mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-18 07:44:57 +00:00
638 lines
17 KiB
C
638 lines
17 KiB
C
|
/* File convolutional.h
|
||
|
|
||
|
Description: General functions used to implement convolutional encoding.
|
||
|
|
||
|
Copyright (C) 2006-2008, Matthew C. Valenti
|
||
|
|
||
|
Last updated on May 22, 2008
|
||
|
|
||
|
The functions in this file are part of the Iterative Solutions
|
||
|
Coded Modulation Library. The Iterative Solutions Coded Modulation
|
||
|
Library is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU Lesser General Public License as published
|
||
|
by the Free Software Foundation; either version 2.1 of the License,
|
||
|
or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
*/
|
||
|
|
||
|
/* define constants used throughout the library */
|
||
|
#define MAXLOG 1e7 /* Define infinity */
|
||
|
|
||
|
/* function itob()
|
||
|
|
||
|
Description: Converts an integer symbol into a vector of bits
|
||
|
|
||
|
Output parameters:
|
||
|
binvec_p: The binary vector
|
||
|
|
||
|
Input parameters:
|
||
|
symbol: The integer-valued symbol
|
||
|
length: The length of the binary vector
|
||
|
|
||
|
This function is used by conv_encode() */
|
||
|
|
||
|
void itob(
|
||
|
int binvec_p[],
|
||
|
int symbol,
|
||
|
int length )
|
||
|
{
|
||
|
int counter;
|
||
|
|
||
|
/* Go through each bit in the vector */
|
||
|
for (counter=0;counter<length;counter++) {
|
||
|
binvec_p[length-counter-1] = (symbol&1);
|
||
|
symbol = symbol>>1;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* function parity_counter()
|
||
|
|
||
|
Description: Determines if a symbol has odd (1) or even (0) parity
|
||
|
|
||
|
Output parameters:
|
||
|
(returned int): The symbol's parity = 1 for odd and 0 for even
|
||
|
|
||
|
Input parameters:
|
||
|
symbol: The integer-valued symbol
|
||
|
length: The highest bit position in the symbol
|
||
|
|
||
|
This function is used by nsc_enc_bit(), rsc_enc_bit(), and rsc_tail() */
|
||
|
|
||
|
int parity_counter( int symbol, int length )
|
||
|
{
|
||
|
int counter;
|
||
|
int temp_parity = 0;
|
||
|
|
||
|
for (counter=0;counter<length;counter++) {
|
||
|
temp_parity = temp_parity^(symbol&1);
|
||
|
symbol = symbol>>1;
|
||
|
}
|
||
|
|
||
|
return( temp_parity );
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Function nsc_enc_bit()
|
||
|
|
||
|
Description: Convolutionally encodes a single bit using a rate 1/n encoder.
|
||
|
Takes in one input bit at a time, and produces a n-bit output.
|
||
|
|
||
|
Input parameters:
|
||
|
input The input data bit (i.e. a 0 or 1).
|
||
|
state_in The starting state of the encoder (an int from 0 to 2^m-1).
|
||
|
g[] An n-element vector containing the code generators in binary form.
|
||
|
KK The constraint length of the convolutional code.
|
||
|
|
||
|
Output parameters:
|
||
|
output_p[] An n-element vector containing the encoded bits.
