mirror of
https://github.com/Jermolene/TiddlyWiki5
synced 2024-11-23 18:17:20 +00:00
Show how to use display mode in katexdemo/tiddlers/HelloThere.tid
This commit is contained in:
parent
a94ba99ec2
commit
5be0de798f
@ -22,59 +22,48 @@ These examples are taken from http://khan.github.io/KaTeX/
|
|||||||
|
|
||||||
!! Example 1
|
!! Example 1
|
||||||
|
|
||||||
|
To render in display mode use `$$$`:
|
||||||
|
|
||||||
```
|
```
|
||||||
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
$$$ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi $$$
|
||||||
```
|
```
|
||||||
|
|
||||||
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
$$$ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi $$$
|
||||||
|
|
||||||
!! Example 2
|
!! Example 2
|
||||||
|
|
||||||
```
|
```
|
||||||
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
|
$$$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$$
|
||||||
```
|
```
|
||||||
|
|
||||||
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
|
$$$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$$
|
||||||
|
|
||||||
|
|
||||||
!! Example 3
|
!! Example 3
|
||||||
|
|
||||||
Use a wrapper element with the class `katex-display` to render math in display mode, centred on a single line in display style.
|
|
||||||
|
|
||||||
```
|
```
|
||||||
<div class="katex-display">
|
$$$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$$
|
||||||
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
|
|
||||||
</div>
|
|
||||||
```
|
```
|
||||||
|
|
||||||
<div class="katex-display">
|
$$$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$$
|
||||||
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
|
|
||||||
</div>
|
|
||||||
|
|
||||||
!! Example 4
|
|
||||||
|
|
||||||
```
|
|
||||||
$$\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
|
|
||||||
```
|
|
||||||
|
|
||||||
$$\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
|
|
||||||
|
|
||||||
!! Widget Example
|
!! Widget Example
|
||||||
|
|
||||||
For more flexibility the KaTeX widget can also be used via the full widget syntax:
|
For more flexibility the KaTeX widget can also be used via the full widget syntax:
|
||||||
|
|
||||||
```
|
```
|
||||||
<$latex text="\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi"></$latex>
|
<$latex text="f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi" displayMode="true"></$latex>
|
||||||
```
|
```
|
||||||
|
|
||||||
<$latex text="\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi"></$latex>
|
<$latex text="f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi" displayMode="true"></$latex>
|
||||||
|
|
||||||
! Error Handling
|
! Error Handling
|
||||||
|
|
||||||
Any LaTeX syntax errors are flagged with the problematic syntax highlighted. For example:
|
Any LaTeX syntax errors are flagged with the problematic syntax highlighted. For example:
|
||||||
|
|
||||||
```
|
```
|
||||||
$$\displaystyle f(x) = \int_{-\infty}^\infinity\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
$$ f(x) = \int_{-\infty}^\infinity\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi $$
|
||||||
```
|
```
|
||||||
|
|
||||||
$$\displaystyle f(x) = \int_{-\infty}^\infinity\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
$$ f(x) = \int_{-\infty}^\infinity\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi $$
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user