1
0
mirror of https://github.com/janeczku/calibre-web synced 2024-11-09 19:40:00 +00:00
calibre-web/vendor/sqlalchemy/ext/declarative/api.py
2016-04-27 17:47:31 +02:00

487 lines
16 KiB
Python

# ext/declarative/api.py
# Copyright (C) 2005-2013 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Public API functions and helpers for declarative."""
from ...schema import Table, MetaData
from ...orm import synonym as _orm_synonym, mapper,\
comparable_property,\
interfaces
from ...orm.util import polymorphic_union, _mapper_or_none
from ... import exc
import weakref
from .base import _as_declarative, \
_declarative_constructor,\
_MapperConfig, _add_attribute
def instrument_declarative(cls, registry, metadata):
"""Given a class, configure the class declaratively,
using the given registry, which can be any dictionary, and
MetaData object.
"""
if '_decl_class_registry' in cls.__dict__:
raise exc.InvalidRequestError(
"Class %r already has been "
"instrumented declaratively" % cls)
cls._decl_class_registry = registry
cls.metadata = metadata
_as_declarative(cls, cls.__name__, cls.__dict__)
def has_inherited_table(cls):
"""Given a class, return True if any of the classes it inherits from has a
mapped table, otherwise return False.
"""
for class_ in cls.__mro__[1:]:
if getattr(class_, '__table__', None) is not None:
return True
return False
class DeclarativeMeta(type):
def __init__(cls, classname, bases, dict_):
if '_decl_class_registry' not in cls.__dict__:
_as_declarative(cls, classname, cls.__dict__)
type.__init__(cls, classname, bases, dict_)
def __setattr__(cls, key, value):
_add_attribute(cls, key, value)
def synonym_for(name, map_column=False):
"""Decorator, make a Python @property a query synonym for a column.
A decorator version of :func:`~sqlalchemy.orm.synonym`. The function being
decorated is the 'descriptor', otherwise passes its arguments through to
synonym()::
@synonym_for('col')
@property
def prop(self):
return 'special sauce'
The regular ``synonym()`` is also usable directly in a declarative setting
and may be convenient for read/write properties::
prop = synonym('col', descriptor=property(_read_prop, _write_prop))
"""
def decorate(fn):
return _orm_synonym(name, map_column=map_column, descriptor=fn)
return decorate
def comparable_using(comparator_factory):
"""Decorator, allow a Python @property to be used in query criteria.
This is a decorator front end to
:func:`~sqlalchemy.orm.comparable_property` that passes
through the comparator_factory and the function being decorated::
@comparable_using(MyComparatorType)
@property
def prop(self):
return 'special sauce'
The regular ``comparable_property()`` is also usable directly in a
declarative setting and may be convenient for read/write properties::
prop = comparable_property(MyComparatorType)
"""
def decorate(fn):
return comparable_property(comparator_factory, fn)
return decorate
class declared_attr(interfaces._MappedAttribute, property):
"""Mark a class-level method as representing the definition of
a mapped property or special declarative member name.
@declared_attr turns the attribute into a scalar-like
property that can be invoked from the uninstantiated class.
Declarative treats attributes specifically marked with
@declared_attr as returning a construct that is specific
to mapping or declarative table configuration. The name
of the attribute is that of what the non-dynamic version
of the attribute would be.
@declared_attr is more often than not applicable to mixins,
to define relationships that are to be applied to different
implementors of the class::
class ProvidesUser(object):
"A mixin that adds a 'user' relationship to classes."
@declared_attr
def user(self):
return relationship("User")
It also can be applied to mapped classes, such as to provide
a "polymorphic" scheme for inheritance::
class Employee(Base):
id = Column(Integer, primary_key=True)
type = Column(String(50), nullable=False)
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
@declared_attr
def __mapper_args__(cls):
if cls.__name__ == 'Employee':
return {
"polymorphic_on":cls.type,
"polymorphic_identity":"Employee"
}
else:
return {"polymorphic_identity":cls.__name__}
.. versionchanged:: 0.8 :class:`.declared_attr` can be used with
non-ORM or extension attributes, such as user-defined attributes
or :func:`.association_proxy` objects, which will be assigned
to the class at class construction time.
"""
def __init__(self, fget, *arg, **kw):
super(declared_attr, self).__init__(fget, *arg, **kw)
self.__doc__ = fget.__doc__
def __get__(desc, self, cls):
return desc.fget(cls)
def declarative_base(bind=None, metadata=None, mapper=None, cls=object,
name='Base', constructor=_declarative_constructor,
class_registry=None,
metaclass=DeclarativeMeta):
"""Construct a base class for declarative class definitions.