|
||
|
state_out_p[] An integer containing the final state of the encoder
|
||
|
(i.e. the state after encoding this bit)
|
||
|
|
||
|
This function is used by rsc_encode(), nsc_transit(), rsc_transit(), and nsc_transit() */
|
||
|
|
||
|
static int nsc_enc_bit(
|
||
|
int state_out_p[],
|
||
|
int input,
|
||
|
int state_in,
|
||
|
int g[],
|
||
|
int KK,
|
||
|
int nn )
|
||
|
{
|
||
|
/* declare variables */
|
||
|
int state, i;
|
||
|
int out = 0;
|
||
|
|
||
|
/* create a word made up of state and new input */
|
||
|
state = (input<<(KK-1))^state_in;
|
||
|
|
||
|
/* AND the word with the generators */
|
||
|
for (i=0;i<nn;i++)
|
||
|
{
|
||
|
/* update output symbol */
|
||
|
out = (out<<1) + parity_counter( state&g[i], KK );
|
||
|
}
|
||
|
|
||
|
/* shift the state to make the new state */
|
||
|
state_out_p[0] = state>>1;
|
||
|
return(out);
|
||
|
}
|
||
|
|
||
|
/* like nsc_enc_bit() but for a RSC code */
|
||
|
static int rsc_enc_bit(
|
||
|
int state_out_p[],
|
||
|
int input,
|
||
|
int state_in,
|
||
|
int g[],
|
||
|
int KK,
|
||
|
int nn )
|
||
|
{
|
||
|
/* declare variables */
|
||
|
int state, i, out, a_k;
|
||
|
|
||
|
/* systematic output */
|
||
|
out = input;
|
||
|
|
||
|
/* determine feedback bit */
|
||
|
a_k = input^parity_counter( g[0]&state_in, KK );
|
||
|
|
||
|
/* create a word made up of state and feedback bit */
|
||
|
state = (a_k<<(KK-1))^state_in;
|
||
|
|
||
|
/* AND the word with the generators */
|
||
|
for (i=1;i<nn;i++)
|
||
|
{
|
||
|
/* update output symbol */
|
||
|
out = (out<<1) + parity_counter( state&g[i], KK );
|
||
|
}
|
||
|
|
||
|
/* shift the state to make the new state */
|
||
|
state_out_p[0] = state>>1;
|
||
|
return(out);
|
||
|
}
|
||
|
|
||
|
/* function that creates the transit and output vectors */
|
||
|
static void nsc_transit(
|
||
|
int output_p[],
|
||
|
int trans_p[],
|
||
|
int input,
|
||
|
int g[],
|
||
|
int KK,
|
||
|
int nn )
|
||
|
{
|
||
|
int nextstate[1];
|
||
|
int state, states;
|
||
|
states = (1<<(KK-1)); /* The number of states: 2^mm */
|
||
|
|
||
|
/* Determine the output and next state for each possible starting state */
|
||
|
for(state=0;state<states;state++) {
|
||
|
output_p[state] = nsc_enc_bit( nextstate, input, state, g, KK, nn );
|
||
|
trans_p[state] = nextstate[0];
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Function rsc_transit()
|
||
|
|
||
|
Description: Calculates the "transition matrix" for the trellis.
|
||
|
This information tells the decoder what the next state and output bits
|
||
|
will be given the current state and input bit.
|
||
|
|
||
|
Input parameters:
|
||
|
input Either 0 or 1 --- the input data bit.
|
||
|
g[] A two element vector containing the code generators.
|
||
|
KK The constraint length of the convolutional code.
|
||
|
|
||
|
Output parameters:
|
||
|
output_p[] A vector of length max_states = 2^(KK-1) containing
|
||
|
the output symbols.
|
||
|
trans_p[] A vector of length max_states that tells the decoder
|
||
|
what the next state will be given the input and current state.
