 23:22:20 +00:00
hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1));
_dest[index] = std::complex<float>(float(0.0), a[0]);
_dest[index + 1] = std::complex<float>(float(0.0), a[1]);
}
2015-03-16 23:22:20 +00:00
else if (_Signal[0] == '5' && _Signal[1] == 'I')
{
2015-03-16 23:22:20 +00:00
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++)
{
2015-03-16 23:22:20 +00:00
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
_dest[index] = std::complex<float>(float(a[0]), 0.0);
_dest[index + 1] = std::complex<float>(float(a[1]), 0.0);
_dest[index + 2] = std::complex<float>(float(a[2]), 0.0);
_dest[index + 3] = std::complex<float>(float(a[3]), 0.0);
index = index + 4;
}
// last 2 bits are filled up zeros
2015-03-16 23:22:20 +00:00
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1));
_dest[index] = std::complex<float>(float(a[0]), 0.0);
_dest[index + 1] = std::complex<float>(float(a[1]), 0.0);
}
2015-03-16 23:22:20 +00:00
else if (_Signal[0] == '5' && _Signal[1] == 'X')
{
int b[4];
2015-03-16 23:22:20 +00:00
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++)
{
2015-03-16 23:22:20 +00:00
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index] = std::complex<float>(float(a[0]),float(b[0]));
_dest[index + 1] = std::complex<float>(float(a[1]),float(b[1]));
_dest[index + 2] = std::complex<float>(float(a[2]),float(b[2]));
_dest[index + 3] = std::complex<float>(float(a[3]),float(b[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
2015-03-16 23:22:20 +00:00
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1));
hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1));
_dest[index] = std::complex<float>(float(a[0]), float(b[0]));
_dest[index + 1] = std::complex<float>(float(a[1]), float(b[1]));
}
}
void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
2014-08-05 00:01:37 +00:00
unsigned int _prn, signed int _fs, unsigned int _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
unsigned int _samplesPerCode;
unsigned int delay;
2015-05-14 15:51:44 +00:00
unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS;
const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; //Hz
2015-05-14 15:51:44 +00:00
std::complex<float>* _code;
_code = new std::complex<float>[_codeLength];
galileo_e5_a_code_gen_complex_primary(_code , _prn , _Signal);
2015-05-14 09:20:02 +00:00
_samplesPerCode = static_cast<unsigned int>(static_cast<double>(_fs) / ( static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
2014-08-05 00:01:37 +00:00
2015-03-16 23:22:20 +00:00
delay = ((_codeLength - _chip_shift) % _codeLength) * _samplesPerCode / _codeLength;
if (_fs != _codeFreqBasis)
{
2014-08-05 00:01:37 +00:00
std::complex<float>* _resampled_signal;
if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0){};
2015-03-16 23:22:20 +00:00
resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs
2015-05-14 15:51:44 +00:00
delete[] _code;
_code = _resampled_signal;
}
for (unsigned int i = 0; i < _samplesPerCode; i++)
{
2015-03-16 23:22:20 +00:00
_dest[(i + delay) % _samplesPerCode] = _code[i];
}
2015-05-14 15:51:44 +00:00
free(_code);
}