2018-03-30 09:34:31 +00:00
|
|
|
% -------------------------------------------------------------------------
|
|
|
|
%
|
|
|
|
% Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
|
|
|
|
%
|
|
|
|
% GNSS-SDR is a software defined Global Navigation
|
|
|
|
% Satellite Systems receiver
|
|
|
|
%
|
|
|
|
% This file is part of GNSS-SDR.
|
|
|
|
%
|
|
|
|
% GNSS-SDR is free software: you can redistribute it and/or modify
|
|
|
|
% it under the terms of the GNU General Public License as published by
|
|
|
|
% the Free Software Foundation, either version 3 of the License, or
|
|
|
|
% at your option) any later version.
|
|
|
|
%
|
|
|
|
% GNSS-SDR is distributed in the hope that it will be useful,
|
|
|
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
% GNU General Public License for more details.
|
|
|
|
%
|
|
|
|
% You should have received a copy of the GNU General Public License
|
2018-05-13 20:49:11 +00:00
|
|
|
% along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
|
2018-03-30 09:34:31 +00:00
|
|
|
%
|
|
|
|
% -------------------------------------------------------------------------
|
|
|
|
%
|
|
|
|
% Antonio Ramos, 2018. antonio.ramos(at)cttc.es
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
clear all;
|
|
|
|
clc;
|
|
|
|
|
|
|
|
n_channel = 0;
|
|
|
|
symbol_period = 20e-3;
|
|
|
|
filename = 'track_ch_';
|
|
|
|
|
|
|
|
fontsize = 12;
|
|
|
|
|
|
|
|
addpath('./data') % Path to gnss-sdr dump files (Tracking and PVT)
|
|
|
|
addpath('./geoFunctions')
|
|
|
|
|
|
|
|
load([filename int2str(n_channel) '.mat']);
|
|
|
|
t = (0 : length(abs_P) - 1) * symbol_period;
|
|
|
|
hf = figure('visible', 'off');
|
|
|
|
set(hf, 'paperorientation', 'landscape');
|
|
|
|
subplot(3, 3, [1,3])
|
|
|
|
plot(t, abs_E, t, abs_P, t, abs_L)
|
|
|
|
xlabel('Time [s]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('Correlation result','fontname','Times','fontsize', fontsize)
|
|
|
|
legend('Early', 'Prompt', 'Late')
|
|
|
|
grid on
|
|
|
|
|
|
|
|
|
|
|
|
subplot(3, 3, 7)
|
|
|
|
plot(Prompt_I./1000, Prompt_Q./1000, 'linestyle', 'none', 'marker', '.')
|
|
|
|
xlabel('I','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('Q','fontname','Times','fontsize', fontsize)
|
|
|
|
axis equal
|
|
|
|
grid on
|
|
|
|
|
|
|
|
subplot(3, 3, [4,6])
|
|
|
|
plot(t, Prompt_I)
|
|
|
|
xlabel('Time [s]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('Navigation data bits','fontname','Times','fontsize', fontsize)
|
|
|
|
grid on
|
|
|
|
|
|
|
|
|
|
|
|
fileID = fopen('data/PVT_ls_pvt.dat', 'r');
|
|
|
|
dinfo = dir('data/PVT_ls_pvt.dat');
|
|
|
|
filesize = dinfo.bytes;
|
|
|
|
aux = 1;
|
|
|
|
while ne(ftell(fileID), filesize)
|
|
|
|
navsol.RX_time(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.X(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.Y(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.Z(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.user_clock(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.lat(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.long(aux) = fread(fileID, 1, 'double');
|
|
|
|
navsol.height(aux) = fread(fileID, 1, 'double');
|
|
|
|
aux = aux + 1;
|
|
|
|
end
|
|
|
|
fclose(fileID);
|
|
|
|
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
mean_Latitude = mean(navsol.lat);
|
|
|
|
mean_Longitude = mean(navsol.long);
|
|
|
|
mean_h = mean(navsol.height);
|