|
||
|
|
||
|
This function is used by turbo_decode() */
|
||
|
|
||
|
static void rsc_transit(
|
||
|
int output_p[],
|
||
|
int trans_p[],
|
||
|
int input,
|
||
|
int g[],
|
||
|
int KK,
|
||
|
int nn )
|
||
|
{
|
||
|
int nextstate[1];
|
||
|
int state, states;
|
||
|
|
||
|
states = 1 << (KK-1); /* The number of states: 2^mm */
|
||
|
|
||
|
/* Determine the output and next state for each possible starting state */
|
||
|
for(state=0;state<states;state++) {
|
||
|
output_p[state] = rsc_enc_bit( nextstate, input, state, g, KK, nn );
|
||
|
trans_p[state] = nextstate[0];
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* determine the tail for a RSC code */
|
||
|
static void rsc_tail(
|
||
|
int tail_p[],
|
||
|
int g[],
|
||
|
int max_states,
|
||
|
int mm )
|
||
|
{
|
||
|
int state;
|
||
|
|
||
|
/* Determine the tail for each state */
|
||
|
for(state=0;state<max_states;state++) {
|
||
|
/* determine feedback word */
|
||
|
tail_p[state] = parity_counter( g[0]&state, mm );
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* perform convolutional encoding */
|
||
|
static void conv_encode(
|
||
|
int output_p[],
|
||
|
int input[],
|
||
|
int out0[],
|
||
|
int state0[],
|
||
|
int out1[],
|
||
|
int state1[],
|
||
|
int tail[],
|
||
|
int KK,
|
||
|
int LL,
|
||
|
int nn )
|
||
|
{
|
||
|
int i, j, outsym;
|
||
|
int *bin_vec;
|
||
|
int state = 0;
|
||
|
|
||
|
/* Negative value in "tail" is a flag that this is
|
||
|
a tail-biting NSC code. Determine initial state */
|
||
|
|
||
|
if ( tail[0] < 0 ) {
|
||
|
for (i=LL-KK+1;i<LL;i++) {
|
||
|
if (input[i]) {
|
||
|
/* Determine next state */
|
||
|
state = state1[state];
|
||
|
} else {
|
||
|
/* Determine next state */
|
||
|
state = state0[state];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bin_vec = (int*)calloc( nn, sizeof(int) );
|
||
|
|
||
|
/* encode data bits one bit at a time */
|
||
|
for (i=0;i<LL;i++) {
|
||
|
if (input[i]) {
|
||
|
/* Input is a one */
|
||
|
outsym = out1[state]; /* The output symbol */
|
||
|
|
||
|
/* Determine next state */
|
||
|
state = state1[state];
|
||
|
} else {
|
||
|
/* Input is a zero */
|
||
|
outsym = out0[state]; /* The output symbol */
|
||
|
|
||
|
/* Determine next state */
|
||
|
state = state0[state];
|
||
|
}
|
||
|
|
||
|
/* Convert symbol to a binary vector */
|
||
|
itob( bin_vec, outsym, nn );
|
||
|
|
||
|
/* Assign to output */
|
||
|
for (j=0;j<nn;j++)
|
||
|
output_p[nn*i+j] = bin_vec[j];
|
||
|
}
|
||
|
|
||
|
/* encode tail if needed */
|
||
|
if (tail[0] >= 0) {
|
||
|
for (i=LL;i<LL+KK-1;i++) {
|
||
|
if (tail[state]) {
|
||
|
/* Input is a one */
|
||
|
outsym = out1[state]; /* The output symbol */
|
||
|
|
||
|
/* Determine next state */
|
||
|
state = state1[state];
|
||
|
} else {
|
||
|
/* Input is a zero */
|
||
|
outsym = out0[state]; /* The output symbol */
|
||
|
|
||
|
/* Determine next state */
|
||
|
state = state0[state];
|
||
|
}
|
||
|
|
||
|
/* Convert symbol to a binary vector */
|
||
|
itob( bin_vec, outsym, nn );
|
||
|
|
||
|
/* Assign to output */
|
||
|
for (j=0;j<nn;j++)
|
||
|
output_p[nn*i+j] = bin_vec[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(bin_vec);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* function Gamma()
|
||
|
|
||
|
Description: Computes the branch metric used for decoding.
