1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-30 08:53:15 +00:00
gnss-sdr/src/core/system_parameters/galileo_navigation_message.cc

1299 lines
54 KiB
C++
Raw Normal View History

/*!
* \file Galileo_Navigation_Message.cc
* \brief Implementation of a Galileo I/NAV Data message
* as described in Galileo OS SIS ICD Issue 1.1 (Sept. 2010)
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas, 2013. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2013 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_navigation_message.h"
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/crc.hpp> // for boost::crc_basic, boost::crc_optimal
#include <boost/dynamic_bitset.hpp>
#include <glog/log_severity.h>
#include <glog/logging.h>
#include <iostream>
#include <cstring>
#include <string>
typedef boost::crc_optimal<24, 0x1864CFBu, 0x0, 0x0, false, false> CRC_Galileo_INAV_type;
void Galileo_Navigation_Message::reset()
{
flag_even_word = 0;
Page_type_time_stamp = 0;
flag_CRC_test = false;
flag_all_ephemeris = false; // flag indicating that all words containing ephemeris have been received
flag_ephemeris_1 = false; // flag indicating that ephemeris 1/4 (word 1) have been received
flag_ephemeris_2 = false; // flag indicating that ephemeris 2/4 (word 2) have been received
flag_ephemeris_3 = false; // flag indicating that ephemeris 3/4 (word 3) have been received
flag_ephemeris_4 = false; // flag indicating that ephemeris 4/4 (word 4) have been received
flag_iono_and_GST = false; // flag indicating that ionospheric parameters (word 5) have been received
flag_utc_model = false; // flag indicating that utc model parameters (word 6) have been received
flag_all_almanac = false; // flag indicating that all almanac have been received
flag_almanac_1 = false; // flag indicating that almanac 1/4 (word 7) have been received
flag_almanac_2 = false; // flag indicating that almanac 2/4 (word 8) have been received
flag_almanac_3 = false; // flag indicating that almanac 3/4 (word 9) have been received
flag_almanac_4 = false; // flag indicating that almanac 4/4 (word 10) have been received
flag_TOW_5 = 0;
flag_TOW_set = false;
IOD_ephemeris = 0;
/*Word type 1: Ephemeris (1/4)*/
IOD_nav_1 = 0;
t0e_1 = 0;
M0_1 = 0;
e_1 = 0;
A_1 = 0;
/*Word type 2: Ephemeris (2/4)*/
IOD_nav_2 = 0; // IOD_nav page 2
OMEGA_0_2 = 0; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles]
i_0_2 = 0; // Inclination angle at reference time [semi-circles]
omega_2 = 0; // Argument of perigee [semi-circles]
iDot_2 = 0; // Rate of inclination angle [semi-circles/sec]
/*Word type 3: Ephemeris (3/4) and SISA*/
IOD_nav_3 = 0; //
OMEGA_dot_3 = 0; // Rate of right ascension [semi-circles/sec]
delta_n_3 = 0; // Mean motion difference from computed value [semi-circles/sec]
C_uc_3 = 0; // Amplitude of the cosine harmonic correction term to the argument of latitude [radians]
C_us_3 = 0; // Amplitude of the sine harmonic correction term to the argument of latitude [radians]
C_rc_3 = 0; // Amplitude of the cosine harmonic correction term to the orbit radius [meters]
C_rs_3 = 0; // Amplitude of the sine harmonic correction term to the orbit radius [meters]
SISA_3 = 0; //
/*Word type 4: Ephemeris (4/4) and Clock correction parameters*/
IOD_nav_4 = 0; //
SV_ID_PRN_4 = 0; //
C_ic_4 = 0; // Amplitude of the cosine harmonic correction term to the angle of inclination [radians]
C_is_4 = 0; // Amplitude of the sine harmonic correction term to the angle of inclination [radians]
/*Clock correction parameters*/
t0c_4 = 0; //
af0_4 = 0; //
af1_4 = 0; //
af2_4 = 0; //
spare_4 = 0;
/*Word type 5: Ionospheric correction, BGD, signal health and data validity status and GST*/
/*Ionospheric correction*/
/*Az*/
ai0_5 = 0; //
ai1_5 = 0; //
ai2_5 = 0; //
/*Ionospheric disturbance flag*/
Region1_flag_5 = 0; //Region1_flag_5;
Region2_flag_5 = 0; //
Region3_flag_5 = 0; //
Region4_flag_5 = 0; //
Region5_flag_5 = 0; //
BGD_E1E5a_5 = 0; //
BGD_E1E5b_5 = 0; //
E5b_HS_5 = 0; //
E1B_HS_5 = 0; //
E5b_DVS_5 = 0; //
E1B_DVS_5 = 0; //
/*GST*/
WN_5 = 0;
TOW_5 = 0;
spare_5 = 0;
/*Word type 6: GST-UTC conversion parameters*/
A0_6 = 0;
A1_6 = 0;
Delta_tLS_6 = 0;
t0t_6 = 0;
WNot_6 = 0;
WN_LSF_6 = 0;
DN_6 = 0;
Delta_tLSF_6 = 0;
TOW_6 = 0;
/*Word type 7: Almanac for SVID1 (1/2), almanac reference time and almanac reference week number*/
IOD_a_7 = 0;
WN_a_7 = 0;
t0a_7 = 0;
SVID1_7 = 0;
DELTA_A_7 = 0;
e_7 = 0;
omega_7 = 0;
delta_i_7 = 0;
Omega0_7 = 0;
Omega_dot_7 = 0;
M0_7 = 0;
/*Word type 8: Almanac for SVID1 (2/2) and SVID2 (1/2)*/
IOD_a_8 = 0;
af0_8 = 0;
af1_8 = 0;
E5b_HS_8 = 0;
E1B_HS_8 = 0;
SVID2_8 = 0;
DELTA_A_8 = 0;
e_8 = 0;
omega_8 = 0;
delta_i_8 = 0;
Omega0_8 = 0;
Omega_dot_8 = 0;
/*Word type 9: Almanac for SVID2 (2/2) and SVID3 (1/2)*/
IOD_a_9 = 0;
WN_a_9 = 0;
t0a_9 = 0;
M0_9 = 0;
af0_9 = 0;
af1_9 = 0;
E5b_HS_9 = 0;
E1B_HS_9 = 0;
SVID3_9 = 0;
DELTA_A_9 = 0;
e_9 = 0;
omega_9 = 0;
delta_i_9 = 0;
/*Word type 10: Almanac for SVID3 (2/2) and GST-GPS conversion parameters*/
IOD_a_10 = 0;
Omega0_10 = 0;
Omega_dot_10 = 0;
M0_10 = 0;
af0_10 = 0;
af1_10 = 0;
E5b_HS_10 = 0;
E1B_HS_10 = 0;
//GST-GPS
A_0G_10 = 0;
A_1G_10 = 0;
t_0G_10 = 0;
WN_0G_10 = 0;
/*Word type 0: I/NAV Spare Word*/
Time_0 = 0;
WN_0 = 0;
TOW_0 = 0;
}
Galileo_Navigation_Message::Galileo_Navigation_Message()
{
reset();
}
bool Galileo_Navigation_Message::CRC_test(std::bitset<GALILEO_DATA_FRAME_BITS> bits,boost::uint32_t checksum)
{
CRC_Galileo_INAV_type CRC_Galileo;
boost::uint32_t crc_computed;
// Galileo INAV frame for CRC is not an integer multiple of bytes
// it needs to be filled with zeroes at the start of the frame.
// This operation is done in the transformation from bits to bytes
// using boost::dynamic_bitset.
