/** * rarvm.js * * Licensed under the MIT License * * Copyright(c) 2017 Google Inc. */ /** * CRC Implementation. */ /* global Uint8Array, Uint32Array, bitjs, DataView, mem */ /* exported MAXWINMASK, UnpackFilter */ function emptyArr(n, v) { var arr = []; for (var i = 0; i < n; i += 1) { arr[i] = v; } return arr; } var CRCTab = emptyArr(256, 0); function initCRC() { for (var i = 0; i < 256; ++i) { var c = i; for (var j = 0; j < 8; ++j) { // Read http://stackoverflow.com/questions/6798111/bitwise-operations-on-32-bit-unsigned-ints // for the bitwise operator issue (JS interprets operands as 32-bit signed // integers and we need to deal with unsigned ones here). c = ((c & 1) ? ((c >>> 1) ^ 0xEDB88320) : (c >>> 1)) >>> 0; } CRCTab[i] = c; } } /** * @param {number} startCRC * @param {Uint8Array} arr * @return {number} */ function CRC(startCRC, arr) { if (CRCTab[1] === 0) { initCRC(); } /* #if defined(LITTLE_ENDIAN) && defined(PRESENT_INT32) && defined(ALLOW_NOT_ALIGNED_INT) while (Size>0 && ((long)Data & 7)) { StartCRC=CRCTab[(byte)(StartCRC^Data[0])]^(StartCRC>>8); Size--; Data++; } while (Size>=8) { StartCRC^=*(uint32 *)Data; StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC^=*(uint32 *)(Data+4); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8); Data+=8; Size-=8; } #endif */ for (var i = 0; i < arr.length; ++i) { var byte = ((startCRC ^ arr[i]) >>> 0) & 0xff; startCRC = (CRCTab[byte] ^ (startCRC >>> 8)) >>> 0; } return startCRC; } // ============================================================================================== // /** * RarVM Implementation. */ var VM_MEMSIZE = 0x40000; var VM_MEMMASK = (VM_MEMSIZE - 1); var VM_GLOBALMEMADDR = 0x3C000; var VM_GLOBALMEMSIZE = 0x2000; var VM_FIXEDGLOBALSIZE = 64; var MAXWINSIZE = 0x400000; var MAXWINMASK = (MAXWINSIZE - 1); /** */ var VmCommands = { VM_MOV: 0, VM_CMP: 1, VM_ADD: 2, VM_SUB: 3, VM_JZ: 4, VM_JNZ: 5, VM_INC: 6, VM_DEC: 7, VM_JMP: 8, VM_XOR: 9, VM_AND: 10, VM_OR: 11, VM_TEST: 12, VM_JS: 13, VM_JNS: 14, VM_JB: 15, VM_JBE: 16, VM_JA: 17, VM_JAE: 18, VM_PUSH: 19, VM_POP: 20, VM_CALL: 21, VM_RET: 22, VM_NOT: 23, VM_SHL: 24, VM_SHR: 25, VM_SAR: 26, VM_NEG: 27, VM_PUSHA: 28, VM_POPA: 29, VM_PUSHF: 30, VM_POPF: 31, VM_MOVZX: 32, VM_MOVSX: 33, VM_XCHG: 34, VM_MUL: 35, VM_DIV: 36, VM_ADC: 37, VM_SBB: 38, VM_PRINT: 39, /* #ifdef VM_OPTIMIZE VM_MOVB, VM_MOVD, VM_CMPB, VM_CMPD, VM_ADDB, VM_ADDD, VM_SUBB, VM_SUBD, VM_INCB, VM_INCD, VM_DECB, VM_DECD, VM_NEGB, VM_NEGD, #endif */ // TODO: This enum value would be much larger if VM_OPTIMIZE. VM_STANDARD: 40, }; /** */ var VmStandardFilters = { VMSF_NONE: 0, VMSF_E8: 1, VMSF_E8E9: 2, VMSF_ITANIUM: 3, VMSF_RGB: 4, VMSF_AUDIO: 5, VMSF_DELTA: 6, VMSF_UPCASE: 7, }; /** */ var VmFlags = { VM_FC: 1, VM_FZ: 2, VM_FS: 0x80000000, }; /** */ var VmOpType = { VM_OPREG: 0, VM_OPINT: 1, VM_OPREGMEM: 2, VM_OPNONE: 3, }; /** * Finds the key that maps to a given value in an object. This function is useful in debugging * variables that use the above enums. * @param {Object} obj * @param {number} val * @return {string} The key/enum value as a string. */ function findKeyForValue(obj, val) { for (var key in obj) { if (obj[key] === val) { return key; } } return null; } function getDebugString(obj, val) { var s = "Unknown."; if (obj === VmCommands) { s = "VmCommands."; } else if (obj === VmStandardFilters) { s = "VmStandardFilters."; } else