|
||
|
|
||
|
Output parameters:
|
||
|
(returned float) The metric between the hypothetical symbol and the recevieved vector
|
||
|
|
||
|
Input parameters:
|
||
|
rec_array The received vector, of length nn
|
||
|
symbol The hypothetical symbol
|
||
|
nn The length of the received vector
|
||
|
|
||
|
This function is used by siso() */
|
||
|
|
||
|
|
||
|
static float Gamma(float rec_array[],
|
||
|
int symbol,
|
||
|
int nn )
|
||
|
{
|
||
|
float rm = 0;
|
||
|
int i;
|
||
|
int mask;
|
||
|
|
||
|
mask = 1;
|
||
|
for (i=0;i<nn;i++) {
|
||
|
if (symbol&mask)
|
||
|
rm += rec_array[nn-i-1];
|
||
|
mask = mask<<1;
|
||
|
}
|
||
|
|
||
|
return(rm);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Function Viterbi()
|
||
|
|
||
|
Description: Uses the Viterbi algorithm to perform hard-decision decoding of a convolutional code.
|
||
|
|
||
|
Input parameters:
|
||
|
out0[] The output bits for each state if input is a 0 (generated by rsc_transit).
|
||
|
state0[] The next state if input is a 0 (generated by rsc_transit).
|
||
|
out1[] The output bits for each state if input is a 1 (generated by rsc_transit).
|
||
|
state1[] The next state if input is a 1 (generated by rsc_transit).
|
||
|
r[] The received signal in LLR-form. For BPSK, must be in form r = 2*a*y/(sigma^2).
|
||
|
KK The constraint length of the convolutional code.
|
||
|
LL The number of data bits.
|
||
|
|
||
|
Output parameters:
|
||
|
output_u_int[] Hard decisions on the data bits
|
||
|
|
||
|
*/
|
||
|
|
||
|
static void Viterbi(
|
||
|
int output_u_int[],
|
||
|
int out0[],
|
||
|
int state0[],
|
||
|
int out1[],
|
||
|
int state1[],
|
||
|
double input_c[],
|
||
|
int KK,
|
||
|
int nn,
|
||
|
int LL
|
||
|
)
|
||
|
{
|
||
|
int i, t, state, mm, states;
|
||
|
int number_symbols;
|
||
|
float metric;
|
||
|
float *prev_section, *next_section;
|
||
|
int *prev_bit;
|
||
|
int *prev_state;
|
||
|
float *metric_c; /* Set of all possible branch metrics */
|
||
|
float *rec_array; /* Received values for one trellis section */
|
||
|
float max_val;
|
||
|
|
||
|
/* some derived constants */
|
||
|
mm = KK-1;
|
||
|
states = 1 << mm; /* 2^mm */
|
||
|
number_symbols = 1 << nn; /* 2^nn */
|
||
|
|
||
|
/* dynamically allocate memory */
|
||
|
prev_section = (float*)calloc( states, sizeof(float) );
|
||
|
next_section = (float*)calloc( states, sizeof(float) );
|
||
|
prev_bit = (int*)calloc( states*(LL+mm), sizeof(int) );
|
||
|
prev_state = (int*)calloc( states*(LL+mm), sizeof(int) );
|
||
|
rec_array = (float*)calloc( nn, sizeof(float) );
|
||
|
metric_c = (float*)calloc( number_symbols, sizeof(float) );
|
||
|
|
||
|
/* initialize trellis */
|
||
|
for (state=0;state<states;state++) {
|
||
|
prev_section[state] = -MAXLOG;
|
||
|
next_section[state] = -MAXLOG;
|
||
|
}
|
||
|
prev_section[0] = 0; /* start in all-zeros state */
|
||
|
|
||
|
/* go through trellis */
|
||
|
for (t=0;t<LL+mm;t++) {
|
||
|
for (i=0;i<nn;i++)
|
||
|
rec_array[i] = (float)input_c[nn*t+i];
|
||
|
|
||
|
/* precompute all possible branch metrics */
|
||
|
for (i=0;i<number_symbols;i++)
|
||
|
metric_c[i] = Gamma( rec_array, i, nn );
|
||
|
|
||
|
/* step through all states */
|
||
|
for (state=0;state<states;state++) {
|
||
|
|
||
|
/* hypothesis: info bit is a zero */