// ToDo: Use boost::dynamic_bitset for all the bitset operations in this class
boost::dynamic_bitset<unsigned char> frame_bits(std::string(bits.to_string()));
std::vector<unsigned char> bytes;
boost::to_block_range(frame_bits, std::back_inserter(bytes));
std::reverse(bytes.begin(),bytes.end());
CRC_Galileo.process_bytes( bytes.data(), GALILEO_DATA_FRAME_BYTES );
crc_computed = CRC_Galileo.checksum();
if (checksum == crc_computed)
{
return true;
}
else
{
return false;
}
}
unsigned long int Galileo_Navigation_Message::read_navigation_unsigned(std::bitset<GALILEO_DATA_JK_BITS> bits, const std::vector<std::pair<int,int> > parameter)
{
unsigned long int value = 0;
int num_of_slices = parameter.size();
for (int i = 0; i < num_of_slices; i++)
{
for (int j = 0; j < parameter[i].second; j++)
{
value <<= 1; //shift left
if (bits[GALILEO_DATA_JK_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
}
}
}
return value;
}
unsigned long int Galileo_Navigation_Message::read_page_type_unsigned(std::bitset<GALILEO_PAGE_TYPE_BITS> bits, const std::vector<std::pair<int,int> > parameter)
{
unsigned long int value = 0;
int num_of_slices = parameter.size();
for (int i = 0; i < num_of_slices; i++)
{
for (int j = 0; j < parameter[i].second; j++)
{
value <<= 1; //shift left
if (bits[GALILEO_PAGE_TYPE_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
}
}
}
return value;
}
signed long int Galileo_Navigation_Message::read_navigation_signed(std::bitset<GALILEO_DATA_JK_BITS> bits, const std::vector<std::pair<int,int> > parameter)
{
signed long int value = 0;
int num_of_slices = parameter.size();
// Discriminate between 64 bits and 32 bits compiler
int long_int_size_bytes = sizeof(signed long int);
if (long_int_size_bytes == 8) // if a long int takes 8 bytes, we are in a 64 bits system
{
// read the MSB and perform the sign extension
if (bits[GALILEO_DATA_JK_BITS - parameter[0].first] == 1)
{
value ^= 0xFFFFFFFFFFFFFFFF; //64 bits variable
}
else
{
value &= 0;
}
for (int i = 0; i < num_of_slices; i++)
{
for (int j = 0; j < parameter[i].second; j++)
{
value <<= 1; //shift left
value &= 0xFFFFFFFFFFFFFFFE; //reset the corresponding bit (for the 64 bits variable)
if (bits[GALILEO_DATA_JK_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
}
}
}
}
else // we assume we are in a 32 bits system
{
// read the MSB and perform the sign extension
if (bits[GALILEO_DATA_JK_BITS - parameter[0].first] == 1)
{
value ^= 0xFFFFFFFF;
}
else
{
value &= 0;
}
for (int i = 0; i < num_of_slices; i++)
{
for (int j = 0; j < parameter[i].second; j++)
{
value <<= 1; //shift left
value &= 0xFFFFFFFE; //reset the corresponding bit
if (bits[GALILEO_DATA_JK_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
}
}
}
}
return value;
}
bool Galileo_Navigation_Message::read_navigation_bool(std::bitset<GALILEO_DATA_JK_BITS> bits, const std::vector<std::pair<int,int> > parameter)
{
bool value;
if (bits[GALILEO_DATA_JK_BITS - parameter[0].first] == 1)
{
value = true;
}
else
{
value = false;
}
return value;
}
/*void Galileo_Navigation_Message::print_galileo_word_bytes(unsigned int GPS_word)
{
std::cout << " Word =";
std::cout << std::bitset<32>(GPS_word);
std::cout << std::endl;
}*/
void Galileo_Navigation_Message::split_page(std::string page_string, int flag_even_word)
{
// ToDo: Clean all the tests and create an independent google test code for the telemetry decoder.
//char correct_tail[7]="011110"; //the viterbi decoder output change the tail to this value (why?)
//char correct_tail[7]="000000";
int Page_type = 0;
//std::cout << "Start decoding Galileo I/NAV " << std::endl;
if(page_string.at(0) == '1')// if page is odd
{
//std::cout<< "page_string.at(0) split page="<<page_string.at(0) << std::endl;
std::string page_Odd = page_string; //chiamo la stringa sembre page_Odd
//std::cout<<"Page odd string in split page"<< std::endl << page_Odd << std::endl;
if (flag_even_word == 1)/*Under this condition An odd page has been received but the previous even page is kept in memory and it is considered to join pages*/
{
//std::cout<<"previous page even "<< std::endl << page_Even << std::endl;
std::string page_INAV_even = page_Even;
//std::cout << "page inav solo even" << page_INAV_even << std::endl;
std::string page_INAV = page_INAV_even + page_Odd; //Join pages: Even+Odd=INAV page
//std::cout << "page inav eve +odd " << page_INAV<< std::endl;
std::string Even_bit = page_INAV.substr (0,1);
//std::cout << "Even bit = " << Even_bit << endl;
std::string Page_type_even = page_INAV.substr (1,1);
//std::cout << "Page type even = " << Page_type_even << endl;
std::string nominal = "0";
//if (Page_type_even.compare(nominal) != 0)
// std::cout << "Alert frame "<< std::endl;
//else std::cout << "Nominal Page" << std::endl;
std::string Data_k = page_INAV.substr (2,112);
//std::cout << "Data_k " << endl << Data_k << endl;
std::string Odd_bit = page_INAV.substr (114,1);
std::string Page_type_Odd = page_INAV.substr (115,1);
//std::cout << "Page_type_Odd: " << Page_type_Odd << endl;
std::string Data_j = page_INAV.substr (116,16);
//std::cout << "Data_j: " << Data_j << endl;
std::string Reserved_1 = page_INAV.substr (132,40);
std::string SAR = page_INAV.substr (172,22);
std::string Spare = page_INAV.substr (194,2);
std::string CRC_data = page_INAV.substr (196,24);
std::string Reserved_2 = page_INAV.substr (220,8);
std::string Tail_odd = page_INAV.substr (228,6);
//************ CRC checksum control *******/
std::stringstream TLM_word_for_CRC_stream;
TLM_word_for_CRC_stream<<page_INAV;
std::string TLM_word_for_CRC;
TLM_word_for_CRC=TLM_word_for_CRC_stream.str().substr(0,GALILEO_DATA_FRAME_BITS);
//std::cout<<"Complete word for CRC test: "<<TLM_word_for_CRC;