|
|
|
utmZone = findUtmZone(mean_Latitude, mean_Longitude);
|
|
|
|
[ref_X_cart, ref_Y_cart, ref_Z_cart] = geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5);
|
|
|
|
[mean_utm_X, mean_utm_Y, mean_utm_Z] = cart2utm(ref_X_cart, ref_Y_cart, ref_Z_cart, utmZone);
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
numPoints = length(navsol.X);
|
|
|
|
aux = 0;
|
|
|
|
for n = 1:numPoints
|
|
|
|
aux = aux+1;
|
|
|
|
[E(aux), N(aux), U(aux)] = cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone);
|
2018-02-28 12:15:46 +00:00
|
|
|
end
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
v_2d = [E;N].'; % 2D East Nort position vectors
|
|
|
|
v_3d = [E;N;U].'; % 2D East Nort position vectors
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
%% ACCURACY
|
|
|
|
|
|
|
|
% 2D -------------------
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
sigma_E_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,1) - mean_utm_X).^2));
|
|
|
|
sigma_N_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,2) - mean_utm_Y).^2));
|
|
|
|
sigma_ratio_2d_accuracy = sigma_N_accuracy / sigma_E_accuracy
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
|
2018-03-30 09:34:31 +00:00
|
|
|
DRMS_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2)
|
2018-02-28 12:15:46 +00:00
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
2018-03-30 09:34:31 +00:00
|
|
|
TWO_DRMS_accuracy = 2 * DRMS_accuracy
|
2018-02-28 12:15:46 +00:00
|
|
|
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
|
2018-03-30 09:34:31 +00:00
|
|
|
CEP_accuracy = 0.62 * sigma_E_accuracy + 0.56 * sigma_N_accuracy
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
% 3D -------------------
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
sigma_U_accuracy = sqrt((1/(numPoints-1)) * sum((v_3d(:,3) - mean_utm_Z).^2));
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
|
2018-03-30 09:34:31 +00:00
|
|
|
SEP_accuracy = 0.51 * sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2)
|
2018-02-28 12:15:46 +00:00
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
|
2018-03-30 09:34:31 +00:00
|
|
|
MRSE_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2)
|
2018-02-28 12:15:46 +00:00
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
2018-03-30 09:34:31 +00:00
|
|
|
TWO_MRSE_accuracy=2 * MRSE_accuracy
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%% PRECISION
|
|
|
|
|
|
|
|
% 2D Mean and Variance
|
|
|
|
mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))];
|
|
|
|
sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))];
|
2018-03-30 09:34:31 +00:00
|
|
|
sigma_ratio_2d = sigma_2d(2) / sigma_2d(1)
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
|
2018-03-30 09:34:31 +00:00
|
|
|
DRMS = sqrt(sigma_2d(1)^2 + sigma_2d(2)^2)
|
2018-02-28 12:15:46 +00:00
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
2018-03-30 09:34:31 +00:00
|
|
|
TWO_DRMS = 2 * DRMS
|
2018-02-28 12:15:46 +00:00
|
|
|
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
|
2018-03-30 09:34:31 +00:00
|
|
|
CEP = 0.62 * sigma_2d(1) + 0.56 * sigma_2d(2)
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
% 3D Mean and Variance
|
|
|
|
mean_3d = [mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))];
|
|
|
|
sigma_3d = [sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))];
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
