1
0
mirror of https://github.com/Jermolene/TiddlyWiki5 synced 2024-11-27 12:07:19 +00:00

Merge pull request #2154 from spelufo/katex-displaymode

Revert katex plugin to using `$$`. Use multiline for display mode.
This commit is contained in:
Jeremy Ruston 2015-12-24 18:02:54 +00:00
commit 0d27f3b836
3 changed files with 23 additions and 11 deletions

View File

@ -22,30 +22,42 @@ These examples are taken from http://khan.github.io/KaTeX/
!! Example 1 !! Example 1
To render in display mode use `$$$`: If the text between `$$` contains newlines it will rendered in display mode:
``` ```
$$$ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi $$$ $$
f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi
$$
``` ```
$$$ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi $$$ $$
f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi
$$
!! Example 2 !! Example 2
``` ```
$$$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$$ $$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$
``` ```
$$$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$$ $$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$
!! Example 3 !! Example 3
``` ```
$$$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$$ $$
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
$$
``` ```
$$$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$$ $$
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
$$
!! Widget Example !! Widget Example

View File

@ -29,13 +29,13 @@ exports.types = {inline: true};
exports.init = function(parser) { exports.init = function(parser) {
this.parser = parser; this.parser = parser;
// Regexp to match // Regexp to match
this.matchRegExp = /\$\$\$?(?!\$)/mg; this.matchRegExp = /\$\$(?!\$)/mg;
}; };
exports.parse = function() { exports.parse = function() {
// Move past the match // Move past the match
this.parser.pos = this.matchRegExp.lastIndex; this.parser.pos = this.matchRegExp.lastIndex;
var reEnd = /\$\$\$?/mg; var reEnd = /\$\$/mg;
// Look for the end marker // Look for the end marker
reEnd.lastIndex = this.parser.pos; reEnd.lastIndex = this.parser.pos;
var match = reEnd.exec(this.parser.source), var match = reEnd.exec(this.parser.source),
@ -44,7 +44,7 @@ exports.parse = function() {
// Process the text // Process the text
if(match) { if(match) {
text = this.parser.source.substring(this.parser.pos,match.index); text = this.parser.source.substring(this.parser.pos,match.index);
displayMode = match.indexOf('$$$') != -1; displayMode = text.indexOf('\n') != -1;
this.parser.pos = match.index + match[0].length; this.parser.pos = match.index + match[0].length;
} else { } else {
text = this.parser.source.substr(this.parser.pos); text = this.parser.source.substr(this.parser.pos);

View File

@ -6,7 +6,7 @@ The usual way to include ~LaTeX is to use `$$`. For example:
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$ $$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
``` ```
To make math render in display mode, use `$$$` instead of `$$`. Single line equations will render in inline mode. If there are newlines between the `$$` delimiters, the equations will be rendered in display mode.
The underlying widget can also be used directly, giving more flexibility: The underlying widget can also be used directly, giving more flexibility: