1
0
mirror of https://github.com/janeczku/calibre-web synced 2024-12-11 10:40:32 +00:00
calibre-web/lib/sqlalchemy/orm/mapper.py

2290 lines
87 KiB
Python
Raw Normal View History

# orm/mapper.py
# Copyright (C) 2005-2013 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Logic to map Python classes to and from selectables.
Defines the :class:`~sqlalchemy.orm.mapper.Mapper` class, the central
configurational unit which associates a class with a database table.
This is a semi-private module; the main configurational API of the ORM is
available in :class:`~sqlalchemy.orm.`.
"""
from __future__ import absolute_import
import types
import weakref
from itertools import chain
from collections import deque
from .. import sql, util, log, exc as sa_exc, event, schema, inspection
from ..sql import expression, visitors, operators, util as sql_util
from . import instrumentation, attributes, \
exc as orm_exc, events, loading
from .interfaces import MapperProperty, _InspectionAttr, _MappedAttribute
from .util import _INSTRUMENTOR, _class_to_mapper, \
_state_mapper, class_mapper, \
PathRegistry, state_str
import sys
properties = util.importlater("sqlalchemy.orm", "properties")
descriptor_props = util.importlater("sqlalchemy.orm", "descriptor_props")
__all__ = (
'Mapper',
'_mapper_registry',
'class_mapper',
'object_mapper',
)
_mapper_registry = weakref.WeakKeyDictionary()
_new_mappers = False
_already_compiling = False
_memoized_configured_property = util.group_expirable_memoized_property()
# a constant returned by _get_attr_by_column to indicate
# this mapper is not handling an attribute for a particular
# column
NO_ATTRIBUTE = util.symbol('NO_ATTRIBUTE')
# lock used to synchronize the "mapper configure" step
_CONFIGURE_MUTEX = util.threading.RLock()
class Mapper(_InspectionAttr):
"""Define the correlation of class attributes to database table
columns.
The :class:`.Mapper` object is instantiated using the
:func:`~sqlalchemy.orm.mapper` function. For information
about instantiating new :class:`.Mapper` objects, see
that function's documentation.
When :func:`.mapper` is used
explicitly to link a user defined class with table
metadata, this is referred to as *classical mapping*.
Modern SQLAlchemy usage tends to favor the
:mod:`sqlalchemy.ext.declarative` extension for class
configuration, which
makes usage of :func:`.mapper` behind the scenes.
Given a particular class known to be mapped by the ORM,
the :class:`.Mapper` which maintains it can be acquired
using the :func:`.inspect` function::
from sqlalchemy import inspect
mapper = inspect(MyClass)
A class which was mapped by the :mod:`sqlalchemy.ext.declarative`
extension will also have its mapper available via the ``__mapper__``
attribute.
"""
def __init__(self,
class_,
local_table,
properties=None,
primary_key=None,
non_primary=False,
inherits=None,
inherit_condition=None,
inherit_foreign_keys=None,
extension=None,
order_by=False,
always_refresh=False,
version_id_col=None,
version_id_generator=None,
polymorphic_on=None,
_polymorphic_map=None,
polymorphic_identity=None,
concrete=False,
with_polymorphic=None,
allow_partial_pks=True,
batch=True,
column_prefix=None,
include_properties=None,
exclude_properties=None,
passive_updates=True,
eager_defaults=False,
legacy_is_orphan=False,
_compiled_cache_size=100,
):
"""Construct a new mapper.
Mappers are normally constructed via the
:func:`~sqlalchemy.orm.mapper` function. See for details.
"""
self.class_ = util.assert_arg_type(class_, type, 'class_')
self.class_manager = None
self._primary_key_argument = util.to_list(primary_key)
self.non_primary = non_primary
if order_by is not False:
self.order_by = util.to_list(order_by)
else:
self.order_by = order_by
self.always_refresh = always_refresh
self.version_id_col = version_id_col
self.version_id_generator = version_id_generator or \
(lambda x: (x or 0) + 1)
self.concrete = concrete
self.single = False
self.inherits = inherits
self.local_table = local_table
self.inherit_condition = inherit_condition
self.inherit_foreign_keys = inherit_foreign_keys
self._init_properties = properties or {}
self._delete_orphans = []
self.batch = batch
self.eager_defaults = eager_defaults
self.column_prefix = column_prefix
self.polymorphic_on = expression._clause_element_as_expr(
polymorphic_on)
self._dependency_processors = []
self.validators = util.immutabledict()
self.passive_updates = passive_updates
self.legacy_is_orphan = legacy_is_orphan
self._clause_adapter = None
self._requires_row_aliasing = False
self._inherits_equated_pairs = None
self._memoized_values = {}
self._compiled_cache_size = _compiled_cache_size
self._reconstructor = None
self._deprecated_extensions = util.to_list(extension or [])
self.allow_partial_pks = allow_partial_pks
self._set_with_polymorphic(with_polymorphic)
if isinstance(self.local_table, expression.SelectBase):
raise sa_exc.InvalidRequestError(
"When mapping against a select() construct, map against "
"an alias() of the construct instead."
"This because several databases don't allow a "
"SELECT from a subquery that does not have an alias."
)
if self.with_polymorphic and \
isinstance(self.with_polymorphic[1],
expression.SelectBase):
self.with_polymorphic = (self.with_polymorphic[0],
self.with_polymorphic[1].alias())
# our 'polymorphic identity', a string name that when located in a
# result set row indicates this Mapper should be used to construct
# the object instance for that row.
self.polymorphic_identity = polymorphic_identity
# a dictionary of 'polymorphic identity' names, associating those
# names with Mappers that will be used to construct object instances
# upon a select operation.
if _polymorphic_map is None:
self.polymorphic_map = {}
else:
self.polymorphic_map = _polymorphic_map
if include_properties is not None:
self.include_properties = util.to_set(include_properties)
else:
self.include_properties = None
if exclude_properties:
self.exclude_properties = util.to_set(exclude_properties)
else:
self.exclude_properties = None
self.configured = False
# prevent this mapper from being constructed
# while a configure_mappers() is occurring (and defer a
# configure_mappers() until construction succeeds)
_CONFIGURE_MUTEX.acquire()
try:
events._MapperEventsHold.populate(class_, self)
self._configure_inheritance()
self._configure_legacy_instrument_class()
self._configure_class_instrumentation()
self._configure_listeners()
self._configure_properties()
self._configure_polymorphic_setter()
self._configure_pks()
global _new_mappers
_new_mappers = True
self._log("constructed")
self._expire_memoizations()
finally:
_CONFIGURE_MUTEX.release()
# major attributes initialized at the classlevel so that
# they can be Sphinx-documented.
is_mapper = True
"""Part of the inspection API."""
@property
def mapper(self):
"""Part of the inspection API.
Returns self.
"""
return self
@property
def entity(self):
"""Part of the inspection API.
Returns self.class_.
"""
return self.class_
local_table = None
"""The :class:`.Selectable` which this :class:`.Mapper` manages.
Typically is an instance of :class:`.Table` or :class:`.Alias`.
May also be ``None``.
The "local" table is the
selectable that the :class:`.Mapper` is directly responsible for
managing from an attribute access and flush perspective. For
non-inheriting mappers, the local table is the same as the
"mapped" table. For joined-table inheritance mappers, local_table
will be the particular sub-table of the overall "join" which
this :class:`.Mapper` represents. If this mapper is a
single-table inheriting mapper, local_table will be ``None``.
See also :attr:`~.Mapper.mapped_table`.
"""
mapped_table = None
"""The :class:`.Selectable` to which this :class:`.Mapper` is mapped.
Typically an instance of :class:`.Table`, :class:`.Join`, or
:class:`.Alias`.
The "mapped" table is the selectable that
the mapper selects from during queries. For non-inheriting
mappers, the mapped table is the same as the "local" table.
For joined-table inheritance mappers, mapped_table references the
full :class:`.Join` representing full rows for this particular
subclass. For single-table inheritance mappers, mapped_table
references the base table.