if (obj === VmFlags) { s = "VmOpType."; } else if (obj === VmOpType) { s = "VmOpType."; } return s + findKeyForValue(obj, val); } /** * @struct * @constructor */ var VmPreparedOperand = function() { /** @type {VmOpType} */ this.Type; /** @type {number} */ this.Data = 0; /** @type {number} */ this.Base = 0; // TODO: In C++ this is a uint* /** @type {Array<number>} */ this.Addr = null; }; /** @return {string} */ VmPreparedOperand.prototype.toString = function() { if (this.Type === null) { return "Error: Type was null in VmPreparedOperand"; } return "{ " + "Type: " + getDebugString(VmOpType, this.Type) + ", Data: " + this.Data + ", Base: " + this.Base + " }"; }; /** * @struct * @constructor */ var VmPreparedCommand = function() { /** @type {VmCommands} */ this.OpCode; /** @type {boolean} */ this.ByteMode = false; /** @type {VmPreparedOperand} */ this.Op1 = new VmPreparedOperand(); /** @type {VmPreparedOperand} */ this.Op2 = new VmPreparedOperand(); }; /** @return {string} */ VmPreparedCommand.prototype.toString = function(indent) { if (this.OpCode === null) { return "Error: OpCode was null in VmPreparedCommand"; } indent = indent || ""; return indent + "{\n" + indent + " OpCode: " + getDebugString(VmCommands, this.OpCode) + ",\n" + indent + " ByteMode: " + this.ByteMode + ",\n" + indent + " Op1: " + this.Op1.toString() + ",\n" + indent + " Op2: " + this.Op2.toString() + ",\n" + indent + "}"; }; /** * @struct * @constructor */ var VmPreparedProgram = function() { /** @type {Array<VmPreparedCommand>} */ this.Cmd = []; /** @type {Array<VmPreparedCommand>} */ this.AltCmd = null; /** @type {Uint8Array} */ this.GlobalData = new Uint8Array(); /** @type {Uint8Array} */ this.StaticData = new Uint8Array(); // static data contained in DB operators /** @type {Uint32Array} */ this.InitR = new Uint32Array(7); /** * A pointer to bytes that have been filtered by a program. * @type {Uint8Array} */ this.FilteredData = null; }; /** @return {string} */ VmPreparedProgram.prototype.toString = function() { var s = "{\n Cmd: [\n"; for (var i = 0; i < this.Cmd.length; ++i) { s += this.Cmd[i].toString(" ") + ",\n"; } s += "],\n"; // TODO: Dump GlobalData, StaticData, InitR? s += " }\n"; return s; }; /** * @struct * @constructor */ var UnpackFilter = function() { /** @type {number} */ this.BlockStart = 0; /** @type {number} */ this.BlockLength = 0; /** @type {number} */ this.ExecCount = 0; /** @type {boolean} */ this.NextWindow = false; // position of parent filter in Filters array used as prototype for filter // in PrgStack array. Not defined for filters in Filters array. /** @type {number} */ this.ParentFilter = null; /** @type {VmPreparedProgram} */ this.Prg = new VmPreparedProgram(); }; var VMCF_OP0 = 0; var VMCF_OP1 = 1; var VMCF_OP2 = 2; var VMCF_OPMASK = 3; var VMCF_BYTEMODE = 4; var VMCF_JUMP = 8; var VMCF_PROC = 16; var VMCF_USEFLAGS = 32; var VMCF_CHFLAGS = 64; var VmCmdFlags = [ /* VM_MOV */ VMCF_OP2 | VMCF_BYTEMODE, /* VM_CMP */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_ADD */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_SUB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_JZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_JNZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_INC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_DEC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_JMP */ VMCF_OP1 | VMCF_JUMP, /* VM_XOR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_AND */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_OR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_TEST */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_JS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_JNS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_JB */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_JBE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_JA */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_JAE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS, /* VM_PUSH */ VMCF_OP1, /* VM_POP */ VMCF_OP1, /* VM_CALL */ VMCF_OP1 | VMCF_PROC, /* VM_RET */ VMCF_OP0 | VMCF_PROC, /* VM_NOT */ VMCF_OP1 | VMCF_BYTEMODE, /* VM_SHL */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_SHR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_SAR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_NEG */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS, /* VM_PUSHA */ VMCF_OP0, /* VM_POPA */ VMCF_OP0, /* VM_PUSHF */ VMCF_OP0 | VMCF_USEFLAGS, /* VM_POPF */ VMCF_OP0 | VMCF_CHFLAGS, /* VM_MOVZX */ VMCF_OP2, /* VM_MOVSX */ VMCF_OP2, /* VM_XCHG */ VMCF_OP2 | VMCF_BYTEMODE, /* VM_MUL */ VMCF_OP2 | VMCF_BYTEMODE, /* VM_DIV */ VMCF_OP2 | VMCF_BYTEMODE, /* VM_ADC */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS, /* VM_SBB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS, /* VM_PRINT */ VMCF_OP0, ]; /** * @param {number} length * @param {number} crc * @param {VmStandardFilters} type * @struct * @constructor */ var StandardFilterSignature = function(length, crc, type) { /** @type {number} */ this.Length = length; /** @type {number} */ this.CRC = crc; /** @type {VmStandardFilters} */ this.Type = type; }; /** * @type {Array<StandardFilterSignature>} */ var StdList = [ new StandardFilterSignature(53, 0xad576887, VmStandardFilters.VMSF_E8), new StandardFilterSignature(57, 0x3cd7e57e, VmStandardFilters.VMSF_E8E9), new StandardFilterSignature(120, 0x3769893f, VmStandardFilters.VMSF_ITANIUM), new StandardFilterSignature(29, 0x0e06077d, VmStandardFilters.VMSF_DELTA), new StandardFilterSignature(149, 0x1c2c5dc8, VmStandardFilters.VMSF_RGB), new StandardFilterSignature(216, 0xbc85e701, VmStandardFilters.VMSF_AUDIO), new StandardFilterSignature(40, 0x46b9c560, VmStandardFilters.VMSF_UPCASE), ]; /** * @constructor */ var RarVM = function() { /** @private {Uint8Array} */ this.mem_ = null; /** @private {Uint32Array<number>} */ this.R_ = new Uint32Array(8); /** @private {number} */ this.flags_ = 0; }; /** * Initializes the memory of the VM. */ RarVM.prototype.init = function() { if (!this.mem_) { this.mem_ = new Uint8Array(VM_MEMSIZE); } }; /** * @param {Uint8Array} code * @return {VmStandardFilters} */ RarVM.prototype.isStandardFilter = function(code) { var codeCRC = (CRC(0xffffffff, code, code.length) ^ 0xffffffff) >>> 0; for (var i = 0; i < StdList.length; ++i) { if (StdList[i].CRC === codeCRC && StdList[i].Length === code.length) { return StdList[i].Type; } } return VmStandardFilters.VMSF_NONE; }; /** * @param {VmPreparedOperand} op * @param {boolean} byteMode * @param {bitjs.io.BitStream} bstream A rtl bit stream. */ RarVM.prototype.decodeArg = function(op, byteMode, bstream) { var data = bstream.peekBits(16); if (data & 0x8000) { op.Type = VmOpType.VM_OPREG; // Operand is register (R[0]..R[7]) bstream.readBits(1); // 1 flag bit and... op.Data = bstream.readBits(3); // ... 