|
||
|
metric = prev_section[state] + metric_c[ out0[ state ] ];
|
||
|
|
||
|
/* store new metric if more than metric in storage */
|
||
|
if ( metric > next_section[state0[state]] ) {
|
||
|
next_section[state0[state]] = metric;
|
||
|
prev_state[t*states+state0[state]] = state;
|
||
|
prev_bit[t*states+state0[state]] = 0;
|
||
|
}
|
||
|
|
||
|
/* hypothesis: info bit is a one */
|
||
|
metric = prev_section[state] + metric_c[ out1[ state ] ];
|
||
|
|
||
|
/* store new metric if more than metric in storage */
|
||
|
if ( metric > next_section[state1[state]] ) {
|
||
|
next_section[state1[state]] = metric;
|
||
|
prev_state[t*states+state1[state]] = state;
|
||
|
prev_bit[t*states+state1[state]] = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* normalize */
|
||
|
max_val = 0;
|
||
|
for (state=0;state<states;state++) {
|
||
|
if (next_section[state]>max_val){
|
||
|
max_val = next_section[state];
|
||
|
}
|
||
|
}
|
||
|
for (state=0;state<states;state++) {
|
||
|
prev_section[state] = next_section[state] - max_val;
|
||
|
next_section[state] = -MAXLOG;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* trace-back operation */
|
||
|
state = 0;
|
||
|
|
||
|
/* tail, no need to output */
|
||
|
for (t=LL+mm-1; t>=LL; t--) {
|
||
|
state = prev_state[t*states+state];
|
||
|
}
|
||
|
|
||
|
for (t=LL-1; t>=0; t--) {
|
||
|
output_u_int[t] = prev_bit[t*states+state];
|
||
|
state = prev_state[t*states+state];
|
||
|
}
|
||
|
|
||
|
/* free the dynamically allocated memory */
|
||
|
free(prev_section);
|
||
|
free(next_section);
|
||
|
free(prev_bit);
|
||
|
free(prev_state);
|
||
|
free(rec_array);
|
||
|
free(metric_c);
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Function ViterbiTb()
|
||
|
|
||
|
Description: Uses the Viterbi algorithm to perform hard-decision decoding of a tail-biting convolutional code.
|
||
|
|
||
|
Input parameters:
|
||
|
out0[] The output bits for each state if input is a 0 (generated by rsc_transit).
|
||
|
state0[] The next state if input is a 0 (generated by rsc_transit).
|
||
|
out1[] The output bits for each state if input is a 1 (generated by rsc_transit).
|
||
|
state1[] The next state if input is a 1 (generated by rsc_transit).
|
||
|
r[] The received signal in LLR-form. For BPSK, must be in form r = 2*a*y/(sigma^2).
|
||
|
KK The constraint length of the convolutional code.
|
||
|
LL The number of data bits.
|
||
|
depth head and tail decoding length [Ref. W. Sung, Electronics Letters, vol. 36, no. 7]
|
||
|
|
||
|
Output parameters:
|
||
|
output_u_int[] Hard decisions on the data bits
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
static void ViterbiTb(
|
||
|
int output_u_int[],
|
||
|
int out0[],
|
||
|
int state0[],
|
||
|
int out1[],
|
||
|
int state1[],
|
||
|
double input_c[],
|
||
|
int KK,
|
||
|
int nn,
|
||
|
int LL,
|
||
|
int depth
|
||
|
)
|
||
|
{
|
||
|
int i, t, state, mm, states, max_state;
|
||
|
int number_symbols, starting_bit;
|
||
|
float metric;
|
||
|
float *prev_section, *next_section;
|
||
|
int *prev_bit;
|
||
|
int *prev_state;
|
||
|
float *metric_c; /* Set of all possible branch metrics */
|
||
|
float *rec_array; /* Received values for one trellis section */
|
||
|
float max_val;
|
||
|