See also :attr:`~.Mapper.local_table`.
"""
inherits = None
"""References the :class:`.Mapper` which this :class:`.Mapper`
inherits from, if any.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
configured = None
"""Represent ``True`` if this :class:`.Mapper` has been configured.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
See also :func:`.configure_mappers`.
"""
concrete = None
"""Represent ``True`` if this :class:`.Mapper` is a concrete
inheritance mapper.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
tables = None
"""An iterable containing the collection of :class:`.Table` objects
which this :class:`.Mapper` is aware of.
If the mapper is mapped to a :class:`.Join`, or an :class:`.Alias`
representing a :class:`.Select`, the individual :class:`.Table`
objects that comprise the full construct will be represented here.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
primary_key = None
"""An iterable containing the collection of :class:`.Column` objects
which comprise the 'primary key' of the mapped table, from the
perspective of this :class:`.Mapper`.
This list is against the selectable in :attr:`~.Mapper.mapped_table`. In
the case of inheriting mappers, some columns may be managed by a
superclass mapper. For example, in the case of a :class:`.Join`, the
primary key is determined by all of the primary key columns across all
tables referenced by the :class:`.Join`.
The list is also not necessarily the same as the primary key column
collection associated with the underlying tables; the :class:`.Mapper`
features a ``primary_key`` argument that can override what the
:class:`.Mapper` considers as primary key columns.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
class_ = None
"""The Python class which this :class:`.Mapper` maps.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
class_manager = None
"""The :class:`.ClassManager` which maintains event listeners
and class-bound descriptors for this :class:`.Mapper`.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
single = None
"""Represent ``True`` if this :class:`.Mapper` is a single table
inheritance mapper.
:attr:`~.Mapper.local_table` will be ``None`` if this flag is set.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
non_primary = None
"""Represent ``True`` if this :class:`.Mapper` is a "non-primary"
mapper, e.g. a mapper that is used only to selet rows but not for
persistence management.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
polymorphic_on = None
"""The :class:`.Column` or SQL expression specified as the
``polymorphic_on`` argument
for this :class:`.Mapper`, within an inheritance scenario.
This attribute is normally a :class:`.Column` instance but
may also be an expression, such as one derived from
:func:`.cast`.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
polymorphic_map = None
"""A mapping of "polymorphic identity" identifiers mapped to
:class:`.Mapper` instances, within an inheritance scenario.
The identifiers can be of any type which is comparable to the
type of column represented by :attr:`~.Mapper.polymorphic_on`.
An inheritance chain of mappers will all reference the same
polymorphic map object. The object is used to correlate incoming
result rows to target mappers.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
polymorphic_identity = None
"""Represent an identifier which is matched against the
:attr:`~.Mapper.polymorphic_on` column during result row loading.
Used only with inheritance, this object can be of any type which is
comparable to the type of column represented by
:attr:`~.Mapper.polymorphic_on`.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
base_mapper = None
"""The base-most :class:`.Mapper` in an inheritance chain.
In a non-inheriting scenario, this attribute will always be this
:class:`.Mapper`. In an inheritance scenario, it references
the :class:`.Mapper` which is parent to all other :class:`.Mapper`
objects in the inheritance chain.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
columns = None
"""A collection of :class:`.Column` or other scalar expression
objects maintained by this :class:`.Mapper`.
The collection behaves the same as that of the ``c`` attribute on
any :class:`.Table` object, except that only those columns included in
this mapping are present, and are keyed based on the attribute name
defined in the mapping, not necessarily the ``key`` attribute of the
:class:`.Column` itself. Additionally, scalar expressions mapped
by :func:`.column_property` are also present here.
This is a *read only* attribute determined during mapper construction.
Behavior is undefined if directly modified.
"""
validators = None
"""An immutable dictionary of attributes which have been decorated
using the :func:`~.orm.validates` decorator.
The dictionary contains string attribute names as keys
mapped to the actual validation method.
"""
c = None
"""A synonym for :attr:`~.Mapper.columns`."""
dispatch = event.dispatcher(events.MapperEvents)
@util.memoized_property
def _path_registry(self):
return PathRegistry.per_mapper(self)
def _configure_inheritance(self):
"""Configure settings related to inherting and/or inherited mappers
being present."""
# a set of all mappers which inherit from this one.
self._inheriting_mappers = util.WeakSequence()
if self.inherits:
if isinstance(self.inherits, type):
self.inherits = class_mapper(self.inherits, configure=False)
if not issubclass(self.class_, self.inherits.class_):
raise sa_exc.ArgumentError(
"Class '%s' does not inherit from '%s'" %
(self.class_.__name__, self.inherits.class_.__name__))
if self.non_primary != self.inherits.non_primary:
np = not self.non_primary and "primary" or "non-primary"
raise sa_exc.ArgumentError(
"Inheritance of %s mapper for class '%s' is "
"only allowed from a %s mapper" %
(np, self.class_.__name__, np))
# inherit_condition is optional.
if self.local_table is None:
self.local_table = self.inherits.local_table
self.mapped_table = self.inherits.mapped_table
self.single = True
elif not self.local_table is self.inherits.local_table:
if self.concrete:
self.mapped_table = self.local_table
for mapper in self.iterate_to_root():
if mapper.polymorphic_on is not None:
mapper._requires_row_aliasing = True
else:
if self.inherit_condition is None:
# figure out inherit condition from our table to the
# immediate table of the inherited mapper, not its
# full table which could pull in other stuff we dont
# want (allows test/inheritance.InheritTest4 to pass)
self.inherit_condition = sql_util.join_condition(
self.inherits.local_table,
self.local_table)
self.mapped_table = sql.join(
self.inherits.mapped_table,
self.local_table,
self.inherit_condition)
fks = util.to_set(self.inherit_foreign_keys)
self._inherits_equated_pairs = sql_util.criterion_as_pairs(
self.mapped_table.onclause,
consider_as_foreign_keys=fks)
else:
self.mapped_table = self.local_table
if self.polymorphic_identity is not None and not self.concrete:
self._identity_class = self.inherits._identity_class
else:
self._identity_class = self.class_
if self.version_id_col is None:
self.version_id_col = self.inherits.version_id_col
self.version_id_generator = self.inherits.version_id_generator
elif self.inherits.version_id_col is not None and \
self.version_id_col is not self.inherits.version_id_col:
util.warn(
"Inheriting version_id_col '%s' does not match inherited "
"version_id_col '%s' and will not automatically populate "
"the inherited versioning column. "
"version_id_col should only be specified on "
"the base-most mapper that includes versioning." %
(self.version_id_col.description,
self.inherits.version_id_col.description)
)
if self.order_by is False and \
not self.concrete and \
self.inherits.order_by is not False:
self.order_by = self.inherits.order_by
self.polymorphic_map = self.inherits.polymorphic_map
self.batch = self.inherits.batch
self.inherits._inheriting_mappers.append(self)
self.base_mapper = self.inherits.base_mapper
self.passive_updates = self.inherits.passive_updates
self._all_tables = self.inherits._all_tables
if self.polymorphic_identity is not None:
self.polymorphic_map[self.polymorphic_identity] = self
else:
self._all_tables = set()
self.base_mapper = self
self.mapped_table = self.local_table
if self.polymorphic_identity is not None:
self.polymorphic_map[self.polymorphic_identity] = self
self._identity_class = self.class_
if self.mapped_table is None:
raise sa_exc.ArgumentError(
"Mapper '%s' does not have a mapped_table specified."
% self)
def _set_with_polymorphic(self, with_polymorphic):
if with_polymorphic == '*':
self.with_polymorphic = ('*', None)
elif isinstance(with_polymorphic, (tuple, list)):
if isinstance(with_polymorphic[0], (basestring, tuple, list)):
self.with_polymorphic = with_polymorphic
else:
self.with_polymorphic = (with_polymorphic, None)
elif with_polymorphic is not None:
raise sa_exc.ArgumentError("Invalid setting for with_polymorphic")
else:
self.with_polymorphic = None
if isinstance(self.local_table, expression.SelectBase):
raise sa_exc.InvalidRequestError(
"When mapping against a select() construct, map against "
"an alias() of the construct instead."