3 register number bits op.Addr = [this.R_[op.Data]]; // TODO &R[Op.Data] // Register address } else { if ((data & 0xc000) === 0) { op.Type = VmOpType.VM_OPINT; // Operand is integer bstream.readBits(2); // 2 flag bits if (byteMode) { op.Data = bstream.readBits(8); // Byte integer. } else { op.Data = RarVM.readData(bstream); // 32 bit integer. } } else { // Operand is data addressed by register data, base address or both. op.Type = VmOpType.VM_OPREGMEM; if ((data & 0x2000) === 0) { bstream.readBits(3); // 3 flag bits // Base address is zero, just use the address from register. op.Data = bstream.readBits(3); // (Data>>10)&7 op.Addr = [this.R_[op.Data]]; // TODO &R[op.Data] op.Base = 0; } else { bstream.readBits(4); // 4 flag bits if ((data & 0x1000) === 0) { // Use both register and base address. op.Data = bstream.readBits(3); op.Addr = [this.R_[op.Data]]; // TODO &R[op.Data] } else { // Use base address only. Access memory by fixed address. op.Data = 0; } op.Base = RarVM.readData(bstream); // Read base address. } } } }; /** * @param {VmPreparedProgram} prg */ RarVM.prototype.execute = function(prg) { this.R_.set(prg.InitR); var globalSize = Math.min(prg.GlobalData.length, VM_GLOBALMEMSIZE); if (globalSize) { this.mem_.set(prg.GlobalData.subarray(0, globalSize), VM_GLOBALMEMADDR); } var staticSize = Math.min(prg.StaticData.length, VM_GLOBALMEMSIZE - globalSize); if (staticSize) { this.mem_.set(prg.StaticData.subarray(0, staticSize), VM_GLOBALMEMADDR + globalSize); } this.R_[7] = VM_MEMSIZE; this.flags_ = 0; var preparedCodes = prg.AltCmd ? prg.AltCmd : prg.Cmd; if (prg.Cmd.length > 0 && !this.executeCode(preparedCodes)) { // Invalid VM program. Let's replace it with 'return' command. preparedCodes.OpCode = VmCommands.VM_RET; } var dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR); var newBlockPos = dataView.getUint32(0x20, true /* little endian */ ) & VM_MEMMASK; var newBlockSize = dataView.getUint32(0x1c, true /* little endian */ ) & VM_MEMMASK; if (newBlockPos + newBlockSize >= VM_MEMSIZE) { newBlockPos = newBlockSize = 0; } prg.FilteredData = this.mem_.subarray(newBlockPos, newBlockPos + newBlockSize); prg.GlobalData = new Uint8Array(0); var dataSize = Math.min(dataView.getUint32(0x30), (VM_GLOBALMEMSIZE - VM_FIXEDGLOBALSIZE)); if (dataSize !== 0) { var len = dataSize + VM_FIXEDGLOBALSIZE; prg.GlobalData = new Uint8Array(len); prg.GlobalData.set(mem.subarray(VM_GLOBALMEMADDR, VM_GLOBALMEMADDR + len)); } }; /** * @param {Array<VmPreparedCommand>} preparedCodes * @return {boolean} */ RarVM.prototype.executeCode = function(preparedCodes) { var codeIndex = 0; var cmd = preparedCodes[codeIndex]; // TODO: Why is this an infinite loop instead of just returning // when a VM_RET is hit? while (1) { switch (cmd.OpCode) { case VmCommands.VM_RET: if (this.R_[7] >= VM_MEMSIZE) { return true; } //SET_IP(GET_VALUE(false,(uint *)&Mem[R[7] & VM_MEMMASK])); this.R_[7] += 4; continue; case VmCommands.VM_STANDARD: this.executeStandardFilter(cmd.Op1.Data); break; default: console.error("RarVM OpCode not supported: " + getDebugString(VmCommands, cmd.OpCode)); break; } // switch (cmd.OpCode) codeIndex++; cmd = preparedCodes[codeIndex]; } }; /** * @param {number} filterType */ RarVM.prototype.executeStandardFilter = function(filterType) { switch (filterType) { case VmStandardFilters.VMSF_DELTA: var dataSize = this.R_[4]; var channels = this.R_[0]; var srcPos = 0; var border = dataSize * 2; //SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize); var dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR); dataView.setUint32(0x20, dataSize, true /* little endian */ ); if (dataSize >= VM_GLOBALMEMADDR / 2) { break; } // Bytes from same channels are grouped to continual data blocks, // so we need to place them back to their interleaving positions. for (var curChannel = 0; curChannel < channels; ++curChannel) { var prevByte = 0; for (var destPos = dataSize + curChannel; destPos < border; destPos += channels) { prevByte = (prevByte - this.mem_[srcPos++]) & 0xff; this.mem_[destPos] = prevByte; } } break; default: console.error("RarVM Standard Filter not supported: " + getDebugString(VmStandardFilters, filterType)); break; } }; /** * @param {Uint8Array} code * @param {VmPreparedProgram} prg */ RarVM.prototype.prepare = function(code, prg) { var codeSize = code.length; var i; var curCmd; //InitBitInput(); //memcpy(InBuf,Code,Min(CodeSize,BitInput::MAX_SIZE)); var bstream = new bitjs.io.BitStream(code.buffer, true /* rtl */ ); // Calculate the single byte XOR checksum to check validity of VM code. var xorSum = 0; for (i = 1; i < codeSize; ++i) { xorSum ^= code[i]; } bstream.readBits(8); prg.Cmd = []; // TODO: Is this right? I don't see it being done in rarvm.cpp. // VM code is valid if equal. if (xorSum === code[0]) { var filterType = this.isStandardFilter(code); if (filterType !== VmStandardFilters.VMSF_NONE) { // VM code is found among standard filters. curCmd = new VmPreparedCommand(); prg.Cmd.push(curCmd); curCmd.OpCode = VmCommands.VM_STANDARD; curCmd.Op1.Data = filterType; // TODO: Addr=&CurCmd->Op1.Data curCmd.Op1.Addr = [curCmd.Op1.Data]; curCmd.Op2.Addr = [null]; // &CurCmd->Op2.Data; curCmd.Op1.Type = VmOpType.VM_OPNONE; curCmd.Op2.Type = VmOpType.VM_OPNONE; codeSize = 0; } var dataFlag = bstream.readBits(1); // Read static data contained in DB operators. This data cannot be // changed, it is a part of VM code, not a filter parameter. if (dataFlag & 0x8000) { var dataSize = RarVM.readData(bstream) + 1; // TODO: This accesses the byte pointer of the bstream directly. Is that ok? for (i = 0; i < bstream.bytePtr < codeSize && i < dataSize; ++i) { // Append a byte to the program's static data. var newStaticData = new Uint8Array(prg.StaticData.length + 1); newStaticData.set(prg.StaticData); newStaticData[newStaticData.length - 1] = bstream.readBits(8); prg.StaticData = newStaticData; } } while (bstream.bytePtr < codeSize) { curCmd = new VmPreparedCommand(); prg.Cmd.push(curCmd); // Prg->Cmd.Add(1) var flag = bstream.peekBits(1); if (!flag) { // (Data&0x8000)==0 curCmd.OpCode = bstream.readBits(4); } else { curCmd.OpCode = (bstream.readBits(6) - 24); } if (VmCmdFlags[curCmd.OpCode] & VMCF_BYTEMODE) { curCmd.ByteMode = (bstream.readBits(1) !