mirror of
https://github.com/Jermolene/TiddlyWiki5
synced 2025-01-13 10:50:27 +00:00
64 lines
2.4 KiB
Plaintext
64 lines
2.4 KiB
Plaintext
title: HelloThere
|
|
|
|
This is a TiddlyWiki plugin for mathematical typesetting based on KaTeX from Khan Academy.
|
|
|
|
It is completely self-contained, and doesn't need an Internet connection in order to work.
|
|
|
|
//This first version of the plugin cannot be used to generate static content under Node.js, but that capability will come in a future update. (Note that you can still use it when running the client-server configuration under Node.js).//
|
|
|
|
! Installation
|
|
|
|
To add the plugin to your own TiddlyWiki5, just drag this link to the browser window:
|
|
|
|
[[$:/plugins/tiddlywiki/katex]]
|
|
|
|
! Using KaTeX
|
|
|
|
The KaTeX widget is provided under the name `<$latex>` and is also available under the alias `<$katex>`. It's better to use the generic `<$latex>` name unless you are running multiple LaTeX plugins and wish to specifically target KaTeX.
|
|
|
|
! Examples
|
|
|
|
These examples are taken from http://khan.github.io/KaTeX/
|
|
|
|
!! Example 1
|
|
|
|
```
|
|
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
|
```
|
|
|
|
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
|
|
|
!! Example 2
|
|
|
|
```
|
|
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
|
|
```
|
|
|
|
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
|
|
|
|
!! Example 3
|
|
|
|
```
|
|
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
|
|
```
|
|
|
|
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
|
|
|
|
!! Example 4
|
|
|
|
```
|
|
$$\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
|
|
```
|
|
|
|
$$\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
|
|
|
|
!! Widget Example
|
|
|
|
For more flexibility the KaTeX widget can also be used via the full widget syntax:
|
|
|
|
```
|
|
<$latex text="\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi"></$latex>
|
|
```
|
|
|
|
<$latex text="\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi"></$latex>
|