"This because several databases don't allow a "
"SELECT from a subquery that does not have an alias."
)
if self.with_polymorphic and \
isinstance(self.with_polymorphic[1],
expression.SelectBase):
self.with_polymorphic = (self.with_polymorphic[0],
self.with_polymorphic[1].alias())
if self.configured:
self._expire_memoizations()
def _set_concrete_base(self, mapper):
"""Set the given :class:`.Mapper` as the 'inherits' for this
:class:`.Mapper`, assuming this :class:`.Mapper` is concrete
and does not already have an inherits."""
assert self.concrete
assert not self.inherits
assert isinstance(mapper, Mapper)
self.inherits = mapper
self.inherits.polymorphic_map.update(self.polymorphic_map)
self.polymorphic_map = self.inherits.polymorphic_map
for mapper in self.iterate_to_root():
if mapper.polymorphic_on is not None:
mapper._requires_row_aliasing = True
self.batch = self.inherits.batch
for mp in self.self_and_descendants:
mp.base_mapper = self.inherits.base_mapper
self.inherits._inheriting_mappers.append(self)
self.passive_updates = self.inherits.passive_updates
self._all_tables = self.inherits._all_tables
for key, prop in mapper._props.iteritems():
if key not in self._props and \
not self._should_exclude(key, key, local=False,
column=None):
self._adapt_inherited_property(key, prop, False)
def _set_polymorphic_on(self, polymorphic_on):
self.polymorphic_on = polymorphic_on
self._configure_polymorphic_setter(True)
def _configure_legacy_instrument_class(self):
if self.inherits:
self.dispatch._update(self.inherits.dispatch)
super_extensions = set(
chain(*[m._deprecated_extensions
for m in self.inherits.iterate_to_root()]))
else:
super_extensions = set()
for ext in self._deprecated_extensions:
if ext not in super_extensions:
ext._adapt_instrument_class(self, ext)
def _configure_listeners(self):
if self.inherits:
super_extensions = set(
chain(*[m._deprecated_extensions
for m in self.inherits.iterate_to_root()]))
else:
super_extensions = set()
for ext in self._deprecated_extensions:
if ext not in super_extensions:
ext._adapt_listener(self, ext)
def _configure_class_instrumentation(self):
"""If this mapper is to be a primary mapper (i.e. the
non_primary flag is not set), associate this Mapper with the
given class_ and entity name.
Subsequent calls to ``class_mapper()`` for the class_/entity
name combination will return this mapper. Also decorate the
`__init__` method on the mapped class to include optional
auto-session attachment logic.
"""
manager = attributes.manager_of_class(self.class_)
if self.non_primary:
if not manager or not manager.is_mapped:
raise sa_exc.InvalidRequestError(
"Class %s has no primary mapper configured. Configure "
"a primary mapper first before setting up a non primary "
"Mapper." % self.class_)
self.class_manager = manager
self._identity_class = manager.mapper._identity_class
_mapper_registry[self] = True
return
if manager is not None:
assert manager.class_ is self.class_
if manager.is_mapped:
raise sa_exc.ArgumentError(
"Class '%s' already has a primary mapper defined. "
"Use non_primary=True to "
"create a non primary Mapper. clear_mappers() will "
"remove *all* current mappers from all classes." %
self.class_)
#else:
# a ClassManager may already exist as
# ClassManager.instrument_attribute() creates
# new managers for each subclass if they don't yet exist.
_mapper_registry[self] = True
self.dispatch.instrument_class(self, self.class_)
if manager is None:
manager = instrumentation.register_class(self.class_)
self.class_manager = manager
manager.mapper = self
manager.deferred_scalar_loader = util.partial(
loading.load_scalar_attributes, self)
# The remaining members can be added by any mapper,
# e_name None or not.
if manager.info.get(_INSTRUMENTOR, False):
return
event.listen(manager, 'first_init', _event_on_first_init, raw=True)
event.listen(manager, 'init', _event_on_init, raw=True)
event.listen(manager, 'resurrect', _event_on_resurrect, raw=True)
for key, method in util.iterate_attributes(self.class_):
if isinstance(method, types.FunctionType):
if hasattr(method, '__sa_reconstructor__'):
self._reconstructor = method
event.listen(manager, 'load', _event_on_load, raw=True)
elif hasattr(method, '__sa_validators__'):
include_removes = getattr(method,
"__sa_include_removes__", False)
for name in method.__sa_validators__:
self.validators = self.validators.union(
{name: (method, include_removes)}
)
manager.info[_INSTRUMENTOR] = self
@util.deprecated("0.7", message=":meth:`.Mapper.compile` "
"is replaced by :func:`.configure_mappers`")
def compile(self):
"""Initialize the inter-mapper relationships of all mappers that
have been constructed thus far.
"""
configure_mappers()
return self
@property
@util.deprecated("0.7", message=":attr:`.Mapper.compiled` "
"is replaced by :attr:`.Mapper.configured`")
def compiled(self):
return self.configured
def dispose(self):
# Disable any attribute-based compilation.
self.configured = True
if hasattr(self, '_configure_failed'):
del self._configure_failed
if not self.non_primary and \
self.class_manager is not None and \
self.class_manager.is_mapped and \
self.class_manager.mapper is self:
instrumentation.unregister_class(self.class_)
def _configure_pks(self):
self.tables = sql_util.find_tables(self.mapped_table)
self._pks_by_table = {}
self._cols_by_table = {}
all_cols = util.column_set(chain(*[
col.proxy_set for col in
self._columntoproperty]))
pk_cols = util.column_set(c for c in all_cols if c.primary_key)
# identify primary key columns which are also mapped by this mapper.
tables = set(self.tables + [self.mapped_table])
self._all_tables.update(tables)
for t in tables:
if t.primary_key and pk_cols.issuperset(t.primary_key):
# ordering is important since it determines the ordering of
# mapper.primary_key (and therefore query.get())
self._pks_by_table[t] = \
util.ordered_column_set(t.primary_key).\
intersection(pk_cols)
self._cols_by_table[t] = \
util.ordered_column_set(t.c).\
intersection(all_cols)
# determine cols that aren't expressed within our tables; mark these
# as "read only" properties which are refreshed upon INSERT/UPDATE
self._readonly_props = set(
self._columntoproperty[col]
for col in self._columntoproperty
if not hasattr(col, 'table') or
col.table not in self._cols_by_table)
# if explicit PK argument sent, add those columns to the
# primary key mappings
if self._primary_key_argument:
for k in self._primary_key_argument:
if k.table not in self._pks_by_table:
self._pks_by_table[k.table] = util.OrderedSet()
self._pks_by_table[k.table].add(k)
# otherwise, see that we got a full PK for the mapped table
elif self.mapped_table not in self._pks_by_table or \
len(self._pks_by_table[self.mapped_table]) == 0:
raise sa_exc.ArgumentError(
"Mapper %s could not assemble any primary "
"key columns for mapped table '%s'" %
(self, self.mapped_table.description))
elif self.local_table not in self._pks_by_table and \
isinstance(self.local_table, schema.Table):
util.warn("Could not assemble any primary "
"keys for locally mapped table '%s' - "
"no rows will be persisted in this Table."