|
||
|
/* some derived constants */
|
||
|
mm = KK-1;
|
||
|
states = 1 << mm; /* 2^mm */
|
||
|
number_symbols = 1 << nn; /* 2^nn */
|
||
|
|
||
|
/* dynamically allocate memory */
|
||
|
prev_section = (float*)calloc( states, sizeof(float) );
|
||
|
next_section = (float*)calloc( states, sizeof(float) );
|
||
|
prev_bit = (int*)calloc( states*(LL+depth), sizeof(int) );
|
||
|
prev_state = (int*)calloc( states*(LL+depth), sizeof(int) );
|
||
|
rec_array = (float*)calloc( nn, sizeof(float) );
|
||
|
metric_c = (float*)calloc( number_symbols, sizeof(float) );
|
||
|
|
||
|
/* initialize trellis */
|
||
|
for (state=0;state<states;state++) {
|
||
|
prev_section[state] = 0; /* equally likely starting state */
|
||
|
next_section[state] = -MAXLOG;
|
||
|
}
|
||
|
|
||
|
/* go through trellis */
|
||
|
for (t=-depth;t<LL+depth;t++) {
|
||
|
/* determine the corresponding data bits */
|
||
|
starting_bit = nn*(t%LL);
|
||
|
if (starting_bit < 0 )
|
||
|
starting_bit = nn*LL + starting_bit;
|
||
|
|
||
|
/* printf( "start at %d\n", starting_bit ); */
|
||
|
for (i=0;i<nn;i++) {
|
||
|
rec_array[i] = (float)input_c[starting_bit+i];
|
||
|
/* printf( "%1f\n", rec_array[i] ); */
|
||
|
}
|
||
|
|
||
|
/* precompute all possible branch metrics */
|
||
|
for (i=0;i<number_symbols;i++)
|
||
|
metric_c[i] = Gamma( rec_array, i, nn );
|
||
|
|
||
|
/* step through all states */
|
||
|
for (state=0;state<states;state++) {
|
||
|
|
||
|
/* hypothesis: info bit is a zero */
|
||
|
metric = prev_section[state] + metric_c[ out0[ state ] ];
|
||
|
|
||
|
/* store new metric if more than metric in storage */
|
||
|
if ( metric > next_section[state0[state]] ) {
|
||
|
next_section[state0[state]] = metric;
|
||
|
if (t>=0) {
|
||
|
prev_state[t*states+state0[state]] = state;
|
||
|
prev_bit[t*states+state0[state]] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* hypothesis: info bit is a one */
|
||
|
metric = prev_section[state] + metric_c[ out1[ state ] ];
|
||
|
|
||
|
/* store new metric if more than metric in storage */
|
||
|
if ( metric > next_section[state1[state]] ) {
|
||
|
next_section[state1[state]] = metric;
|
||
|
if (t>=0) {
|
||
|
prev_state[t*states+state1[state]] = state;
|
||
|
prev_bit[t*states+state1[state]] = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* normalize */
|
||
|
max_val = 0;
|
||
|
for (state=0;state<states;state++) {
|
||
|
if (next_section[state]>max_val){
|
||
|
max_val = next_section[state];
|
||
|
max_state = state;
|
||
|
}
|
||
|
}
|
||
|
for (state=0;state<states;state++) {
|
||
|
prev_section[state] = next_section[state] - max_val;
|
||
|
next_section[state] = -MAXLOG;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* trace-back operation */
|
||
|
state = max_state;
|
||
|
|
||
|
/* tail, no need to output */
|
||
|
for (t=LL+depth-1; t>=LL; t--) {
|
||
|
state = prev_state[t*states+state];
|
||
|
}
|
||
|
|
||
|
for (t=LL-1; t>=0; t--) {
|
||
|
output_u_int[t] = prev_bit[t*states+state];
|
||
|
state = prev_state[t*states+state];
|
||
|
}
|
||
|
|
||
|
/* free the dynamically allocated memory */
|
||
|
free(prev_section);
|
||
|
free(next_section);
|
||
|
free(prev_bit);
|
||
|
free(prev_state);
|
||
|
free(rec_array);
|
||
|
free(metric_c);
|
||
|
|
||
|
}
|