The new base class will be given a metaclass that produces
appropriate :class:`~sqlalchemy.schema.Table` objects and makes
the appropriate :func:`~sqlalchemy.orm.mapper` calls based on the
information provided declaratively in the class and any subclasses
of the class.
:param bind: An optional
:class:`~sqlalchemy.engine.base.Connectable`, will be assigned
the ``bind`` attribute on the :class:`~sqlalchemy.MetaData`
instance.
:param metadata:
An optional :class:`~sqlalchemy.MetaData` instance. All
:class:`~sqlalchemy.schema.Table` objects implicitly declared by
subclasses of the base will share this MetaData. A MetaData instance
will be created if none is provided. The
:class:`~sqlalchemy.MetaData` instance will be available via the
`metadata` attribute of the generated declarative base class.
:param mapper:
An optional callable, defaults to :func:`~sqlalchemy.orm.mapper`. Will
be used to map subclasses to their Tables.
:param cls:
Defaults to :class:`object`. A type to use as the base for the generated
declarative base class. May be a class or tuple of classes.
:param name:
Defaults to ``Base``. The display name for the generated
class. Customizing this is not required, but can improve clarity in
tracebacks and debugging.
:param constructor:
Defaults to
:func:`~sqlalchemy.ext.declarative._declarative_constructor`, an
__init__ implementation that assigns \**kwargs for declared
fields and relationships to an instance. If ``None`` is supplied,
no __init__ will be provided and construction will fall back to
cls.__init__ by way of the normal Python semantics.
:param class_registry: optional dictionary that will serve as the
registry of class names-> mapped classes when string names
are used to identify classes inside of :func:`.relationship`
and others. Allows two or more declarative base classes
to share the same registry of class names for simplified
inter-base relationships.
:param metaclass:
Defaults to :class:`.DeclarativeMeta`. A metaclass or __metaclass__
compatible callable to use as the meta type of the generated
declarative base class.
.. seealso::
:func:`.as_declarative`
"""
lcl_metadata = metadata or MetaData()
if bind:
lcl_metadata.bind = bind
if class_registry is None:
class_registry = weakref.WeakValueDictionary()
bases = not isinstance(cls, tuple) and (cls,) or cls
class_dict = dict(_decl_class_registry=class_registry,
metadata=lcl_metadata)
if constructor:
class_dict['__init__'] = constructor
if mapper:
class_dict['__mapper_cls__'] = mapper
return metaclass(name, bases, class_dict)
def as_declarative(**kw):
"""
Class decorator for :func:`.declarative_base`.
Provides a syntactical shortcut to the ``cls`` argument
sent to :func:`.declarative_base`, allowing the base class
to be converted in-place to a "declarative" base::
from sqlalchemy.ext.declarative import as_declarative
@as_declarative()
class Base(object)
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
id = Column(Integer, primary_key=True)
class MyMappedClass(Base):
# ...
All keyword arguments passed to :func:`.as_declarative` are passed
along to :func:`.declarative_base`.
.. versionadded:: 0.8.3
.. seealso::
:func:`.declarative_base`
"""
def decorate(cls):
kw['cls'] = cls
kw['name'] = cls.__name__
return declarative_base(**kw)
return decorate
class ConcreteBase(object):
"""A helper class for 'concrete' declarative mappings.
:class:`.ConcreteBase` will use the :func:`.polymorphic_union`
function automatically, against all tables mapped as a subclass
to this class. The function is called via the
``__declare_last__()`` function, which is essentially
a hook for the :func:`.MapperEvents.after_configured` event.
:class:`.ConcreteBase` produces a mapped
table for the class itself. Compare to :class:`.AbstractConcreteBase`,
which does not.
Example::
from sqlalchemy.ext.declarative import ConcreteBase
class Employee(ConcreteBase, Base):
__tablename__ = 'employee'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
__mapper_args__ = {
'polymorphic_identity':'employee',
'concrete':True}
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
manager_data = Column(String(40))
__mapper_args__ = {
'polymorphic_identity':'manager',
'concrete':True}
"""
@classmethod
def _create_polymorphic_union(cls, mappers):
return polymorphic_union(dict(
(mp.polymorphic_identity, mp.local_table)
for mp in mappers
), 'type', 'pjoin')
@classmethod
def __declare_last__(cls):
m = cls.__mapper__
if m.with_polymorphic:
return
mappers = list(m.self_and_descendants)
pjoin = cls._create_polymorphic_union(mappers)
m._set_with_polymorphic(("*", pjoin))
m._set_polymorphic_on(pjoin.c.type)
class AbstractConcreteBase(ConcreteBase):
"""A helper class for 'concrete' declarative mappings.