% self.local_table.description)
if self.inherits and \
not self.concrete and \
not self._primary_key_argument:
# if inheriting, the "primary key" for this mapper is
# that of the inheriting (unless concrete or explicit)
self.primary_key = self.inherits.primary_key
else:
# determine primary key from argument or mapped_table pks -
# reduce to the minimal set of columns
if self._primary_key_argument:
primary_key = sql_util.reduce_columns(
[self.mapped_table.corresponding_column(c) for c in
self._primary_key_argument],
ignore_nonexistent_tables=True)
else:
primary_key = sql_util.reduce_columns(
self._pks_by_table[self.mapped_table],
ignore_nonexistent_tables=True)
if len(primary_key) == 0:
raise sa_exc.ArgumentError(
"Mapper %s could not assemble any primary "
"key columns for mapped table '%s'" %
(self, self.mapped_table.description))
self.primary_key = tuple(primary_key)
self._log("Identified primary key columns: %s", primary_key)
def _configure_properties(self):
# Column and other ClauseElement objects which are mapped
self.columns = self.c = util.OrderedProperties()
# object attribute names mapped to MapperProperty objects
self._props = util.OrderedDict()
# table columns mapped to lists of MapperProperty objects
# using a list allows a single column to be defined as
# populating multiple object attributes
self._columntoproperty = _ColumnMapping(self)
# load custom properties
if self._init_properties:
for key, prop in self._init_properties.iteritems():
self._configure_property(key, prop, False)
# pull properties from the inherited mapper if any.
if self.inherits:
for key, prop in self.inherits._props.iteritems():
if key not in self._props and \
not self._should_exclude(key, key, local=False,
column=None):
self._adapt_inherited_property(key, prop, False)
# create properties for each column in the mapped table,
# for those columns which don't already map to a property
for column in self.mapped_table.columns:
if column in self._columntoproperty:
continue
column_key = (self.column_prefix or '') + column.key
if self._should_exclude(
column.key, column_key,
local=self.local_table.c.contains_column(column),
column=column
):
continue
# adjust the "key" used for this column to that
# of the inheriting mapper
for mapper in self.iterate_to_root():
if column in mapper._columntoproperty:
column_key = mapper._columntoproperty[column].key
self._configure_property(column_key,
column,
init=False,
setparent=True)
def _configure_polymorphic_setter(self, init=False):
"""Configure an attribute on the mapper representing the
'polymorphic_on' column, if applicable, and not
already generated by _configure_properties (which is typical).
Also create a setter function which will assign this
attribute to the value of the 'polymorphic_identity'
upon instance construction, also if applicable. This
routine will run when an instance is created.
"""
setter = False
if self.polymorphic_on is not None:
setter = True
if isinstance(self.polymorphic_on, basestring):
# polymorphic_on specified as as string - link
# it to mapped ColumnProperty
try:
self.polymorphic_on = self._props[self.polymorphic_on]
except KeyError:
raise sa_exc.ArgumentError(
"Can't determine polymorphic_on "
"value '%s' - no attribute is "
"mapped to this name." % self.polymorphic_on)
if self.polymorphic_on in self._columntoproperty:
# polymorphic_on is a column that is already mapped
# to a ColumnProperty
prop = self._columntoproperty[self.polymorphic_on]
polymorphic_key = prop.key
self.polymorphic_on = prop.columns[0]
polymorphic_key = prop.key
elif isinstance(self.polymorphic_on, MapperProperty):
# polymorphic_on is directly a MapperProperty,
# ensure it's a ColumnProperty
if not isinstance(self.polymorphic_on,
properties.ColumnProperty):
raise sa_exc.ArgumentError(
"Only direct column-mapped "
"property or SQL expression "
"can be passed for polymorphic_on")
prop = self.polymorphic_on
self.polymorphic_on = prop.columns[0]
polymorphic_key = prop.key
elif not expression.is_column(self.polymorphic_on):
# polymorphic_on is not a Column and not a ColumnProperty;
# not supported right now.
raise sa_exc.ArgumentError(
"Only direct column-mapped "
"property or SQL expression "
"can be passed for polymorphic_on"
)
else:
# polymorphic_on is a Column or SQL expression and
# doesn't appear to be mapped. this means it can be 1.
# only present in the with_polymorphic selectable or
# 2. a totally standalone SQL expression which we'd
# hope is compatible with this mapper's mapped_table
col = self.mapped_table.corresponding_column(
self.polymorphic_on)
if col is None:
# polymorphic_on doesn't derive from any
# column/expression isn't present in the mapped
# table. we will make a "hidden" ColumnProperty
# for it. Just check that if it's directly a
# schema.Column and we have with_polymorphic, it's
# likely a user error if the schema.Column isn't
# represented somehow in either mapped_table or
# with_polymorphic. Otherwise as of 0.7.4 we
# just go with it and assume the user wants it
# that way (i.e. a CASE statement)
setter = False
instrument = False
col = self.polymorphic_on
if isinstance(col, schema.Column) and (
self.with_polymorphic is None or \
self.with_polymorphic[1].\
corresponding_column(col) is None
):
raise sa_exc.InvalidRequestError(
"Could not map polymorphic_on column "
"'%s' to the mapped table - polymorphic "
"loads will not function properly"
% col.description)
else:
# column/expression that polymorphic_on derives from
# is present in our mapped table
# and is probably mapped, but polymorphic_on itself
# is not. This happens when
# the polymorphic_on is only directly present in the
# with_polymorphic selectable, as when use
# polymorphic_union.
# we'll make a separate ColumnProperty for it.
instrument = True
key = getattr(col, 'key', None)
if key:
if self._should_exclude(col.key, col.key, False, col):
raise sa_exc.InvalidRequestError(
"Cannot exclude or override the "
"discriminator column %r" %
col.key)
else:
self.polymorphic_on = col = \
col.label("_sa_polymorphic_on")
key = col.key
self._configure_property(
key,
properties.ColumnProperty(col,
_instrument=instrument),
init=init, setparent=True)
polymorphic_key = key
else:
# no polymorphic_on was set.
# check inheriting mappers for one.
for mapper in self.iterate_to_root():
# determine if polymorphic_on of the parent
# should be propagated here. If the col
# is present in our mapped table, or if our mapped
# table is the same as the parent (i.e. single table
# inheritance), we can use it
if mapper.polymorphic_on is not None:
if self.mapped_table is mapper.mapped_table:
self.polymorphic_on = mapper.polymorphic_on
else:
self.polymorphic_on = \
self.mapped_table.corresponding_column(
mapper.polymorphic_on)
# we can use the parent mapper's _set_polymorphic_identity
# directly; it ensures the polymorphic_identity of the
# instance's mapper is used so is portable to subclasses.
if self.polymorphic_on is not None:
self._set_polymorphic_identity = \
mapper._set_polymorphic_identity
self._validate_polymorphic_identity = \
mapper._validate_polymorphic_identity
else:
self._set_polymorphic_identity = None
return
if setter:
def _set_polymorphic_identity(state):
dict_ = state.dict
state.get_impl(polymorphic_key).set(state, dict_,
state.manager.mapper.polymorphic_identity, None)
def _validate_polymorphic_identity(mapper, state, dict_):
if polymorphic_key in dict_ and \
dict_[polymorphic_key] not in \
mapper._acceptable_polymorphic_identities:
util.warn(
"Flushing object %s with "
"incompatible polymorphic identity %r; the "
"object may not refresh and/or load correctly" % (
state_str(state),
dict_[polymorphic_key]
)
)
self._set_polymorphic_identity = _set_polymorphic_identity
self._validate_polymorphic_identity = _validate_polymorphic_identity
else:
self._set_polymorphic_identity = None
_validate_polymorphic_identity = None
@_memoized_configured_property
def _acceptable_polymorphic_identities(self):
identities = set()
stack = deque([self])
while stack:
item = stack.popleft()
if item.mapped_table is self.mapped_table:
identities.add(item.polymorphic_identity)
stack.extend(item._inheriting_mappers)
return identities
def _adapt_inherited_property(self, key, prop, init):
if not self.concrete:
self._configure_property(key, prop, init=False, setparent=False)
elif key not in self._props:
self._configure_property(
key,
properties.ConcreteInheritedProperty(),
init=init, setparent=True)
def _configure_property(self, key, prop, init=True, setparent=True):
self._log("_configure_property(%s, %s)", key, prop.__class__.__name__)
if not isinstance(prop, MapperProperty):
prop = self._property_from_column(key, prop)
if isinstance(prop, properties.ColumnProperty):
col = self.mapped_table.corresponding_column(prop.columns[0])
# if the column is not present in the mapped table,
# test if a column has been added after the fact to the
# parent table (or their parent, etc.) [ticket:1570]
if col is None and self.inherits:
path = [self]
for m in self.inherits.iterate_to_root():
col = m.local_table.corresponding_column(prop.columns[0])
if col is not None:
for m2 in path:
m2.mapped_table._reset_exported()
col = self.mapped_table.corresponding_column(
prop.columns[0])
break
path.append(m)