std::bitset<GALILEO_DATA_FRAME_BITS> TLM_word_for_CRC_bits(TLM_word_for_CRC);
std::bitset<24> checksum(CRC_data);
//if (Tail_odd.compare(correct_tail) != 0)
// std::cout << "Tail odd is not correct!" << std::endl;
//else std::cout<<"Tail odd is correct!"<<std::endl;
if (CRC_test(TLM_word_for_CRC_bits,checksum.to_ulong())==true)
{
flag_CRC_test = true;
// CRC correct: Decode word
std::string page_number_bits = Data_k.substr (0,6);
//std::cout << "Page number bits from Data k" << std::endl << page_number_bits << std::endl;
std::bitset<GALILEO_PAGE_TYPE_BITS> page_type_bits (page_number_bits); // from string to bitset
Page_type = (int)read_page_type_unsigned(page_type_bits, type);
Page_type_time_stamp = Page_type;
//std::cout << "Page number (first 6 bits of Data k converted to decimal) = " << Page_type << std::endl;
std::string Data_jk_ephemeris = Data_k + Data_j;
//std::cout<<"Data j k ephemeris" << endl << Data_jk_ephemeris << endl;
page_jk_decoder(Data_jk_ephemeris.c_str()); // Corresponding to ephemeris_decode.m in matlab code
}
else
{
// CRC wrong.. discard frame
flag_CRC_test = false;
}
//********** end of CRC checksum control ***/
}
} /*end if (page_string.at(0)=='1') */
else
{
page_Even = page_string.substr (0,114);
//std::cout << "Page even in split page" << std::endl << page_Even << std::endl;
std::string tail_Even = page_string.substr (114,6);
//std::cout << "tail_even_string: " << tail_Even <<std::endl;
//if (tail_Even.compare(correct_tail) != 0)
// std::cout << "Tail even is not correct!" << std::endl;
//else std::cout<<"Tail even is correct!"<< std::endl;
}
}
bool Galileo_Navigation_Message::have_new_ephemeris() //Check if we have a new ephemeris stored in the galileo navigation class
{
if ((flag_ephemeris_1 == true) and (flag_ephemeris_2 == true) and (flag_ephemeris_3 == true) and (flag_ephemeris_4 == true) and (flag_iono_and_GST == true))
{
//if all ephemeris pages have the same IOD, then they belong to the same block
if ((IOD_nav_1 == IOD_nav_2) and (IOD_nav_3 == IOD_nav_4) and (IOD_nav_1 == IOD_nav_3))
{
std::cout << "Ephemeris (1, 2, 3, 4) have been received and belong to the same batch" << std::endl;
flag_ephemeris_1 = false;// clear the flag
flag_ephemeris_2 = false;// clear the flag
flag_ephemeris_3 = false;// clear the flag
flag_ephemeris_4 = false;// clear the flag
flag_all_ephemeris = true;
IOD_ephemeris = IOD_nav_1;
std::cout << "Batch number: "<< IOD_ephemeris << std::endl;
return true;
}
else
{
return false;
}
}
else
return false;
}
bool Galileo_Navigation_Message::have_new_iono_and_GST() //Check if we have a new iono data set stored in the galileo navigation class
{
if ((flag_iono_and_GST == true) and (flag_utc_model == true)) //the condition on flag_utc_model is added to have a time stamp for iono
{
flag_iono_and_GST = false; // clear the flag
return true;
}
else
return false;
}
bool Galileo_Navigation_Message::have_new_utc_model() // Check if we have a new utc data set stored in the galileo navigation class
{
if (flag_utc_model == true)
{
flag_utc_model = false; // clear the flag
return true;
}
else
return false;
}
bool Galileo_Navigation_Message::have_new_almanac() //Check if we have a new almanac data set stored in the galileo navigation class
{
if ((flag_almanac_1 == true) and (flag_almanac_2 == true) and (flag_almanac_3 == true) and (flag_almanac_4 == true))
{
//std::cout<< "All almanac have been received"<< std::endl;
flag_almanac_1 = false;
flag_almanac_2 = false;
flag_almanac_3 = false;
flag_almanac_4 = false;
flag_all_almanac = true;
return true;
}
else
return false;
}
Galileo_Ephemeris Galileo_Navigation_Message::get_ephemeris()
{
Galileo_Ephemeris ephemeris;
ephemeris.flag_all_ephemeris = flag_all_ephemeris;
ephemeris.IOD_ephemeris = IOD_ephemeris;
ephemeris.SV_ID_PRN_4 = SV_ID_PRN_4;
ephemeris.i_satellite_PRN = SV_ID_PRN_4;
ephemeris.M0_1 = M0_1; // Mean anomaly at reference time [semi-circles]
ephemeris.delta_n_3 = delta_n_3;// Mean motion difference from computed value [semi-circles/sec]
ephemeris.e_1 = e_1; // Eccentricity
ephemeris.A_1 = A_1; // Square root of the semi-major axis [metres^1/2]
ephemeris.OMEGA_0_2 = OMEGA_0_2;// Longitude of ascending node of orbital plane at weekly epoch [semi-circles]
ephemeris.i_0_2 = i_0_2; // Inclination angle at reference time [semi-circles]
ephemeris.omega_2 = omega_2; // Argument of perigee [semi-circles]
ephemeris.OMEGA_dot_3 = OMEGA_dot_3; // Rate of right ascension [semi-circles/sec]
ephemeris.iDot_2 = iDot_2; // Rate of inclination angle [semi-circles/sec]
ephemeris.C_uc_3 = C_uc_3; // Amplitude of the cosine harmonic correction term to the argument of latitude [radians]
ephemeris.C_us_3 = C_us_3; // Amplitude of the sine harmonic correction term to the argument of latitude [radians]
ephemeris.C_rc_3 = C_rc_3; // Amplitude of the cosine harmonic correction term to the orbit radius [meters]
ephemeris.C_rs_3 = C_rs_3; // Amplitude of the sine harmonic correction term to the orbit radius [meters]
ephemeris.C_ic_4 = C_ic_4; // Amplitude of the cosine harmonic correction term to the angle of inclination [radians]
ephemeris.C_is_4 = C_is_4; // Amplitude of the sine harmonic correction term to the angle of inclination [radians]
ephemeris.t0e_1 = t0e_1; // Ephemeris reference time [s]
/*Clock correction parameters*/
ephemeris.t0c_4 = t0c_4; // Clock correction data reference Time of Week [sec]
ephemeris.af0_4 = af0_4; // SV clock bias correction coefficient [s]
ephemeris.af1_4 = af1_4; // SV clock drift correction coefficient [s/s]
ephemeris.af2_4 = af2_4; // SV clock drift rate correction coefficient [s/s^2]
/*GST*/
ephemeris.WN_5 = WN_5; // Week number
ephemeris.TOW_5 = TOW_5; // Time of Week
return ephemeris;
}