% absolute mean error
|
2018-03-30 09:34:31 +00:00
|
|
|
error_2D_vec = [mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)];
|
|
|
|
error_2D_m = norm(error_2D_vec)
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
error_3D_vec = [mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)];
|
|
|
|
error_3D_m = norm(error_3D_vec)
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
RMSE_X = sqrt(mean((v_3d(:,1)-mean_utm_X).^2))
|
|
|
|
RMSE_Y = sqrt(mean((v_3d(:,2)-mean_utm_Y).^2))
|
|
|
|
RMSE_Z = sqrt(mean((v_3d(:,3)-mean_utm_Z).^2))
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
RMSE_2D = sqrt(mean((v_2d(:,1)-mean_utm_X).^2 + (v_2d(:,2)-mean_utm_Y).^2))
|
|
|
|
RMSE_3D = sqrt(mean((v_3d(:,1)-mean_utm_X).^2 + (v_3d(:,2)-mean_utm_Y).^2 + (v_3d(:,3)-mean_utm_Z).^2))
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
|
|
|
|
SEP = 0.51 * sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2)
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
|
|
|
|
MRSE = sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2)
|
|
|
|
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
|
|
|
|
TWO_MRSE = 2 * MRSE
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
%% SCATTER PLOT 2D
|
2018-02-28 12:15:46 +00:00
|
|
|
subplot(3,3,8)
|
2018-03-30 09:34:31 +00:00
|
|
|
scatter(v_2d(:,1)-mean_2d(1), v_2d(:,2)-mean_2d(2));
|
2018-02-28 12:15:46 +00:00
|
|
|
hold on;
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
plot(0, 0, 'k*');
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
[x,y,z] = cylinder([TWO_DRMS TWO_DRMS], 200);
|
|
|
|
plot(x(1,:), y(1,:), 'Color', [0 0.6 0]);
|
|
|
|
str = strcat('2DRMS=', num2str(TWO_DRMS), ' m');
|
|
|
|
text(cosd(65)*TWO_DRMS, sind(65)*TWO_DRMS, str, 'Color', [0 0.6 0]);
|
2018-02-28 12:15:46 +00:00
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
[x,y,z] = cylinder([CEP CEP], 200);
|
|
|
|
plot(x(1,:), y(1,:), 'r--');
|
|
|
|
str = strcat('CEP=', num2str(CEP), ' m');
|
|
|
|
text(cosd(80)*CEP, sind(80)*CEP, str, 'Color','r');
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
grid on
|
|
|
|
axis equal;
|
|
|
|
xlabel('North [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
ylabel('East [m]','fontname','Times','fontsize', fontsize)
|
|
|
|
|
|
|
|
|
|
|
|
|
2018-03-30 09:34:31 +00:00
|
|
|
%% SCATTER PLOT 3D
|
2018-02-28 12:15:46 +00:00
|
|
|
subplot(3,3,9)
|
2018-03-30 09:34:31 +00:00
|
|
|
scatter3(v_3d(:,1)-mean_3d(1), v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3));
|
2018-02-28 12:15:46 +00:00
|
|
|
|
|
|
|
hold on;
|
|
|
|
|
|
|
|
[x,y,z] = sphere();
|
2018-03-30 09:34:31 +00:00
|
|
|
hSurface = surf(MRSE*x, MRSE*y, MRSE*z); % sphere centered at origin
|
|
|
|
set(hSurface, 'facecolor', 'none', 'edgecolor', [0 0.6 0], 'edgealpha', 1, 'facealpha', 1);
|
|
|
|
|
|
|
|
xlabel('North [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
|
|
|
|
ylabel('East [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
|
|
|
|
zlabel('Up [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
|
|
|
|
str = strcat('MRSE=', num2str(MRSE), ' m')
|
|
|
|
text(cosd(45)*MRSE, sind(45)*MRSE, 20, str, 'Color', [0 0.6 0]);
|
|
|
|
a = gca;
|
|
|
|
set(a, 'fontsize', fontsize-6)
|
|
|
|
|
|
|
|
hh = findall(hf, '-property', 'FontName');
|
|
|
|
set(hh, 'FontName', 'Times');
|
2018-02-28 12:15:46 +00:00
|
|
|
print(hf, 'Figure2.eps', '-depsc')
|
|
|
|
close(hf);
|