# subquery expression, column not present in the mapped
# selectable.
if col is None:
col = prop.columns[0]
# column is coming in after _readonly_props was
# initialized; check for 'readonly'
if hasattr(self, '_readonly_props') and \
(not hasattr(col, 'table') or
col.table not in self._cols_by_table):
self._readonly_props.add(prop)
else:
# if column is coming in after _cols_by_table was
# initialized, ensure the col is in the right set
if hasattr(self, '_cols_by_table') and \
col.table in self._cols_by_table and \
col not in self._cols_by_table[col.table]:
self._cols_by_table[col.table].add(col)
# if this properties.ColumnProperty represents the "polymorphic
# discriminator" column, mark it. We'll need this when rendering
# columns in SELECT statements.
if not hasattr(prop, '_is_polymorphic_discriminator'):
prop._is_polymorphic_discriminator = \
(col is self.polymorphic_on or
prop.columns[0] is self.polymorphic_on)
self.columns[key] = col
for col in prop.columns + prop._orig_columns:
for col in col.proxy_set:
self._columntoproperty[col] = prop
prop.key = key
if setparent:
prop.set_parent(self, init)
if key in self._props and \
getattr(self._props[key], '_mapped_by_synonym', False):
syn = self._props[key]._mapped_by_synonym
raise sa_exc.ArgumentError(
"Can't call map_column=True for synonym %r=%r, "
"a ColumnProperty already exists keyed to the name "
"%r for column %r" % (syn, key, key, syn)
)
if key in self._props and \
not isinstance(prop, properties.ColumnProperty) and \
not isinstance(self._props[key], properties.ColumnProperty):
util.warn("Property %s on %s being replaced with new "
"property %s; the old property will be discarded" % (
self._props[key],
self,
prop,
))
self._props[key] = prop
if not self.non_primary:
prop.instrument_class(self)
for mapper in self._inheriting_mappers:
mapper._adapt_inherited_property(key, prop, init)
if init:
prop.init()
prop.post_instrument_class(self)
if self.configured:
self._expire_memoizations()
def _property_from_column(self, key, prop):
"""generate/update a :class:`.ColumnProprerty` given a
:class:`.Column` object. """
# we were passed a Column or a list of Columns;
# generate a properties.ColumnProperty
columns = util.to_list(prop)
column = columns[0]
if not expression.is_column(column):
raise sa_exc.ArgumentError(
"%s=%r is not an instance of MapperProperty or Column"
% (key, prop))
prop = self._props.get(key, None)
if isinstance(prop, properties.ColumnProperty):
if prop.parent is self:
raise sa_exc.InvalidRequestError(
"Implicitly combining column %s with column "
"%s under attribute '%s'. Please configure one "
"or more attributes for these same-named columns "
"explicitly."
% (prop.columns[-1], column, key))
# existing properties.ColumnProperty from an inheriting
# mapper. make a copy and append our column to it
prop = prop.copy()
prop.columns.insert(0, column)
self._log("inserting column to existing list "
"in properties.ColumnProperty %s" % (key))
return prop
elif prop is None or isinstance(prop,
properties.ConcreteInheritedProperty):
mapped_column = []
for c in columns:
mc = self.mapped_table.corresponding_column(c)
if mc is None:
mc = self.local_table.corresponding_column(c)
if mc is not None:
# if the column is in the local table but not the
# mapped table, this corresponds to adding a
# column after the fact to the local table.
# [ticket:1523]
self.mapped_table._reset_exported()
mc = self.mapped_table.corresponding_column(c)
if mc is None:
raise sa_exc.ArgumentError(
"When configuring property '%s' on %s, "
"column '%s' is not represented in the mapper's "
"table. Use the `column_property()` function to "
"force this column to be mapped as a read-only "
"attribute." % (key, self, c))
mapped_column.append(mc)
return properties.ColumnProperty(*mapped_column)
else:
raise sa_exc.ArgumentError(
"WARNING: when configuring property '%s' on %s, "
"column '%s' conflicts with property '%r'. "
"To resolve this, map the column to the class under a "
"different name in the 'properties' dictionary. Or, "
"to remove all awareness of the column entirely "
"(including its availability as a foreign key), "
"use the 'include_properties' or 'exclude_properties' "
"mapper arguments to control specifically which table "
"columns get mapped." %
(key, self, column.key, prop))
def _post_configure_properties(self):
"""Call the ``init()`` method on all ``MapperProperties``
attached to this mapper.
This is a deferred configuration step which is intended
to execute once all mappers have been constructed.
"""
self._log("_post_configure_properties() started")
l = [(key, prop) for key, prop in self._props.iteritems()]
for key, prop in l:
self._log("initialize prop %s", key)
if prop.parent is self and not prop._configure_started:
prop.init()
if prop._configure_finished:
prop.post_instrument_class(self)
self._log("_post_configure_properties() complete")
self.configured = True
def add_properties(self, dict_of_properties):
"""Add the given dictionary of properties to this mapper,
using `add_property`.
"""
for key, value in dict_of_properties.iteritems():
self.add_property(key, value)
def add_property(self, key, prop):
"""Add an individual MapperProperty to this mapper.
If the mapper has not been configured yet, just adds the
property to the initial properties dictionary sent to the
constructor. If this Mapper has already been configured, then
the given MapperProperty is configured immediately.
"""
self._init_properties[key] = prop
self._configure_property(key, prop, init=self.configured)
def _expire_memoizations(self):
for mapper in self.iterate_to_root():
_memoized_configured_property.expire_instance(mapper)
@property
def _log_desc(self):
return "(" + self.class_.__name__ + \
"|" + \
(self.local_table is not None and
self.local_table.description or
str(self.local_table)) +\
(self.non_primary and
"|non-primary" or "") + ")"
def _log(self, msg, *args):
self.logger.info(
"%s " + msg, *((self._log_desc,) + args)
)
def _log_debug(self, msg, *args):
self.logger.debug(
"%s " + msg, *((self._log_desc,) + args)
)
def __repr__(self):
return '<Mapper at 0x%x; %s>' % (
id(self), self.class_.__name__)
def __str__(self):
return "Mapper|%s|%s%s" % (
self.class_.__name__,
self.local_table is not None and
self.local_table.description or None,
self.non_primary and "|non-primary" or ""
)
def _is_orphan(self, state):
orphan_possible = False
for mapper in self.iterate_to_root():
for (key, cls) in mapper._delete_orphans:
orphan_possible = True
has_parent = attributes.manager_of_class(cls).has_parent(
state, key, optimistic=state.has_identity)
if self.legacy_is_orphan and has_parent:
return False
elif not self.legacy_is_orphan and not has_parent:
return True
if self.legacy_is_orphan:
return orphan_possible
else:
return False
def has_property(self, key):
return key in self._props
def get_property(self, key, _configure_mappers=True):
"""return a MapperProperty associated with the given key.
"""
if _configure_mappers and _new_mappers:
configure_mappers()
try:
return self._props[key]
except KeyError:
raise sa_exc.InvalidRequestError(
"Mapper '%s' has no property '%s'" % (self, key))
def get_property_by_column(self, column):
"""Given a :class:`.Column` object, return the
:class:`.MapperProperty` which maps this column."""
return self._columntoproperty[column]
@property
def iterate_properties(self):
"""return an iterator of all MapperProperty objects."""
if _new_mappers:
configure_mappers()
return self._props.itervalues()
def _mappers_from_spec(self, spec, selectable):
"""given a with_polymorphic() argument, return the set of mappers it
represents.
Trims the list of mappers to just those represented within the given
selectable, if present. This helps some more legacy-ish mappings.