:class:`.AbstractConcreteBase` will use the :func:`.polymorphic_union`
function automatically, against all tables mapped as a subclass
to this class. The function is called via the
``__declare_last__()`` function, which is essentially
a hook for the :func:`.MapperEvents.after_configured` event.
:class:`.AbstractConcreteBase` does not produce a mapped
table for the class itself. Compare to :class:`.ConcreteBase`,
which does.
Example::
from sqlalchemy.ext.declarative import AbstractConcreteBase
class Employee(AbstractConcreteBase, Base):
pass
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
manager_data = Column(String(40))
__mapper_args__ = {
'polymorphic_identity':'manager',
'concrete':True}
"""
__abstract__ = True
@classmethod
def __declare_last__(cls):
if hasattr(cls, '__mapper__'):
return
# can't rely on 'self_and_descendants' here
# since technically an immediate subclass
# might not be mapped, but a subclass
# may be.
mappers = []
stack = list(cls.__subclasses__())
while stack:
klass = stack.pop()
stack.extend(klass.__subclasses__())
mn = _mapper_or_none(klass)
if mn is not None:
mappers.append(mn)
pjoin = cls._create_polymorphic_union(mappers)
cls.__mapper__ = m = mapper(cls, pjoin, polymorphic_on=pjoin.c.type)
for scls in cls.__subclasses__():
sm = _mapper_or_none(scls)
if sm.concrete and cls in scls.__bases__:
sm._set_concrete_base(m)
class DeferredReflection(object):
"""A helper class for construction of mappings based on
a deferred reflection step.
Normally, declarative can be used with reflection by
setting a :class:`.Table` object using autoload=True
as the ``__table__`` attribute on a declarative class.
The caveat is that the :class:`.Table` must be fully
reflected, or at the very least have a primary key column,
at the point at which a normal declarative mapping is
constructed, meaning the :class:`.Engine` must be available
at class declaration time.
The :class:`.DeferredReflection` mixin moves the construction
of mappers to be at a later point, after a specific
method is called which first reflects all :class:`.Table`
objects created so far. Classes can define it as such::
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.declarative import DeferredReflection
Base = declarative_base()
class MyClass(DeferredReflection, Base):
__tablename__ = 'mytable'
Above, ``MyClass`` is not yet mapped. After a series of
classes have been defined in the above fashion, all tables
can be reflected and mappings created using
:meth:`.DeferredReflection.prepare`::
engine = create_engine("someengine://...")
DeferredReflection.prepare(engine)
The :class:`.DeferredReflection` mixin can be applied to individual
classes, used as the base for the declarative base itself,
or used in a custom abstract class. Using an abstract base
allows that only a subset of classes to be prepared for a
particular prepare step, which is necessary for applications
that use more than one engine. For example, if an application
has two engines, you might use two bases, and prepare each
separately, e.g.::
class ReflectedOne(DeferredReflection, Base):
__abstract__ = True
class ReflectedTwo(DeferredReflection, Base):
__abstract__ = True
class MyClass(ReflectedOne):
__tablename__ = 'mytable'
class MyOtherClass(ReflectedOne):
__tablename__ = 'myothertable'
class YetAnotherClass(ReflectedTwo):
__tablename__ = 'yetanothertable'
# ... etc.
Above, the class hierarchies for ``ReflectedOne`` and
``ReflectedTwo`` can be configured separately::
ReflectedOne.prepare(engine_one)
ReflectedTwo.prepare(engine_two)
.. versionadded:: 0.8
"""
@classmethod
def prepare(cls, engine):
"""Reflect all :class:`.Table` objects for all current
:class:`.DeferredReflection` subclasses"""
to_map = [m for m in _MapperConfig.configs.values()
if issubclass(m.cls, cls)]
for thingy in to_map:
cls._sa_decl_prepare(thingy.local_table, engine)
thingy.map()
@classmethod
def _sa_decl_prepare(cls, local_table, engine):
# autoload Table, which is already
# present in the metadata. This
# will fill in db-loaded columns
# into the existing Table object.
if local_table is not None:
Table(local_table.name,
local_table.metadata,
extend_existing=True,
autoload_replace=False,
autoload=True,
autoload_with=engine,
schema=local_table.schema)