== 0); } else { curCmd.ByteMode = 0; } curCmd.Op1.Type = VmOpType.VM_OPNONE; curCmd.Op2.Type = VmOpType.VM_OPNONE; var opNum = (VmCmdFlags[curCmd.OpCode] & VMCF_OPMASK); curCmd.Op1.Addr = null; curCmd.Op2.Addr = null; if (opNum > 0) { this.decodeArg(curCmd.Op1, curCmd.ByteMode, bstream); // reading the first operand if (opNum === 2) { this.decodeArg(curCmd.Op2, curCmd.ByteMode, bstream); // reading the second operand } else { if (curCmd.Op1.Type === VmOpType.VM_OPINT && (VmCmdFlags[curCmd.OpCode] & (VMCF_JUMP | VMCF_PROC))) { // Calculating jump distance. var distance = curCmd.Op1.Data; if (distance >= 256) { distance -= 256; } else { if (distance >= 136) { distance -= 264; } else { if (distance >= 16) { distance -= 8; } else { if (distance >= 8) { distance -= 16; } } } distance += prg.Cmd.length; } curCmd.Op1.Data = distance; } } } // if (OpNum>0) } // while ((uint)InAddr<CodeSize) } // if (XorSum==Code[0]) curCmd = new VmPreparedCommand(); prg.Cmd.push(curCmd); curCmd.OpCode = VmCommands.VM_RET; // TODO: Addr=&CurCmd->Op1.Data curCmd.Op1.Addr = [curCmd.Op1.Data]; curCmd.Op2.Addr = [curCmd.Op2.Data]; curCmd.Op1.Type = VmOpType.VM_OPNONE; curCmd.Op2.Type = VmOpType.VM_OPNONE; // If operand 'Addr' field has not been set by DecodeArg calls above, // let's set it to point to operand 'Data' field. It is necessary for // VM_OPINT type operands (usual integers) or maybe if something was // not set properly for other operands. 'Addr' field is required // for quicker addressing of operand data. for (i = 0; i < prg.Cmd.length; ++i) { var cmd = prg.Cmd[i]; if (cmd.Op1.Addr === null) { cmd.Op1.Addr = [cmd.Op1.Data]; } if (cmd.Op2.Addr === null) { cmd.Op2.Addr = [cmd.Op2.Data]; } } /* #ifdef VM_OPTIMIZE if (CodeSize!=0) Optimize(Prg); #endif */ }; /** * @param {Uint8Array} arr The byte array to set a value in. * @param {number} value The unsigned 32-bit value to set. * @param {number} offset Offset into arr to start setting the value, defaults to 0. */ RarVM.prototype.setLowEndianValue = function(arr, value, offset) { var i = offset || 0; arr[i] = value & 0xff; arr[i + 1] = (value >>> 8) & 0xff; arr[i + 2] = (value >>> 16) & 0xff; arr[i + 3] = (value >>> 24) & 0xff; }; /** * Sets a number of bytes of the VM memory at the given position from a * source buffer of bytes. * @param {number} pos The position in the VM memory to start writing to. * @param {Uint8Array} buffer The source buffer of bytes. * @param {number} dataSize The number of bytes to set. */ RarVM.prototype.setMemory = function(pos, buffer, dataSize) { if (pos < VM_MEMSIZE) { var numBytes = Math.min(dataSize, VM_MEMSIZE - pos); for (var i = 0; i < numBytes; ++i) { this.mem_[pos + i] = buffer[i]; } } }; /** * Static function that reads in the next set of bits for the VM * (might return 4, 8, 16 or 32 bits). * @param {bitjs.io.BitStream} bstream A RTL bit stream. * @return {number} The value of the bits read. */ RarVM.readData = function(bstream) { // Read in the first 2 bits. var flags = bstream.readBits(2); switch (flags) { // Data&0xc000 // Return the next 4 bits. case 0: return bstream.readBits(4); // (Data>>10)&0xf case 1: // 0x4000 // 0x3c00 => 0011 1100 0000 0000 if (bstream.peekBits(4) === 0) { // (Data&0x3c00)==0 // Skip the 4 zero bits. bstream.readBits(4); // Read in the next 8 and pad with 1s to 32 bits. return (0xffffff00 | bstream.readBits(8)) >>> 0; // ((Data>>2)&0xff) } // Else, read in the next 8. return bstream.readBits(8); // Read in the next 16. case 2: // 0x8000 var val = bstream.getBits(); bstream.readBits(16); return val; //bstream.readBits(16); // case 3 default: return (bstream.readBits(16) << 16) | bstream.readBits(16); } }; // ============================================================================================== //