"""
if spec == '*':
mappers = list(self.self_and_descendants)
elif spec:
mappers = set()
for m in util.to_list(spec):
m = _class_to_mapper(m)
if not m.isa(self):
raise sa_exc.InvalidRequestError(
"%r does not inherit from %r" %
(m, self))
if selectable is None:
mappers.update(m.iterate_to_root())
else:
mappers.add(m)
mappers = [m for m in self.self_and_descendants if m in mappers]
else:
mappers = []
if selectable is not None:
tables = set(sql_util.find_tables(selectable,
include_aliases=True))
mappers = [m for m in mappers if m.local_table in tables]
return mappers
def _selectable_from_mappers(self, mappers, innerjoin):
"""given a list of mappers (assumed to be within this mapper's
inheritance hierarchy), construct an outerjoin amongst those mapper's
mapped tables.
"""
from_obj = self.mapped_table
for m in mappers:
if m is self:
continue
if m.concrete:
raise sa_exc.InvalidRequestError(
"'with_polymorphic()' requires 'selectable' argument "
"when concrete-inheriting mappers are used.")
elif not m.single:
if innerjoin:
from_obj = from_obj.join(m.local_table,
m.inherit_condition)
else:
from_obj = from_obj.outerjoin(m.local_table,
m.inherit_condition)
return from_obj
@_memoized_configured_property
def _single_table_criterion(self):
if self.single and \
self.inherits and \
self.polymorphic_on is not None:
return self.polymorphic_on.in_(
m.polymorphic_identity
for m in self.self_and_descendants)
else:
return None
@_memoized_configured_property
def _with_polymorphic_mappers(self):
if _new_mappers:
configure_mappers()
if not self.with_polymorphic:
return []
return self._mappers_from_spec(*self.with_polymorphic)
@_memoized_configured_property
def _with_polymorphic_selectable(self):
if not self.with_polymorphic:
return self.mapped_table
spec, selectable = self.with_polymorphic
if selectable is not None:
return selectable
else:
return self._selectable_from_mappers(
self._mappers_from_spec(spec, selectable),
False)
with_polymorphic_mappers = _with_polymorphic_mappers
"""The list of :class:`.Mapper` objects included in the
default "polymorphic" query.
"""
@property
def selectable(self):
"""The :func:`.select` construct this :class:`.Mapper` selects from
by default.
Normally, this is equivalent to :attr:`.mapped_table`, unless
the ``with_polymorphic`` feature is in use, in which case the
full "polymorphic" selectable is returned.
"""
return self._with_polymorphic_selectable
def _with_polymorphic_args(self, spec=None, selectable=False,
innerjoin=False):
if self.with_polymorphic:
if not spec:
spec = self.with_polymorphic[0]
if selectable is False:
selectable = self.with_polymorphic[1]
elif selectable is False:
selectable = None
mappers = self._mappers_from_spec(spec, selectable)
if selectable is not None:
return mappers, selectable
else:
return mappers, self._selectable_from_mappers(mappers,
innerjoin)
@_memoized_configured_property
def _polymorphic_properties(self):
return list(self._iterate_polymorphic_properties(
self._with_polymorphic_mappers))
def _iterate_polymorphic_properties(self, mappers=None):
"""Return an iterator of MapperProperty objects which will render into
a SELECT."""
if mappers is None:
mappers = self._with_polymorphic_mappers
if not mappers:
for c in self.iterate_properties:
yield c
else:
# in the polymorphic case, filter out discriminator columns
# from other mappers, as these are sometimes dependent on that
# mapper's polymorphic selectable (which we don't want rendered)
for c in util.unique_list(
chain(*[
list(mapper.iterate_properties) for mapper in
[self] + mappers
])
):
if getattr(c, '_is_polymorphic_discriminator', False) and \
(self.polymorphic_on is None or
c.columns[0] is not self.polymorphic_on):
continue
yield c
@util.memoized_property
def attrs(self):
"""A namespace of all :class:`.MapperProperty` objects
associated this mapper.
This is an object that provides each property based on
its key name. For instance, the mapper for a
``User`` class which has ``User.name`` attribute would
provide ``mapper.attrs.name``, which would be the
:class:`.ColumnProperty` representing the ``name``
column. The namespace object can also be iterated,
which would yield each :class:`.MapperProperty`.
:class:`.Mapper` has several pre-filtered views
of this attribute which limit the types of properties
returned, inclding :attr:`.synonyms`, :attr:`.column_attrs`,
:attr:`.relationships`, and :attr:`.composites`.
.. seealso::
:attr:`.Mapper.all_orm_descriptors`
"""
if _new_mappers:
configure_mappers()
return util.ImmutableProperties(self._props)
@util.memoized_property
def all_orm_descriptors(self):
"""A namespace of all :class:`._InspectionAttr` attributes associated
with the mapped class.
These attributes are in all cases Python :term:`descriptors` associated
with the mapped class or its superclasses.
This namespace includes attributes that are mapped to the class
as well as attributes declared by extension modules.
It includes any Python descriptor type that inherits from
:class:`._InspectionAttr`. This includes :class:`.QueryableAttribute`,
as well as extension types such as :class:`.hybrid_property`,
:class:`.hybrid_method` and :class:`.AssociationProxy`.
To distinguish between mapped attributes and extension attributes,
the attribute :attr:`._InspectionAttr.extension_type` will refer
to a constant that distinguishes between different extension types.
When dealing with a :class:`.QueryableAttribute`, the
:attr:`.QueryableAttribute.property` attribute refers to the
:class:`.MapperProperty` property, which is what you get when referring
to the collection of mapped properties via :attr:`.Mapper.attrs`.
.. versionadded:: 0.8.0
.. seealso::
:attr:`.Mapper.attrs`
"""
return util.ImmutableProperties(
dict(self.class_manager._all_sqla_attributes()))
@_memoized_configured_property
def synonyms(self):
"""Return a namespace of all :class:`.SynonymProperty`
properties maintained by this :class:`.Mapper`.
See also:
:attr:`.Mapper.attrs` - namespace of all :class:`.MapperProperty`
objects.
"""
return self._filter_properties(descriptor_props.SynonymProperty)
@_memoized_configured_property
def column_attrs(self):
"""Return a namespace of all :class:`.ColumnProperty`
properties maintained by this :class:`.Mapper`.
See also:
:attr:`.Mapper.attrs` - namespace of all :class:`.MapperProperty`
objects.
"""
return self._filter_properties(properties.ColumnProperty)
@_memoized_configured_property
def relationships(self):
"""Return a namespace of all :class:`.RelationshipProperty`
properties maintained by this :class:`.Mapper`.
See also:
:attr:`.Mapper.attrs` - namespace of all :class:`.MapperProperty`
objects.
"""
return self._filter_properties(properties.RelationshipProperty)
@_memoized_configured_property
def composites(self):
"""Return a namespace of all :class:`.CompositeProperty`
properties maintained by this :class:`.Mapper`.
See also:
:attr:`.Mapper.attrs` - namespace of all :class:`.MapperProperty`
objects.
"""
return self._filter_properties(descriptor_props.CompositeProperty)
def _filter_properties(self, type_):
if _new_mappers:
configure_mappers()
return util.ImmutableProperties(util.OrderedDict(
(k, v) for k, v in self._props.iteritems()
if isinstance(v, type_)
))
@_memoized_configured_property
def _get_clause(self):
"""create a "get clause" based on the primary key. this is used
by query.get() and many-to-one lazyloads to load this item
by primary key.
"""
params = [(primary_key, sql.bindparam(None, type_=primary_key.type))
for primary_key in self.primary_key]
return sql.and_(*[k == v for (k, v) in params]), \
util.column_dict(params)
@_memoized_configured_property
def _equivalent_columns(self):
"""Create a map of all *equivalent* columns, based on
the determination of column pairs that are equated to
one another based on inherit condition. This is designed
to work with the queries that util.polymorphic_union
comes up with, which often don't include the columns from
the base table directly (including the subclass table columns
only).
The resulting structure is a dictionary of columns mapped
to lists of equivalent columns, i.e.
{
tablea.col1:
set([tableb.col1, tablec.col1]),
tablea.col2:
set([tabled.col2])
}
"""
result = util.column_dict()
def visit_binary(binary):
if binary.operator == operators.eq:
if binary.left in result:
result[binary.left].add(binary.right)
else:
result[binary.left] = util.column_set((binary.right,))
if binary.right in result:
result[binary.right].add(binary.left)
else:
result[binary.right] = util.column_set((binary.left,))
for mapper in self.base_mapper.self_and_descendants:
if mapper.inherit_condition is not None:
visitors.traverse(
mapper.inherit_condition, {},
{'binary': visit_binary})
return result
def _is_userland_descriptor(self, obj):
if isinstance(obj, (_MappedAttribute,
instrumentation.ClassManager,
expression.ColumnElement)):
return False
else:
return True
def _should_exclude(self, name, assigned_name, local, column):
"""determine whether a particular property should be implicitly
present on the class.
This occurs when properties are propagated from an inherited class, or
are applied from the columns present in the mapped table.
"""
# check for class-bound attributes and/or descriptors,
# either local or from an inherited class
if local:
if self.class_.__dict__.get(assigned_name, None) is not None \
and self._is_userland_descriptor(
self.class_.__dict__[assigned_name]):
return True
else:
if getattr(self.class_, assigned_name, None) is not None \
and self._is_userland_descriptor(
getattr(self.class_, assigned_name)):
return True
if self.include_properties is not None and \
name not in self.include_properties and \
(column is None or column not in self.include_properties):
self._log("not including property %s" % (name))
return True
if self.exclude_properties is not None and \
(
name in self.exclude_properties or \
(column is not None and column in self.exclude_properties)
):
self._log("excluding property %s" % (name))
return True
return False
def common_parent(self, other):
"""Return true if the given mapper shares a
common inherited parent as this mapper."""
return self.base_mapper is other.base_mapper
def _canload(self, state, allow_subtypes):
s = self.primary_mapper()
if self.polymorphic_on is not None or allow_subtypes:
return _state_mapper(state).isa(s)
else:
return _state_mapper(state) is s
def isa(self, other):
"""Return True if the this mapper inherits from the given mapper."""
m = self
while m and m is not other:
m = m.inherits
return bool(m)
def iterate_to_root(self):
m = self
while m:
yield m
m = m.inherits
@_memoized_configured_property
def self_and_descendants(self):
"""The collection including this mapper and all descendant mappers.
This includes not just the immediately inheriting mappers but
all their inheriting mappers as well.
"""
descendants = []
stack = deque([self])
while stack:
item = stack.popleft()
descendants.append(item)
stack.extend(item._inheriting_mappers)
return util.WeakSequence(descendants)
def polymorphic_iterator(self):
"""Iterate through the collection including this mapper and
all descendant mappers.
This includes not just the immediately inheriting mappers but
all their inheriting mappers as well.
To iterate through an entire hierarchy, use
``mapper.base_mapper.polymorphic_iterator()``.
"""
return iter(self.self_and_descendants)
def primary_mapper(self):
"""Return the primary mapper corresponding to this mapper's class key
(class)."""
return self.class_manager.mapper
@property
def primary_base_mapper(self):
return self.class_manager.mapper.base_mapper
def identity_key_from_row(self, row, adapter=None):
"""Return an identity-map key for use in storing/retrieving an
item from the identity map.
row
A ``sqlalchemy.engine.RowProxy`` instance or a
dictionary corresponding result-set ``ColumnElement``
instances to their values within a row.
"""
pk_cols = self.primary_key
if adapter:
pk_cols = [adapter.columns[c] for c in pk_cols]
return self._identity_class, \
tuple(row[column] for column in pk_cols)
def identity_key_from_primary_key(self, primary_key):
"""Return an identity-map key for use in storing/retrieving an
item from an identity map.
primary_key
A list of values indicating the identifier.
"""
return self._identity_class, tuple(primary_key)
def identity_key_from_instance(self, instance):
"""Return the identity key for the given instance, based on
its primary key attributes.
This value is typically also found on the instance state under the
attribute name `key`.
"""
return self.identity_key_from_primary_key(
self.primary_key_from_instance(instance))
def _identity_key_from_state(self, state):
dict_ = state.dict
manager = state.manager
return self._identity_class, tuple([
manager[self._columntoproperty[col].key].\
impl.get(state, dict_, attributes.PASSIVE_OFF)
for col in self.primary_key
])
def primary_key_from_instance(self, instance):
"""Return the list of primary key values for the given
instance.
"""
state = attributes.instance_state(instance)
return self._primary_key_from_state(state)
def _primary_key_from_state(self, state):
dict_ = state.dict
manager = state.manager
return [
manager[self._columntoproperty[col].key].\
impl.get(state, dict_, attributes.PASSIVE_OFF)
for col in self.primary_key
]
def _get_state_attr_by_column(self, state, dict_, column,
passive=attributes.PASSIVE_OFF):
prop = self._columntoproperty[column]
return state.manager[prop.key].impl.get(state, dict_, passive=passive)
def _set_state_attr_by_column(self, state, dict_, column, value):
prop = self._columntoproperty[column]
state.manager[prop.key].impl.set(state, dict_, value, None)
def _get_committed_attr_by_column(self, obj, column):
state = attributes.instance_state(obj)
dict_ = attributes.instance_dict(obj)
return self._get_committed_state_attr_by_column(state, dict_, column)
def _get_committed_state_attr_by_column(self, state, dict_,
column, passive=attributes.PASSIVE_OFF):
prop = self._columntoproperty[column]
return state.manager[prop.key].impl.\
get_committed_value(state, dict_, passive=passive)
def _optimized_get_statement(self, state, attribute_names):
"""assemble a WHERE clause which retrieves a given state by primary
key, using a minimized set of tables.
Applies to a joined-table inheritance mapper where the
requested attribute names are only present on joined tables,
not the base table. The WHERE clause attempts to include
only those tables to minimize joins.
"""
props = self._props
tables = set(chain(
*[sql_util.find_tables(c, check_columns=True)
for key in attribute_names
for c in props[key].columns]
))
if self.base_mapper.local_table in tables:
return None
class ColumnsNotAvailable(Exception):
pass
def visit_binary(binary):
leftcol = binary.left
rightcol = binary.right
if leftcol is None or rightcol is None:
return
if leftcol.table not in tables:
leftval = self._get_committed_state_attr_by_column(
state, state.dict,
leftcol,
passive=attributes.PASSIVE_NO_INITIALIZE)
if leftval is attributes.PASSIVE_NO_RESULT or leftval is None:
raise ColumnsNotAvailable()
binary.left = sql.bindparam(None, leftval,
type_=binary.right.type)
elif rightcol.table not in tables:
rightval = self._get_committed_state_attr_by_column(
state, state.dict,
rightcol,
passive=attributes.PASSIVE_NO_INITIALIZE)
if rightval is attributes.PASSIVE_NO_RESULT or \
rightval is None:
raise ColumnsNotAvailable()
binary.right = sql.bindparam(None, rightval,
type_=binary.right.type)
allconds = []
try:
start = False
for mapper in reversed(list(self.iterate_to_root())):
if mapper.local_table in tables:
start = True
elif not isinstance(mapper.local_table, expression.TableClause):
return None
if start and not mapper.single:
allconds.append(visitors.cloned_traverse(
mapper.inherit_condition,
{},
{'binary': visit_binary}
)
)
except ColumnsNotAvailable:
return None
cond = sql.and_(*allconds)
cols = []
for key in attribute_names:
cols.extend(props[key].columns)
return sql.select(cols, cond, use_labels=True)
def cascade_iterator(self, type_, state, halt_on=None):
"""Iterate each element and its mapper in an object graph,
for all relationships that meet the given cascade rule.
:param type_:
The name of the cascade rule (i.e. save-update, delete,
etc.)
:param state:
The lead InstanceState. child items will be processed per
the relationships defined for this object's mapper.
the return value are object instances; this provides a strong
reference so that they don't fall out of scope immediately.
"""
visited_states = set()
prp, mpp = object(), object()
visitables = deque([(deque(self._props.values()), prp,
state, state.dict)])
while visitables:
iterator, item_type, parent_state, parent_dict = visitables[-1]
if not iterator:
visitables.pop()
continue
if item_type is prp:
prop = iterator.popleft()
if type_ not in prop.cascade:
continue
queue = deque(prop.cascade_iterator(type_, parent_state,
parent_dict, visited_states, halt_on))
if queue:
visitables.append((queue, mpp, None, None))
elif item_type is mpp:
instance, instance_mapper, corresponding_state, \
corresponding_dict = iterator.popleft()
yield instance, instance_mapper, \
corresponding_state, corresponding_dict
visitables.append((deque(instance_mapper._props.values()),
prp, corresponding_state,
corresponding_dict))
@_memoized_configured_property
def _compiled_cache(self):
return util.LRUCache(self._compiled_cache_size)
@_memoized_configured_property
def _sorted_tables(self):
table_to_mapper = {}
for mapper in self.base_mapper.self_and_descendants:
for t in mapper.tables:
table_to_mapper.setdefault(t, mapper)
extra_dependencies = []
for table, mapper in table_to_mapper.items():
super_ = mapper.inherits
if super_:
extra_dependencies.extend([
(super_table, table)
for super_table in super_.tables
])
def skip(fk):
# attempt to skip dependencies that are not
# significant to the inheritance chain
# for two tables that are related by inheritance.
# while that dependency may be important, it's techinically
# not what we mean to sort on here.
parent = table_to_mapper.get(fk.parent.table)
dep = table_to_mapper.get(fk.column.table)
if parent is not None and \
dep is not None and \
dep is not parent and \
dep.inherit_condition is not None:
cols = set(sql_util.find_columns(dep.inherit_condition))
if parent.inherit_condition is not None:
cols = cols.union(sql_util.find_columns(
parent.inherit_condition))
return fk.parent not in cols and fk.column not in cols
else:
return fk.parent not in cols
return False
sorted_ = sql_util.sort_tables(table_to_mapper.iterkeys(),
skip_fn=skip,
extra_dependencies=extra_dependencies)
ret = util.OrderedDict()
for t in sorted_:
ret[t] = table_to_mapper[t]
return ret
def _memo(self, key, callable_):
if key in self._memoized_values:
return self._memoized_values[key]
else:
self._memoized_values[key] = value = callable_()
return value
@util.memoized_property
def _table_to_equated(self):
"""memoized map of tables to collections of columns to be
synchronized upwards to the base mapper."""
result = util.defaultdict(list)
for table in self._sorted_tables:
cols = set(table.c)
for m in self.iterate_to_root():
if m._inherits_equated_pairs and \
cols.intersection(
[l for l, r in m._inherits_equated_pairs]):
result[table].append((m, m._inherits_equated_pairs))
return result
inspection._self_inspects(Mapper)
log.class_logger(Mapper)
def configure_mappers():
"""Initialize the inter-mapper relationships of all mappers that
have been constructed thus far.
This function can be called any number of times, but in
most cases is handled internally.
"""
global _new_mappers
if not _new_mappers:
return
_call_configured = None
_CONFIGURE_MUTEX.acquire()
try:
global _already_compiling
if _already_compiling:
return
_already_compiling = True
try:
# double-check inside mutex
if not _new_mappers:
return
# initialize properties on all mappers
# note that _mapper_registry is unordered, which
# may randomly conceal/reveal issues related to
# the order of mapper compilation
for mapper in list(_mapper_registry):
if getattr(mapper, '_configure_failed', False):
e = sa_exc.InvalidRequestError(
"One or more mappers failed to initialize - "
"can't proceed with initialization of other "
"mappers. Original exception was: %s"
% mapper._configure_failed)
e._configure_failed = mapper._configure_failed
raise e
if not mapper.configured:
try:
mapper._post_configure_properties()
mapper._expire_memoizations()
mapper.dispatch.mapper_configured(
mapper, mapper.class_)
_call_configured = mapper
except:
exc = sys.exc_info()[1]
if not hasattr(exc, '_configure_failed'):
mapper._configure_failed = exc
raise
_new_mappers = False
finally:
_already_compiling = False
finally:
_CONFIGURE_MUTEX.release()
if _call_configured is not None:
_call_configured.dispatch.after_configured()
def reconstructor(fn):
"""Decorate a method as the 'reconstructor' hook.
Designates a method as the "reconstructor", an ``__init__``-like
method that will be called by the ORM after the instance has been
loaded from the database or otherwise reconstituted.
The reconstructor will be invoked with no arguments. Scalar
(non-collection) database-mapped attributes of the instance will
be available for use within the function. Eagerly-loaded
collections are generally not yet available and will usually only
contain the first element. ORM state changes made to objects at
this stage will not be recorded for the next flush() operation, so
the activity within a reconstructor should be conservative.
"""
fn.__sa_reconstructor__ = True
return fn
def validates(*names, **kw):
"""Decorate a method as a 'validator' for one or more named properties.
Designates a method as a validator, a method which receives the
name of the attribute as well as a value to be assigned, or in the
case of a collection, the value to be added to the collection.
The function can then raise validation exceptions to halt the
process from continuing (where Python's built-in ``ValueError``
and ``AssertionError`` exceptions are reasonable choices), or can
modify or replace the value before proceeding. The function should
otherwise return the given value.
Note that a validator for a collection **cannot** issue a load of that
collection within the validation routine - this usage raises
an assertion to avoid recursion overflows. This is a reentrant
condition which is not supported.
:param \*names: list of attribute names to be validated.
:param include_removes: if True, "remove" events will be
sent as well - the validation function must accept an additional
argument "is_remove" which will be a boolean.
.. versionadded:: 0.7.7
"""
include_removes = kw.pop('include_removes', False)
def wrap(fn):
fn.__sa_validators__ = names
fn.__sa_include_removes__ = include_removes
return fn
return wrap
def _event_on_load(state, ctx):
instrumenting_mapper = state.manager.info[_INSTRUMENTOR]
if instrumenting_mapper._reconstructor:
instrumenting_mapper._reconstructor(state.obj())
def _event_on_first_init(manager, cls):
"""Initial mapper compilation trigger.
instrumentation calls this one when InstanceState
is first generated, and is needed for legacy mutable
attributes to work.
"""
instrumenting_mapper = manager.info.get(_INSTRUMENTOR)
if instrumenting_mapper:
if _new_mappers:
configure_mappers()
def _event_on_init(state, args, kwargs):
"""Run init_instance hooks.
This also includes mapper compilation, normally not needed
here but helps with some piecemeal configuration
scenarios (such as in the ORM tutorial).
"""
instrumenting_mapper = state.manager.info.get(_INSTRUMENTOR)
if instrumenting_mapper:
if _new_mappers:
configure_mappers()
if instrumenting_mapper._set_polymorphic_identity:
instrumenting_mapper._set_polymorphic_identity(state)
def _event_on_resurrect(state):
# re-populate the primary key elements
# of the dict based on the mapping.
instrumenting_mapper = state.manager.info.get(_INSTRUMENTOR)
if instrumenting_mapper:
for col, val in zip(instrumenting_mapper.primary_key, state.key[1]):
instrumenting_mapper._set_state_attr_by_column(
state, state.dict, col, val)
class _ColumnMapping(dict):
"""Error reporting helper for mapper._columntoproperty."""
def __init__(self, mapper):
self.mapper = mapper
def __missing__(self, column):
prop = self.mapper._props.get(column)
if prop:
raise orm_exc.UnmappedColumnError(
"Column '%s.%s' is not available, due to "
"conflicting property '%s':%r" % (
column.table.name, column.name, column.key, prop))
raise orm_exc.UnmappedColumnError(
"No column %s is configured on mapper %s..." %
(column, self.mapper))