1
0
mirror of https://github.com/Jermolene/TiddlyWiki5 synced 2025-01-24 07:56:52 +00:00
TiddlyWiki5/editions/katexdemo/tiddlers/HelloThere.tid

77 lines
2.8 KiB
Plaintext
Raw Normal View History

title: HelloThere
This is a TiddlyWiki plugin for mathematical typesetting based on KaTeX from Khan Academy.
2014-09-22 09:41:12 +00:00
It is completely self-contained, and doesn't need an Internet connection in order to work.
//This first version of the plugin cannot be used to generate static content under Node.js, but that capability will come in a future update. (Note that you can still use it when running the client-server configuration under Node.js).//
! Installation
To add the plugin to your own TiddlyWiki5, just drag this link to the browser window:
[[$:/plugins/tiddlywiki/katex]]
! Using KaTeX
2014-09-22 11:06:49 +00:00
The usual way to include ~LaTeX is to use `$$`, as shown in the examples below.
The underlying KaTeX widget is provided under the name `<$latex>` and is also available under the alias `<$katex>`. It's better to use the generic `<$latex>` name unless you are running multiple ~LaTeX plugins and wish to specifically target KaTeX.
! Examples
These examples are taken from http://khan.github.io/KaTeX/
!! Example 1
```
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
```
$$\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
!! Example 2
```
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
```
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
!! Example 3
```
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
```
$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
!! Example 4
```
$$\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
```
$$\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$
!! Widget Example
For more flexibility the KaTeX widget can also be used via the full widget syntax:
```
<$latex text="\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi"></$latex>
```
<$latex text="\displaystyle f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi"></$latex>
2014-09-24 09:50:49 +00:00
! Error Handling
An warning message is displayed if KaTeX detects a problem with the ~LaTeX syntax. For example:
```
$$\displaystyle f(x) = \int_{-\infty}^\infinity\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
```
$$\displaystyle f(x) = \int_{-\infty}^\infinity\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$