;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter.sampling_frequency=1999898
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter.IF=80558
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;# DISABLED IN THE RTL-SDR REALTIME
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=4
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=GPS
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
Channel0.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS.dump=false
;#filename: Log path and filename
Acquisition_GPS.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=10000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_min=-10000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;#maximum dwells
Acquisition_GPS.max_dwells=15
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;#repeat_satellite: Use only jointly with the satellite PRN ID option. The default value is false
;Acquisition0.repeat_satellite = false
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] [GPS_L1_CA_DLL_PLL_Optim_Tracking]