Galileo_Iono Galileo_Navigation_Message::get_iono()
{
Galileo_Iono iono;
/*Ionospheric correction*/
/*Az*/
iono.ai0_5 = ai0_5; // Effective Ionisation Level 1st order parameter [sfu]
iono.ai1_5 = ai1_5; // Effective Ionisation Level 2st order parameter [sfu/degree]
iono.ai2_5 = ai2_5; // Effective Ionisation Level 3st order parameter [sfu/degree]
/*Ionospheric disturbance flag*/
iono.Region1_flag_5 = Region1_flag_5; // Ionospheric Disturbance Flag for region 1
iono.Region2_flag_5 = Region2_flag_5; // Ionospheric Disturbance Flag for region 2
iono.Region3_flag_5 = Region3_flag_5; // Ionospheric Disturbance Flag for region 3
iono.Region4_flag_5 = Region4_flag_5; // Ionospheric Disturbance Flag for region 4
iono.Region5_flag_5 = Region5_flag_5; // Ionospheric Disturbance Flag for region 5
/*GST*/
// This is the ONLY page containing the Week Number (WN)
iono.TOW_5 = TOW_5;
iono.WN_5 = WN_5;
return iono;
}
Galileo_Utc_Model Galileo_Navigation_Message::get_utc_model()
{
Galileo_Utc_Model utc_model;
//Gal_utc_model.valid = flag_utc_model_valid;
/*Word type 6: GST-UTC conversion parameters*/
utc_model.A0_6 = A0_6;
utc_model.A1_6 = A1_6;
utc_model.Delta_tLS_6 = Delta_tLS_6;
utc_model.t0t_6 = t0t_6;
utc_model.WNot_6 = WNot_6;
utc_model.WN_LSF_6 = WN_LSF_6;
utc_model.DN_6 = DN_6;
utc_model.Delta_tLSF_6 = Delta_tLSF_6;
utc_model.flag_utc_model = flag_utc_model;
/*GST*/
//utc_model.WN_5 = WN_5; //Week number
//utc_model.TOW_5 = WN_5; //Time of Week
return utc_model;
}
Galileo_Almanac Galileo_Navigation_Message::get_almanac()
{
Galileo_Almanac almanac;
/*Word type 7: Almanac for SVID1 (1/2), almanac reference time and almanac reference week number*/
almanac.IOD_a_7 = IOD_a_7;
almanac.WN_a_7 = WN_a_7;
almanac.t0a_7 = t0a_7;
almanac.SVID1_7 = SVID1_7;
almanac.DELTA_A_7 = DELTA_A_7;
almanac.e_7 = e_7;
almanac.omega_7 = omega_7;
almanac.delta_i_7 = delta_i_7;
almanac.Omega0_7 = Omega0_7;
almanac.Omega_dot_7 = Omega_dot_7;
almanac.M0_7 = M0_7;
/*Word type 8: Almanac for SVID1 (2/2) and SVID2 (1/2)*/
almanac.IOD_a_8 = IOD_a_8;
almanac.af0_8 = af0_8;
almanac.af1_8 = af1_8;
almanac.E5b_HS_8 = E5b_HS_8;
almanac.E1B_HS_8 = E1B_HS_8;
almanac.SVID2_8 = SVID2_8;
almanac.DELTA_A_8 = DELTA_A_8;
almanac.e_8 = e_8;
almanac.omega_8 = omega_8;
almanac.delta_i_8 = delta_i_8;
almanac.Omega0_8 = Omega0_8;
almanac.Omega_dot_8 = Omega_dot_8;
/*Word type 9: Almanac for SVID2 (2/2) and SVID3 (1/2)*/
almanac.IOD_a_9 = IOD_a_9;
almanac.WN_a_9 = WN_a_9;
almanac.t0a_9 = t0a_9;
almanac.M0_9 = M0_9;
almanac.af0_9 = af0_9;
almanac.af1_9 = af1_9;
almanac.E5b_HS_9 = E5b_HS_9;
almanac.E1B_HS_9 = E1B_HS_9;
almanac.SVID3_9 = SVID3_9;
almanac.DELTA_A_9 = DELTA_A_9;
almanac.e_9 = e_9;
almanac.omega_9 = omega_9;
almanac.delta_i_9 = delta_i_9;
/*Word type 10: Almanac for SVID3 (2/2)*/
almanac.IOD_a_10 = IOD_a_10;
almanac.Omega0_10 = Omega0_10;
almanac.Omega_dot_10 = Omega_dot_10;
almanac.M0_10 = M0_10;
almanac.af0_10 = af0_10;
almanac.af1_10 = af1_10;
almanac.E5b_HS_10 = E5b_HS_10;
almanac.E1B_HS_10 = E1B_HS_10;
return almanac;
}
int Galileo_Navigation_Message::page_jk_decoder(const char *data_jk)
{
int page_number = 0;
std::string data_jk_string = data_jk;
std::bitset<GALILEO_DATA_JK_BITS> data_jk_bits (data_jk_string);
//DLOG(INFO) << "Data_jk_bits (bitset) "<< endl << data_jk_bits << endl;
page_number = (int)read_navigation_unsigned(data_jk_bits, PAGE_TYPE_bit);
DLOG(INFO) << "Page number = " << page_number;
switch (page_number)
{
case 1: /*Word type 1: Ephemeris (1/4)*/
IOD_nav_1 = (int)read_navigation_unsigned(data_jk_bits, IOD_nav_1_bit);
DLOG(INFO) << "IOD_nav_1= " << IOD_nav_1;
t0e_1 = (double)read_navigation_unsigned(data_jk_bits, T0E_1_bit);
t0e_1 = t0e_1 * t0e_1_LSB;
DLOG(INFO) << "t0e_1= " << t0e_1;
M0_1 = (double)read_navigation_signed(data_jk_bits, M0_1_bit);
M0_1 = M0_1 * M0_1_LSB;
DLOG(INFO) << "M0_1= " << M0_1;
e_1 = (double)read_navigation_unsigned(data_jk_bits, e_1_bit);
e_1 = e_1 * e_1_LSB;
DLOG(INFO) << "e_1= " << e_1;
A_1 = (double)read_navigation_unsigned(data_jk_bits, A_1_bit);
A_1 = A_1 * A_1_LSB_gal;
DLOG(INFO) << "A_1= " << A_1;
flag_ephemeris_1 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 2: /*Word type 2: Ephemeris (2/4)*/
IOD_nav_2 = (int)read_navigation_unsigned(data_jk_bits, IOD_nav_2_bit);
DLOG(INFO) << "IOD_nav_2= " << IOD_nav_2;
OMEGA_0_2 = (double)read_navigation_signed(data_jk_bits, OMEGA_0_2_bit);
OMEGA_0_2 = OMEGA_0_2 * OMEGA_0_2_LSB;
DLOG(INFO) << "OMEGA_0_2= " << OMEGA_0_2 ;
i_0_2 = (double)read_navigation_signed(data_jk_bits, i_0_2_bit);
i_0_2 = i_0_2 * i_0_2_LSB;
DLOG(INFO) << "i_0_2= " << i_0_2 ;
omega_2 = (double)read_navigation_signed(data_jk_bits, omega_2_bit);
omega_2 = omega_2 * omega_2_LSB;
DLOG(INFO) << "omega_2= " << omega_2;
iDot_2 = (double)read_navigation_signed(data_jk_bits, iDot_2_bit);
iDot_2 = iDot_2 * iDot_2_LSB;
DLOG(INFO) << "iDot_2= " << iDot_2;
flag_ephemeris_2 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 3: /*Word type 3: Ephemeris (3/4) and SISA*/
IOD_nav_3 = (int)read_navigation_unsigned(data_jk_bits, IOD_nav_3_bit);
DLOG(INFO) << "IOD_nav_3= " << IOD_nav_3 ;
OMEGA_dot_3 = (double)read_navigation_signed(data_jk_bits, OMEGA_dot_3_bit);
OMEGA_dot_3 = OMEGA_dot_3 * OMEGA_dot_3_LSB;
DLOG(INFO) <<"OMEGA_dot_3= " << OMEGA_dot_3 ;
delta_n_3 = (double)read_navigation_signed(data_jk_bits, delta_n_3_bit);
delta_n_3 = delta_n_3 * delta_n_3_LSB;
DLOG(INFO) << "delta_n_3= " << delta_n_3 ;
C_uc_3 = (double)read_navigation_signed(data_jk_bits, C_uc_3_bit);
C_uc_3 = C_uc_3 * C_uc_3_LSB;
DLOG(INFO) << "C_uc_3= " << C_uc_3;
C_us_3 = (double)read_navigation_signed(data_jk_bits, C_us_3_bit);
C_us_3 = C_us_3 * C_us_3_LSB;
DLOG(INFO) << "C_us_3= " << C_us_3;
C_rc_3 = (double)read_navigation_signed(data_jk_bits, C_rc_3_bit);
C_rc_3 = C_rc_3 * C_rc_3_LSB;
DLOG(INFO) << "C_rc_3= " << C_rc_3;
C_rs_3 = (double)read_navigation_signed(data_jk_bits, C_rs_3_bit);
C_rs_3 = C_rs_3 * C_rs_3_LSB;
DLOG(INFO) << "C_rs_3= " << C_rs_3;
SISA_3 = (double)read_navigation_unsigned(data_jk_bits, SISA_3_bit);
DLOG(INFO) << "SISA_3= " << SISA_3;
flag_ephemeris_3 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 4: /* Word type 4: Ephemeris (4/4) and Clock correction parameters*/
IOD_nav_4 = (int)read_navigation_unsigned(data_jk_bits, IOD_nav_4_bit);
DLOG(INFO) << "IOD_nav_4= " << IOD_nav_4 ;
SV_ID_PRN_4 = (int)read_navigation_unsigned(data_jk_bits, SV_ID_PRN_4_bit);
DLOG(INFO) << "SV_ID_PRN_4= " << SV_ID_PRN_4 ;
C_ic_4 = (double)read_navigation_signed(data_jk_bits, C_ic_4_bit);
C_ic_4 = C_ic_4 * C_ic_4_LSB;
DLOG(INFO) << "C_ic_4= " << C_ic_4;
C_is_4 = (double)read_navigation_signed(data_jk_bits, C_is_4_bit);
C_is_4 = C_is_4 * C_is_4_LSB;
DLOG(INFO) << "C_is_4= " << C_is_4;
/*Clock correction parameters*/
t0c_4 = (double)read_navigation_unsigned(data_jk_bits, t0c_4_bit);
t0c_4 = t0c_4 * t0c_4_LSB;
DLOG(INFO) << "t0c_4= " << t0c_4;
af0_4 = (double)read_navigation_signed(data_jk_bits, af0_4_bit);
af0_4 = af0_4 * af0_4_LSB;
DLOG(INFO) << "af0_4 = " << af0_4;
af1_4 = (double)read_navigation_signed(data_jk_bits, af1_4_bit);
af1_4 = af1_4 * af1_4_LSB;
DLOG(INFO) << "af1_4 = " << af1_4;
af2_4 = (double)read_navigation_signed(data_jk_bits, af2_4_bit);
af2_4 = af2_4 * af2_4_LSB;
DLOG(INFO) << "af2_4 = " << af2_4;
spare_4 = (double)read_navigation_unsigned(data_jk_bits, spare_4_bit);
DLOG(INFO) << "spare_4 = " << spare_4;
flag_ephemeris_4 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 5: /*Word type 5: Ionospheric correction, BGD, signal health and data validity status and GST*/
/*Ionospheric correction*/
/*Az*/
ai0_5 = (double)read_navigation_unsigned(data_jk_bits, ai0_5_bit);
ai0_5 = ai0_5 * ai0_5_LSB;
DLOG(INFO) << "ai0_5= " << ai0_5;
ai1_5 = (double)read_navigation_signed(data_jk_bits, ai1_5_bit);
ai1_5 = ai1_5 * ai1_5_LSB;
DLOG(INFO) << "ai1_5= " << ai1_5;
ai2_5 = (double)read_navigation_signed(data_jk_bits, ai2_5_bit);
ai2_5 = ai2_5 * ai2_5_LSB;
DLOG(INFO) << "ai2_5= " << ai2_5;
/*Ionospheric disturbance flag*/
Region1_flag_5 = (bool)read_navigation_bool(data_jk_bits, Region1_5_bit);
DLOG(INFO) << "Region1_flag_5= " << Region1_flag_5;
Region2_flag_5 = (bool)read_navigation_bool(data_jk_bits, Region2_5_bit);
DLOG(INFO) << "Region2_flag_5= " << Region2_flag_5;
Region3_flag_5 = (bool)read_navigation_bool(data_jk_bits, Region3_5_bit);
DLOG(INFO) << "Region3_flag_5= " << Region3_flag_5;
Region4_flag_5 = (bool)read_navigation_bool(data_jk_bits, Region4_5_bit);
DLOG(INFO) << "Region4_flag_5= " << Region4_flag_5;
Region5_flag_5 = (bool)read_navigation_bool(data_jk_bits, Region5_5_bit);
DLOG(INFO) << "Region5_flag_5= " << Region5_flag_5;
BGD_E1E5a_5 = (double)read_navigation_signed(data_jk_bits, BGD_E1E5a_5_bit);
BGD_E1E5a_5 = BGD_E1E5a_5 * BGD_E1E5a_5_LSB;
DLOG(INFO) << "BGD_E1E5a_5= " << BGD_E1E5a_5;
BGD_E1E5b_5 = (double)read_navigation_signed(data_jk_bits, BGD_E1E5b_5_bit);
BGD_E1E5b_5 = BGD_E1E5b_5 * BGD_E1E5b_5_LSB;
DLOG(INFO) << "BGD_E1E5b_5= " << BGD_E1E5b_5;
E5b_HS_5 = (double)read_navigation_unsigned(data_jk_bits, E5b_HS_5_bit);
DLOG(INFO) << "E5b_HS_5= " << E5b_HS_5;
E1B_HS_5 = (double)read_navigation_unsigned(data_jk_bits, E1B_HS_5_bit);
DLOG(INFO) << "E1B_HS_5= " << E1B_HS_5;
E5b_DVS_5 = (double)read_navigation_unsigned(data_jk_bits, E5b_DVS_5_bit);
DLOG(INFO) << "E5b_DVS_5= " << E5b_DVS_5;
E1B_DVS_5 = (double)read_navigation_unsigned(data_jk_bits, E1B_DVS_5_bit);
DLOG(INFO) << "E1B_DVS_5= " << E1B_DVS_5;
/*GST*/
WN_5 = (double)read_navigation_unsigned(data_jk_bits, WN_5_bit);
DLOG(INFO) << "WN_5= " << WN_5;
TOW_5 = (double)read_navigation_unsigned(data_jk_bits, TOW_5_bit);
DLOG(INFO) << "TOW_5= " << TOW_5;
flag_TOW_5 = true; //set to false externally
spare_5 = (double)read_navigation_unsigned(data_jk_bits, spare_5_bit);
DLOG(INFO) << "spare_5= " << spare_5;
flag_iono_and_GST = true; //set to false externally
flag_TOW_set = true; //set to false externally
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 6: /*Word type 6: GST-UTC conversion parameters*/
A0_6 = (double)read_navigation_signed(data_jk_bits, A0_6_bit);
A0_6 = A0_6 * A0_6_LSB;
DLOG(INFO) << "A0_6= " << A0_6;
A1_6 = (double)read_navigation_signed(data_jk_bits, A1_6_bit);
A1_6 = A1_6 * A1_6_LSB;
DLOG(INFO) << "A1_6= " << A1_6;
Delta_tLS_6 = (double)read_navigation_signed(data_jk_bits, Delta_tLS_6_bit);
DLOG(INFO) << "Delta_tLS_6= " << Delta_tLS_6;
t0t_6 = (double)read_navigation_unsigned(data_jk_bits, t0t_6_bit);
t0t_6 = t0t_6 * t0t_6_LSB;
DLOG(INFO) << "t0t_6= " << t0t_6;
WNot_6 = (double)read_navigation_unsigned(data_jk_bits, WNot_6_bit);
DLOG(INFO) << "WNot_6= " << WNot_6;
WN_LSF_6 = (double)read_navigation_unsigned(data_jk_bits, WN_LSF_6_bit);
DLOG(INFO) << "WN_LSF_6= " << WN_LSF_6;
DN_6 = (double)read_navigation_unsigned(data_jk_bits, DN_6_bit);
DLOG(INFO) << "DN_6= " << DN_6;
Delta_tLSF_6 = (double)read_navigation_signed(data_jk_bits, Delta_tLSF_6_bit);
DLOG(INFO) << "Delta_tLSF_6= " << Delta_tLSF_6;
TOW_6 = (double)read_navigation_unsigned(data_jk_bits, TOW_6_bit);
DLOG(INFO) << "TOW_6= " << TOW_6;
flag_TOW_6 = true; //set to false externally
flag_utc_model = true; //set to false externally
flag_TOW_set = true; //set to false externally
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 7: /*Word type 7: Almanac for SVID1 (1/2), almanac reference time and almanac reference week number*/
IOD_a_7 = (double)read_navigation_unsigned(data_jk_bits, IOD_a_7_bit);
DLOG(INFO) << "IOD_a_7= " << IOD_a_7;
WN_a_7 = (double)read_navigation_unsigned(data_jk_bits, WN_a_7_bit);
DLOG(INFO) << "WN_a_7= " << WN_a_7;
t0a_7 = (double)read_navigation_unsigned(data_jk_bits, t0a_7_bit);
t0a_7 = t0a_7 * t0a_7_LSB;
DLOG(INFO) << "t0a_7= " << t0a_7;
SVID1_7 = (double)read_navigation_unsigned(data_jk_bits, SVID1_7_bit);
DLOG(INFO) << "SVID1_7= " << SVID1_7;
DELTA_A_7 = (double)read_navigation_signed(data_jk_bits, DELTA_A_7_bit);
DELTA_A_7 = DELTA_A_7 * DELTA_A_7_LSB;
DLOG(INFO) << "DELTA_A_7= " << DELTA_A_7;
e_7 = (double)read_navigation_unsigned(data_jk_bits, e_7_bit);
e_7 = e_7 * e_7_LSB;
DLOG(INFO) << "e_7= " << e_7;
omega_7 = (double)read_navigation_signed(data_jk_bits, omega_7_bit);
omega_7 = omega_7 * omega_7_LSB;
DLOG(INFO) << "omega_7= " << omega_7;
delta_i_7 = (double)read_navigation_signed(data_jk_bits, delta_i_7_bit);
delta_i_7 = delta_i_7 * delta_i_7_LSB;
DLOG(INFO) << "delta_i_7= " << delta_i_7;
Omega0_7 = (double)read_navigation_signed(data_jk_bits, Omega0_7_bit);
Omega0_7 = Omega0_7 * Omega0_7_LSB;
DLOG(INFO) << "Omega0_7= " << Omega0_7;
Omega_dot_7 = (double)read_navigation_signed(data_jk_bits, Omega_dot_7_bit);
Omega_dot_7 = Omega_dot_7 * Omega_dot_7_LSB;
DLOG(INFO) << "Omega_dot_7= " << Omega_dot_7;
M0_7 = (double)read_navigation_signed(data_jk_bits, M0_7_bit);
M0_7 = M0_7 * M0_7_LSB;
DLOG(INFO) << "M0_7= " << M0_7;
flag_almanac_1 = true;
DLOG(INFO) << "flag_tow_set"<< flag_TOW_set;
break;
case 8: /*Word type 8: Almanac for SVID1 (2/2) and SVID2 (1/2)*/
IOD_a_8 = (double)read_navigation_signed(data_jk_bits, IOD_a_8_bit);
DLOG(INFO) << "IOD_a_8= " << IOD_a_8;
af0_8 = (double)read_navigation_signed(data_jk_bits, af0_8_bit);
af0_8 = af0_8 * af0_8_LSB;
DLOG(INFO) << "af0_8= " << af0_8;
af1_8 = (double)read_navigation_signed(data_jk_bits, af1_8_bit);
af1_8 = af1_8 * af1_8_LSB;
DLOG(INFO) << "af1_8= " << af1_8;
E5b_HS_8 = (double)read_navigation_unsigned(data_jk_bits, E5b_HS_8_bit);
DLOG(INFO) << "E5b_HS_8= " << E5b_HS_8;
E1B_HS_8 = (double)read_navigation_unsigned(data_jk_bits, E1B_HS_8_bit);
DLOG(INFO) << "E1B_HS_8= " << E1B_HS_8;
SVID2_8 = (double)read_navigation_unsigned(data_jk_bits, SVID2_8_bit);
DLOG(INFO) << "SVID2_8= " << SVID2_8;
DELTA_A_8 = (double)read_navigation_signed(data_jk_bits, DELTA_A_8_bit);
DELTA_A_8 = DELTA_A_8 * DELTA_A_8_LSB;
DLOG(INFO) << "DELTA_A_8= " << DELTA_A_8;
e_8 = (double)read_navigation_unsigned(data_jk_bits, e_8_bit);
e_8 = e_8 * e_8_LSB;
DLOG(INFO) << "e_8= " << e_8;
omega_8 = (double)read_navigation_signed(data_jk_bits, omega_8_bit);
omega_8 = omega_8 * omega_8_LSB;
DLOG(INFO) << "omega_8= " << omega_8;
delta_i_8 = (double)read_navigation_signed(data_jk_bits, delta_i_8_bit);
delta_i_8 = delta_i_8 * delta_i_8_LSB;
DLOG(INFO) << "delta_i_8= " << delta_i_8;
Omega0_8 = (double)read_navigation_signed(data_jk_bits, Omega0_8_bit);
Omega0_8 = Omega0_8 * Omega0_8_LSB;
DLOG(INFO) << "Omega0_8= " << Omega0_8;
Omega_dot_8 = (double)read_navigation_signed(data_jk_bits, Omega_dot_8_bit);
Omega_dot_8 = Omega_dot_8 * Omega_dot_8_LSB;
DLOG(INFO) << "Omega_dot_8= " << Omega_dot_8;
flag_almanac_2 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 9: /*Word type 9: Almanac for SVID2 (2/2) and SVID3 (1/2)*/
IOD_a_9 = (double)read_navigation_unsigned(data_jk_bits, IOD_a_9_bit);
DLOG(INFO) << "IOD_a_9= " << IOD_a_9;
WN_a_9 = (double)read_navigation_unsigned(data_jk_bits, WN_a_9_bit);
DLOG(INFO) << "WN_a_9= " << WN_a_9;
t0a_9 = (double)read_navigation_unsigned(data_jk_bits, t0a_9_bit);
t0a_9 = t0a_9 * t0a_9_LSB;
DLOG(INFO) << "t0a_9= " << t0a_9;
M0_9 = (double)read_navigation_signed(data_jk_bits, M0_9_bit);
M0_9 = M0_9 * M0_9_LSB;
DLOG(INFO) << "M0_9= " << M0_9;
af0_9 = (double)read_navigation_signed(data_jk_bits, af0_9_bit);
af0_9 = af0_9 * af0_9_LSB;
DLOG(INFO) << "af0_9= " << af0_9;
af1_9 = (double)read_navigation_signed(data_jk_bits, af1_9_bit);
af1_9 = af1_9 * af1_9_LSB;
DLOG(INFO) << "af1_9= " << af1_9;
E1B_HS_9 = (double)read_navigation_unsigned(data_jk_bits, E1B_HS_9_bit);
DLOG(INFO) << "E1B_HS_9= " << E1B_HS_9;
E1B_HS_9 = (double)read_navigation_unsigned(data_jk_bits, E1B_HS_9_bit);
DLOG(INFO) << "E1B_HS_9= " << E1B_HS_9;
SVID3_9 = (double)read_navigation_unsigned(data_jk_bits,SVID3_9_bit);
DLOG(INFO) << "SVID3_9= " << SVID3_9;
DELTA_A_9 = (double)read_navigation_signed(data_jk_bits, DELTA_A_9_bit);
DELTA_A_9 = DELTA_A_9 * DELTA_A_9_LSB;
DLOG(INFO) << "DELTA_A_9= " << DELTA_A_9;
e_9 = (double)read_navigation_unsigned(data_jk_bits, e_9_bit);
e_9 = e_9 * e_9_LSB;
DLOG(INFO) << "e_9= " << e_9;
omega_9 = (double)read_navigation_signed(data_jk_bits, omega_9_bit);
omega_9 = omega_9 * omega_9_LSB;
DLOG(INFO) << "omega_9= " << omega_9;
delta_i_9 = (double)read_navigation_signed(data_jk_bits, delta_i_9_bit);
delta_i_9 = delta_i_9 * delta_i_9_LSB;
DLOG(INFO) << "delta_i_9= " << delta_i_9;
flag_almanac_3 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 10: /*Word type 10: Almanac for SVID3 (2/2) and GST-GPS conversion parameters*/
IOD_a_10 = (double)read_navigation_unsigned(data_jk_bits, IOD_a_10_bit);
DLOG(INFO) << "IOD_a_10= " << IOD_a_10;
Omega0_10 = (double)read_navigation_signed(data_jk_bits, Omega0_10_bit);
Omega0_10 = Omega0_10 * Omega0_10_LSB;
DLOG(INFO) << "Omega0_10= " << Omega0_10;
Omega_dot_10 = (double)read_navigation_signed(data_jk_bits, Omega_dot_10_bit);
Omega_dot_10 = Omega_dot_10 * Omega_dot_10_LSB;
DLOG(INFO) << "Omega_dot_10= " << Omega_dot_10 ;
M0_10 = (double)read_navigation_signed(data_jk_bits, M0_10_bit);
M0_10 = M0_10 * M0_10_LSB;
DLOG(INFO) << "M0_10= " << M0_10;
af0_10 = (double)read_navigation_signed(data_jk_bits, af0_10_bit);
af0_10 = af0_10 * af0_10_LSB;
DLOG(INFO) << "af0_10= " << af0_10;
af1_10 = (double)read_navigation_signed(data_jk_bits, af1_10_bit);
af1_10 = af1_10 * af1_10_LSB;
DLOG(INFO) << "af1_10= " << af1_10;
E5b_HS_10 = (double)read_navigation_unsigned(data_jk_bits, E5b_HS_10_bit);
DLOG(INFO) << "E5b_HS_10= " << E5b_HS_10;
E1B_HS_10 = (double)read_navigation_unsigned(data_jk_bits, E1B_HS_10_bit);
DLOG(INFO) << "E1B_HS_10= " << E1B_HS_10;
A_0G_10 = (double)read_navigation_signed(data_jk_bits, A_0G_10_bit);
A_0G_10 = A_0G_10 * A_0G_10_LSB;
DLOG(INFO) << "A_0G_10= " << A_0G_10;
A_1G_10 = (double)read_navigation_signed(data_jk_bits, A_1G_10_bit);
A_1G_10 = A_1G_10 * A_1G_10_LSB;
DLOG(INFO) << "A_1G_10= " << A_1G_10;
t_0G_10 = (double)read_navigation_unsigned(data_jk_bits, t_0G_10_bit);
t_0G_10 = t_0G_10 * t_0G_10_LSB;
DLOG(INFO) << "t_0G_10= " << t_0G_10;
WN_0G_10 = (double)read_navigation_unsigned(data_jk_bits, WN_0G_10_bit);
DLOG(INFO) << "WN_0G_10= " << WN_0G_10;
flag_almanac_4 = true;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
case 0: /*Word type 0: I/NAV Spare Word*/
Time_0 = (double)read_navigation_unsigned(data_jk_bits, Time_0_bit);
DLOG(INFO) << "Time_0= " << Time_0;
WN_0 = (double)read_navigation_unsigned(data_jk_bits, WN_0_bit);
DLOG(INFO) << "WN_0= " << WN_0;
TOW_0 = (double)read_navigation_unsigned(data_jk_bits, TOW_0_bit);
DLOG(INFO) << "TOW_0= " << TOW_0;
DLOG(INFO) << "flag_tow_set" << flag_TOW_set;
break;
}
return page_number;
}
//void Galileo_Navigation_Message::satellitePosition(double transmitTime) //when this function in used, the input must be the transmitted time (t) in second computed by Galileo_System_Time (above function)
//{
//
// double tk; // Time from ephemeris reference epoch
// //double t; // Galileo System Time (ICD, paragraph 5.1.2)
// double a; // Semi-major axis
// double n; // Corrected mean motion
// double n0; // Computed mean motion
// double M; // Mean anomaly
// double E; //Eccentric Anomaly (to be solved by iteration)
// double E_old;
// double dE;
// double nu; //True anomaly
// double phi; //argument of Latitude
// double u; // Correct argument of latitude
// double r; // Correct radius
// double i;
// double Omega;
//
// // Find Galileo satellite's position ----------------------------------------------
//
// // Restore semi-major axis
// a = A_1*A_1;
//
// // Computed mean motion
// n0 = sqrt(GALILEO_GM / (a*a*a));
//
// // Time from ephemeris reference epoch
// //tk = check_t(transmitTime - d_Toe); this is tk for GPS; for Galileo it is different
// //t = WN_5*86400*7 + TOW_5; //WN_5*86400*7 are the second from the origin of the Galileo time
// tk = transmitTime - t0e_1;
//
// // Corrected mean motion
// n = n0 + delta_n_3;
//
// // Mean anomaly
// M = M0_1 + n * tk;
//
// // Reduce mean anomaly to between 0 and 2pi
// M = fmod((M + 2* GALILEO_PI), (2* GALILEO_PI));
//
// // Initial guess of eccentric anomaly
// E = M;
//
// // --- Iteratively compute eccentric anomaly ----------------------------
// for (int ii = 1; ii<20; ii++)
// {
// E_old = E;
// E = M + e_1 * sin(E);
// dE = fmod(E - E_old, 2*GALILEO_PI);
// if (fabs(dE) < 1e-12)
// {
// //Necessary precision is reached, exit from the loop
// break;
// }
// }
//
// // Compute the true anomaly
//
// double tmp_Y = sqrt(1.0 - e_1 * e_1) * sin(E);
// double tmp_X = cos(E) - e_1;
// nu = atan2(tmp_Y, tmp_X);
//
// // Compute angle phi (argument of Latitude)
// phi = nu + omega_2;
//
// // Reduce phi to between 0 and 2*pi rad
// phi = fmod((phi), (2*GALILEO_PI));
//
// // Correct argument of latitude
// u = phi + C_uc_3 * cos(2*phi) + C_us_3 * sin(2*phi);
//
// // Correct radius
// r = a * (1 - e_1*cos(E)) + C_rc_3 * cos(2*phi) + C_rs_3 * sin(2*phi);
//
// // Correct inclination
// i = i_0_2 + iDot_2 * tk + C_ic_4 * cos(2*phi) + C_is_4 * sin(2*phi);
//
// // Compute the angle between the ascending node and the Greenwich meridian
// Omega = OMEGA_0_2 + (OMEGA_dot_3 - GALILEO_OMEGA_EARTH_DOT)*tk - GALILEO_OMEGA_EARTH_DOT * t0e_1;
//
// // Reduce to between 0 and 2*pi rad
// Omega = fmod((Omega + 2*GALILEO_PI), (2*GALILEO_PI));
//
// // --- Compute satellite coordinates in Earth-fixed coordinates
// galileo_satpos_X = cos(u) * r * cos(Omega) - sin(u) * r * cos(i) * sin(Omega);
// galileo_satpos_Y = cos(u) * r * sin(Omega) + sin(u) * r * cos(i) * cos(Omega); //***********************NOTE: in GALILEO ICD this expression is not correct because it has minus (- sin(u) * r * cos(i) * cos(Omega)) instead of plus
// galileo_satpos_Z = sin(u) * r * sin(i);
//
// std::cout << "Galileo satellite position X [m]: " << galileo_satpos_X << std::endl;
// std::cout << "Galileo satellite position Y [m]: " << galileo_satpos_Y << std::endl;
// std::cout << "Galileo satellite position Z [m]: " << galileo_satpos_Z << std::endl;
// double vector_position = sqrt(galileo_satpos_X*galileo_satpos_X + galileo_satpos_Y*galileo_satpos_Y + galileo_satpos_Z*galileo_satpos_Z);
// std::cout << "Vector Earth Center-Satellite [Km]: " << vector_position/1000 << std::endl;
//
// // Satellite's velocity. Can be useful for Vector Tracking loops
// double Omega_dot = OMEGA_dot_3 - GALILEO_OMEGA_EARTH_DOT;
// galileo_satvel_X = - Omega_dot * (cos(u) * r + sin(u) * r * cos(i)) + galileo_satpos_X * cos(Omega) - galileo_satpos_Y * cos(i) * sin(Omega);
// galileo_satvel_Y = Omega_dot * (cos(u) * r * cos(Omega) - sin(u) * r * cos(i) * sin(Omega)) + galileo_satpos_X * sin(Omega) + galileo_satpos_Y * cos(i) * cos(Omega);
// galileo_satvel_Z = galileo_satpos_Y * sin(i);
//
//}
//
//
//double Galileo_Navigation_Message::Galileo_System_Time(double WN, double TOW){
// /* GALIELO SYSTEM TIME, ICD 5.1.2
// * input parameter:
// * WN: The Week Number is an integer counter that gives the sequential week number
// from the origin of the Galileo time. It covers 4096 weeks (about 78 years).
// Then the counter is reset to zero to cover additional period modulo 4096
//
// TOW: The Time of Week is defined as the number of seconds that have occurred since
// the transition from the previous week. The TOW covers an entire week from 0 to
// 604799 seconds and is reset to zero at the end of each week
//
// WN and TOW are received in page 5
//
// output:
// t: it is the transmitted time in Galileo System Time (expressed in seconds)
//
// The GST start epoch shall be 00:00 UT on Sunday 22nd August 1999 (midnight between 21st and 22nd August).
// At the start epoch, GST shall be ahead of UTC by thirteen (13)
// leap seconds. Since the next leap second was inserted at 01.01.2006, this implies that
// as of 01.01.2006 GST is ahead of UTC by fourteen (14) leap seconds.
//
// The epoch denoted in the navigation messages by TOW and WN
// will be measured relative to the leading edge of the first chip of the
// first code sequence of the first page symbol. The transmission timing of the navigation
// message provided through the TOW is synchronised to each satellites version of Galileo System Time (GST).
// *
// */
// double t=0;
// double sec_in_day = 86400;
// double day_in_week = 7;
// t = WN * sec_in_day * day_in_week + TOW; // second from the origin of the Galileo time
//
// return t;
//
//}
//
//
//
//double Galileo_Navigation_Message::sv_clock_drift(double transmitTime){
// /* Satellite Time Correction Algorithm, ICD 5.1.4
// *
// */
// double dt;
// dt = transmitTime - t0c_4;
// Galileo_satClkDrift = af0_4 + af1_4*dt + (af2_4 * dt)*(af2_4 * dt) + Galileo_dtr;
// return Galileo_satClkDrift;
//}
//
//// compute the relativistic correction term
//double Galileo_Navigation_Message::sv_clock_relativistic_term(double transmitTime) //Satellite Time Correction Algorithm, ICD 5.1.4
//{
// double tk;
// double a;
// double n;
// double n0;
// double E;
// double E_old;
// double dE;
// double M;
//
// // Restore semi-major axis
// a = A_1*A_1;
//
// n0 = sqrt(GALILEO_GM / (a*a*a));
//
// // Time from ephemeris reference epoch
// //tk = check_t(transmitTime - d_Toe); this is tk for GPS; for Galileo it is different
// //t = WN_5*86400*7 + TOW_5; //WN_5*86400*7 are the second from the origin of the Galileo time
// tk = transmitTime - t0e_1;
//
// // Corrected mean motion
// n = n0 + delta_n_3;
//
// // Mean anomaly
// M = M0_1 + n * tk;
//
// // Reduce mean anomaly to between 0 and 2pi
// M = fmod((M + 2* GALILEO_PI), (2* GALILEO_PI));
//
// // Initial guess of eccentric anomaly
// E = M;
//
// // --- Iteratively compute eccentric anomaly ----------------------------
// for (int ii = 1; ii<20; ii++)
// {
// E_old = E;
// E = M + e_1 * sin(E);
// dE = fmod(E - E_old, 2*GALILEO_PI);
// if (fabs(dE) < 1e-12)
// {
// //Necessary precision is reached, exit from the loop
// break;
// }
// }
//
//
// // Compute relativistic correction term
// Galileo_dtr = GALILEO_F * e_1* A_1 * sin(E);
// return Galileo_dtr;
//}
//double Galileo_Navigation_Message::GST_to_UTC_time(double t_e, int WN) //t_e is GST (WN+TOW) in second
//{
// double t_Utc;
// double t_Utc_daytime;
// double Delta_t_Utc = Delta_tLS_6 + A0_6 + A1_6 * (t_e - t0t_6 + 604800 * (double)(WN - WNot_6));
//
// // Determine if the effectivity time of the leap second event is in the past
// int weeksToLeapSecondEvent = WN_LSF_6 - WN;
//
// if ((weeksToLeapSecondEvent) >= 0) // is not in the past
// {
// //Detect if the effectivity time and user's time is within six hours = 6 * 60 *60 = 21600 s
// int secondOfLeapSecondEvent = DN_6 * 24 * 60 * 60;
// if (weeksToLeapSecondEvent > 0)
// {
// t_Utc_daytime = fmod(t_e - Delta_t_Utc, 86400);
// }
// else //we are in the same week than the leap second event
// {
// if (abs(t_e - secondOfLeapSecondEvent) > 21600)
// {
// /* 5.1.7a
// * Whenever the leap second adjusted time indicated by the WN_LSF and the DN values
// * is not in the past (relative to the user's present time), and the user's
// * present time does not fall in the time span which starts at six hours prior
// * to the effective time and ends at six hours after the effective time,
// * the GST/Utc relationship is given by
// */
// t_Utc_daytime = fmod(t_e - Delta_t_Utc, 86400);
// }
// else
// {
// /* 5.1.7b
// * Whenever the user's current time falls within the time span of six hours
// * prior to the leap second adjustment to six hours after the adjustment time, ,
// * the effective time is computed according to the following equations:
// */
//
// int W = fmod(t_e - Delta_t_Utc - 43200, 86400) + 43200;
// t_Utc_daytime = fmod(W, 86400 + Delta_tLSF_6 - Delta_tLS_6);
// //implement something to handle a leap second event!
// }
// if ( (t_e - secondOfLeapSecondEvent) > 21600)
// {
// Delta_t_Utc = Delta_tLSF_6 + A0_6 + A1_6 * (t_e - t0t_6 + 604800*(double)(WN - WNot_6));
// t_Utc_daytime = fmod(t_e - Delta_t_Utc, 86400);
// }
// }
// }
// else // the effectivity time is in the past
// {
// /* 5.1.7c
// * Whenever the leap second adjustment time, as indicated by the WN_LSF and DN values,
// * is in the past (relative to the users current time) and the users present time does not
// * fall in the time span which starts six hours prior to the leap second adjustment time and
// * ends six hours after the adjustment time, the effective time is computed according to
// * the following equation:
// */
// Delta_t_Utc = Delta_tLSF_6 + A0_6 + A1_6 * (t_e - t0t_6 + 604800 * (double)(WN - WNot_6));
// t_Utc_daytime = fmod(t_e - Delta_t_Utc, 86400);
// }
//
// double secondsOfWeekBeforeToday = 43200 * floor(t_e / 43200);
// t_Utc = secondsOfWeekBeforeToday + t_Utc_daytime;
// return t_Utc;
//
//}
//
//
//