1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-25 06:23:18 +00:00
gnss-sdr/src/algorithms/input_filter/gnuradio_blocks/notch_cc.cc

159 lines
5.8 KiB
C++
Raw Normal View History

/*!
* \file notch_cc.cc
* \brief Implements a multi state notch filter algorithm
* \author Antonio Ramos (antonio.ramosdet(at)gmail.com)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "notch_cc.h"
#include <boost/math/distributions/chi_squared.hpp>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include <iostream>
#include <glog/logging.h>
#include <armadillo>
using google::LogMessage;
notch_sptr make_notch_filter(float pfa, float p_c_factor,
int length_)
{
return notch_sptr(new Notch(pfa, p_c_factor, length_));
}
Notch::Notch(float pfa, float p_c_factor, int length_) : gr::block("Notch",
gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex)))
{
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1, alignment_multiple));
set_history(2);
this->pfa = pfa;
noise_pow_est = 0.0;
this->p_c_factor = gr_complex(p_c_factor , 0);
this->length_ = length_; //Set the number of samples per segment
set_output_multiple(length_);
filter_state_ = false; //Initial state of the filter
n_deg_fred = 2 * length_; //Number of dregrees of freedom
n_segments = 0;
n_segments_est = 8; // Set the number of segments for noise power estimation
n_segments_reset = 10000; // Set the period (in segments) when the noise power is estimated
z_0 = gr_complex(0 , 0);
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
c_samples = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment()));
angle_ = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
power_spect = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
last_out = gr_complex(0,0);
}
Notch::~Notch()
{
volk_free(c_samples);
volk_free(angle_);
volk_free(power_spect);
}
int Notch::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int index_in = 1;
int index_out = 0;
int aux = 0;
float sig2dB = 0.0;
float sig2lin = 0.0;
lv_32fc_t dot_prod_;
gr_complex* in = (gr_complex *) input_items[0];
gr_complex* out = (gr_complex *) output_items[0];
gr_complex* paux;
in++;
arma::cx_fvec signal_segment;
arma::cx_fvec signal_segment_fft;
while(((index_out + length_) < noutput_items) && (n_segments < n_segments_est) && (filter_state_ == false))
{
signal_segment = arma::cx_fvec(in, length_, false, false);
signal_segment_fft = arma::fft(signal_segment);
volk_32fc_s32f_power_spectrum_32f(power_spect, signal_segment_fft.memptr(), 1.0, length_);
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / ((float) n_deg_fred);
noise_pow_est = (((float) n_segments) * noise_pow_est + sig2lin) / ((float)(n_segments + 1));
memcpy(out, in, sizeof(gr_complex) * length_);
index_out += length_;
index_in += length_;
n_segments++;
in += length_;
out += length_;
}
while((index_out + length_) < noutput_items)
{
n_segments++;
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
{
if(filter_state_ == false)
{
filter_state_ = true;
last_out = gr_complex(0,0);
}
paux = in - 1;
volk_32fc_x2_multiply_conjugate_32fc(c_samples, in, paux, length_);
volk_32fc_s32f_atan2_32f(angle_, c_samples, ((float)1.0), length_);
for(aux = 0; aux < length_; aux++)
{
z_0 = std::exp(gr_complex(0,1) * (*(angle_ + aux)));
*out = (*in) - z_0 * (*(in - 1))
+ p_c_factor * z_0 * last_out;
last_out = *out;
index_out++;
index_in++;
in ++;
out ++;
}
}
else
{
if (n_segments > n_segments_reset)
{
n_segments = 0;
}
filter_state_ = false;
memcpy(out, in, sizeof(gr_complex) * length_);
index_out += length_;
index_in += length_;
in += length_;
out += length_;
}
}
consume_each(index_out);
return index_out;
}