1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-07-15 08:04:21 +00:00
gnss-sdr/src/tests/unit-tests/arithmetic/magnitude_squared_test.cc

136 lines
5.2 KiB
C++
Raw Normal View History

/*!
* \file magnitude_squared_test.cc
* \brief This file implements tests for the computation of magnitude squared
* in long arrays.
* \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
2015-01-08 18:49:59 +00:00
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <armadillo>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <algorithm>
#include <chrono>
#include <complex>
DEFINE_int32(size_magnitude_test, 100000, "Size of the arrays used for magnitude testing");
TEST(MagnitudeSquaredTest, StandardCComplexImplementation)
{
std::complex<float>* input = new std::complex<float>[FLAGS_size_magnitude_test];
float* output = new float[FLAGS_size_magnitude_test];
unsigned int number = 0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (number = 0; number < static_cast<unsigned int>(FLAGS_size_magnitude_test); number++)
{
2015-02-10 18:30:15 +00:00
output[number] = (input[number].real() * input[number].real()) + (input[number].imag() * input[number].imag());
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length vector in standard C computed in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
2015-05-13 14:40:46 +00:00
delete[] input;
delete[] output;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(MagnitudeSquaredTest, C11ComplexImplementation)
{
const std::vector<std::complex<float>> input(FLAGS_size_magnitude_test);
2015-02-10 18:30:15 +00:00
std::vector<float> output(FLAGS_size_magnitude_test);
int pos = 0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (const auto& item : input)
{
output[pos++] = std::norm(item);
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< " complex<float> vector (C++11-style) finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex<float> expected(0, 0);
std::complex<float> result(0, 0);
for (const auto& item : output)
{
result += item;
}
ASSERT_EQ(expected, result);
}
TEST(MagnitudeSquaredTest, ArmadilloComplexImplementation)
{
arma::cx_fvec input(FLAGS_size_magnitude_test, arma::fill::zeros);
arma::fvec output(FLAGS_size_magnitude_test);
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
output = arma::abs(arma::square(input));
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length vector using Armadillo computed in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(MagnitudeSquaredTest, VolkComplexImplementation)
{
std::complex<float>* input = static_cast<std::complex<float>*>(volk_gnsssdr_malloc(FLAGS_size_magnitude_test * sizeof(std::complex<float>), volk_gnsssdr_get_alignment()));
std::fill_n(input, FLAGS_size_magnitude_test, std::complex<float>(0.0, 0.0));
float* output = static_cast<float*>(volk_gnsssdr_malloc(FLAGS_size_magnitude_test * sizeof(float), volk_gnsssdr_get_alignment()));
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
volk_32fc_magnitude_squared_32f(output, input, static_cast<unsigned int>(FLAGS_size_magnitude_test));
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length vector using VOLK computed in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
volk_gnsssdr_free(input);
volk_gnsssdr_free(output);
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
// volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);